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Abstract: Forests are the largest terrestrial ecosystem carbon pool and provide the most important
nature-based climate mitigation pathway. Compared with belowground biomass (BGB) and soil
carbon, aboveground biomass (AGB) is more sensitive to human disturbance and climate change.
Therefore, accurate forest AGB mapping will help us better assess the mitigation potential of forests
against climate change. Here, we developed six models to estimate national forest AGB using six
machine learning algorithms based on 52,415 spaceborne Light Detection and Ranging (LiDAR)
footprints and 22 environmental features for China in 2007. The results showed that the ensemble
model generated by the stacking algorithm performed best with a determination coefficient (R2)
of 0.76 and a root mean square error (RMSE) of 22.40 Mg/ha. The verifications at pixel level
(R2 = 0.78, RMSE = 16.08 Mg/ha) and provincial level (R2 = 0.53, RMSE = 14.05 Mg/ha) indicated
the accuracy of the estimated forest AGB map is satisfactory. The forest AGB density of China was
estimated to be 53.16 ± 1.63 Mg/ha, with a total of 11.00 ± 0.34 Pg. Net primary productivity (NPP),
normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), average annual
rainfall, and annual temperature anomaly are the five most important environmental factors for forest
AGB estimation. The forest AGB map we produced is expected to reduce the uncertainty of forest
carbon source and sink estimations.

Keywords: forest; aboveground biomass; machine learning; multi-source dataset; China

1. Introduction

Forests are the largest carbon pool in terrestrial ecosystems, providing up to 70–90% of
terrestrial ecosystem carbon stocks with 31% of the global land area [1,2]. Forests fix carbon
by absorbing atmospheric CO2 through photosynthesis to form biomass and soil organic
carbon, namely forest carbon sink. The global carbon sink potential of forests amounts to
−4 Pg C/year, which can offset about 25% of anthropogenic carbon emissions [3,4]. Mean-
while, forest management pathways such as afforestation and avoiding deforestation
provide two thirds of the mitigation potential of cost-effective natural climate solutions
under the 2 ◦C global warming target [5]. When forests are disturbed, the carbons se-
questered in forests are released back into the atmosphere in the form of CO2, namely forest
carbon source. Tropical forest carbon loss doubled from 0.97 Pg C/year in 2001–2005 to
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1.99 Pg C/year in 2015–2019, mainly due to forest conversion (deforestation or conversion
of forests to other lands) [6]. Forest aboveground biomass (AGB) is more sensitive to
possible anthropogenic disturbance [6] and future climate change [7] than belowground
biomass (BGB) and soil carbon. Accurate assessment of forest AGB will help us better
understand the spatiotemporal dynamics of forest carbon source and sink in the context of
future global change, and clarify the mitigation potential of forests on climate change [8].

The combination of ground-based measurements and remote sensing technology pro-
vides a more elegant manner to estimate large scale forest AGB compared with traditional
ways [9]. Environmental remote sensing features such as single-band reflectance, vege-
tation indices, and leaf area index can be provided by optical remote sensing (e.g., the
Moderate Resolution Imaging Spectroradiometer, MODIS), then large scale forest AGB
estimations are allowed to implement by extrapolating the statistical relationship between
in situ AGB and remote sensing features [10]. For example, Piao [11] estimated Chinese
forest biomass through establishing an empirical statistical model based on ground mea-
sured data and optical remote sensing features. However, optical remote sensing lacks key
forest vertical structure parameters (e.g., tree height), resulting in underutilization of forest
3D information in AGB estimation [12]. Active remote sensing such as Light Detection
and Ranging (LiDAR) is able to measure more accurate forest 3D parameters to estimate
carbon due to its strong penetrability [13]. As an example, Asner et al. [14] retrieved the
forest carbon stocks by converting the canopy height derived from the airborne LiDAR
data into carbon density using an allometric model for small areas. Large scale ground
measurement is the mission objective of spaceborne LiDAR; nevertheless, currently in-orbit
satellites (e.g., the Ice, Cloud, and Land Elevation Satellite, ICESat) only provide discrete
point data, which needs to be combined with other remote sensing data to perform wall-
to-wall mapping [15,16]. For instance, Saatchi et al. [17] produced a benchmark map of
tropical forest carbon stocks based on a variety of data included ground measured data,
optical imagery, microwave satellite, LiDAR, and other data. Imaging radar is also able
to estimate the forest biomass as an active remote sensing technology [12], the problem of
information saturation is the bottleneck [18]. Different remote sensing technologies have
different advantages and disadvantages, the fusion of multi-source data to compensate the
defects of single source data is a ponderable research interest [19].

Machine learning is the cornerstone of artificial intelligence, which is an interdisci-
plinary subject involving probability theory, statistics, linear algebra, higher mathematics,
algorithm complexity theory, and other fields [20]. Relying on the powerful performance of
modern computers, machine learning algorithms can simulate human learning behavior,
mine useful rules and knowledge from a large number of data information, and constantly
reorganize the knowledge structure to achieve the purpose of self-improvement in multiple
iterations [21]. Therefore, compared with traditional algorithms, the main advantage of
machine learning algorithms is that they can significantly improve the simulation accuracy
of phenomena and processes [22]. However, machine learning algorithms also have some
thorny shortcomings, such as overfitting and bias problems [23]. Machine learning can
be divided into supervised learning, unsupervised learning, and reinforcement learning
according to the difference of experience and learning method [20]. Since supervised
learning mainly deals with classification and regression problems, it is frequently used in
the field of remote sensing by many scholars [24,25].

Forest AGB estimation is essentially a regression problem which can be handled by su-
pervised learning; in this situation, some supervised learning algorithms (e.g.,
k-Nearest Neighbor, KNN; Random Forest, RF) have been successfully used to construct
forest AGB retrieval models [26]. However, there are many other algorithms in the machine
learning field, such as gradient boosting (GB) [27], extreme gradient boosting (XGB) [28],
light gradient boosting machine (LGBM) [29], and categorical boosting (CatBoost) [30].
Although some of these algorithms have achieved good performance in the regional scale
biomass retrieval [31,32], the above-mentioned four algorithms have not been fully ex-
plored in the national scale forest AGB mapping [19,33]. Moreover, the performance
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of single machine learning algorithm is also limited [34]; ensemble algorithms such as
stacking [35] can theoretically combine the advantages of multiple algorithms to optimize
model performance, thus they have the remarkable potential to improve the reliability of
forest AGB estimations [36].

After decades of continuous implementation of forest managements [37], China has
become the country with the largest plantation area and the fifth largest forest area in
the world [1], which is an excellent testing ground for forest AGB estimation. Hence, the
contents of this study are as follows: (1) Based on ground inventory data, spaceborne
LiDAR, optical imageries, and climate and topographic data, we developed six forest AGB
estimation models using six machine learning algorithms, and assessed the contribution of
the environmental features, (2) the AGB values estimated by the six models were verified
using an independent ground measured dataset and the Chinese Forest Resources Report
(FRR), and (3) the spatially continuous forest AGB map of China was produced using the
optimal model, and was compared with the existing products.

2. Materials and Methods

We used six machine learning algorithms to estimate the AGB and adopted a three-
stage strategy in the modeling process. In the first stage, allometric statistical relationships
were established between the tree heights and AGB measured in the field plots, allowing
tree height to be converted into AGB. In the second stage, the forest canopy heights in
the ICESat/GLAS footprints were calculated, and these heights were converted into AGB
(namely, GLAS-derived AGB) using the allometric models developed in the first stage. In
this stage, we extended the AGB values from plot level to GLAS footprint level. In the
third stage, machine learning algorithms were used to model the relationship between the
environmental features and the GLAS-derived AGB to realize the spatial extrapolation,
thereby expanding the GLAS footprint level AGB into wall-to-wall AGB. The follow-up is
organized as follows: Section 2.1 describes the forest plot survey data and the allometric
relationship results. Section 2.2 describes the ICESat/GLAS data processing process and
the data sources of the environmental features. Section 2.3 describes the modeling process
of the machine learning algorithms. Section 2.4 describes the verification procedure for the
estimated AGB values.

2.1. Forest Inventory Data and Allometric Equation

We collected 1607 forest plot records from a published dataset across China, mainly
measured by clear-cutting or harvesting between 2000 and 2008 [38]. The dataset contains
AGB, BGB, and dead biomass, as well as geographical coordinates, diameters at breast-
height (DBH), and tree heights. We identified the forest type of each record using a forest
cover map from a land cover product [39]. Then, records without tree height, AGB, and
forest type were filtered out, and 370 records were retained to construct allometric model.

Generally, allometric relationships vary with tree species and climatic conditions, and
have spatial heterogeneity. Therefore, considering the number and distribution of samples
and possible outliers, we used a power-law function based on bi-square weights robust
least squares to fit the relationships between the tree heights and the AGB for two forest
types (broadleaf and conifer, derived from the forest cover map) in two climatic geographic
regions (N and S, derived from climate zone) [40,41] separately (Figure 1). We evaluated
the equations by cross-validation; consequently, tree height explained 65% to 88% of the
variation in forest AGB, of which the region N conifer model and the region S broadleaf
model were the two with the best performance, while the accuracy of region S conifer
model was the lowest (Table 1).
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Figure 1. Spatial distribution of the forest plots in different geographical regions. N denotes north 
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Figure 1. Spatial distribution of the forest plots in different geographical regions. N denotes north
China; S denotes south China. Validation samples are used for validation at the pixel level described
in Section 2.4. The land cover product provides three main forest types including broadleaf, conifer,
and mixed forest. There are four subtypes in broadleaf, four subtypes in conifer, and two subtypes in
mixed forest. Take broadleaf as an example, there are open evergreen broadleaf, closed evergreen
broadleaf, open deciduous broadleaf, and closed deciduous broadleaf. The four subtypes were
merged to establish allometric relationships for broadleaf in order to have sufficient samples to
maintain statistical significance of the results due to the limited number of forest plots, and conifer
was treated in the same way. In addition, there were almost no mixed forest samples due to too few
pixels of mixed forest, thus we merged the mixed forest pixel to the nearest pixel of other forest types.
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Table 1. Allometric model parameters of different forest types in different geographical regions.
AGB = a·Hb, where AGB is the plot aboveground biomass (Mg/ha), H is the mean height of dominant
trees from the emergent layer and the canopy layer in a field plot. a and b are the power-law
function parameters.

Region Forest Type a b RMSE R2 Number of Samples

N Broadleaf 5.291 1.093 15.37 0.75 63
Conifer 7.022 1.047 20.73 0.88 63

S Broadleaf 2.47 1.476 26.32 0.86 184
Conifer 6.849 1.123 48.26 0.65 60

2.2. Remote Sensing Data Collection
2.2.1. Spaceborne LiDAR

We employed the GLAH05 and GLAH14 data from the Geoscience Laser Altimeter
System (GLAS) on board the Ice, Cloud, and Land Elevation Satellite (ICESat) for 2005–2009
to extract and filter the forest maximum canopy height (RH100) at the GLAS footprint level
using the method described in detail in the previous study [42], and further refined the
results using a forest canopy height product [43]. Due to the root mean square error (RMSE)
of the product is 4.4 m, the GLAS-derived canopy heights with an absolute difference of
2.2 m or less from the product were regarded as high-confidence data. Finally, 52,415 GLAS
footprints were remained, and the forest maximum canopy heights in these footprints
were converted to AGB (namely GLAS-derived AGB) through the allometric relationships
developed in Section 2.1.

2.2.2. MODIS Dataset

The Moderate Resolution Imaging Spectroradiometer (MODIS) is an important space
remote sensing instrument developed by the National Aeronautics and Space Administra-
tion (NASA) for Earth observation; it has been providing a large amount of highly accurate
scientific datasets for about 20 years. The average and maximum normalized difference
vegetation index (NDVI) and enhanced vegetation index (EVI) were calculated through
average and maximum composition from MODIS-terra MOD13Q1 data in 2007 using the
Google Earth Engine (GEE) on the basis of these two indices are frequently present in the
process of establishing forest AGB estimation model [17,44]. The average and maximum
leaf area index (LAI), fraction of photosynthetically active radiation (FPAR), and evapotran-
spiration (ET) were also derived from MOD15A2H and MOD16A2 to represent vegetation
canopy structure and energy exchange rate.

2.2.3. NPP and Climate Factors

The amount of carbon required for plant growth is the carbon gain during photosynthesis
minus the loss of autotrophic respiration, that is, the net primary productivity (NPP) [45], and
the previous study [46] suggests NPP is more closely related to vegetation growth and biomass.
Otherwise, the relationship between photosynthesis and plant growth is strongly influenced
by climate [47]. Thus, we employed the Global Land Surface Satellite (GLASS) NPP product
to stand for vegetation growth of the year 2007 [48]. The average temperature, maximum tem-
perature, minimum temperature, temperature range, total accumulated temperature, average
precipitation, and total precipitation for 1978–2007 were calculated from published climate
datasets [49] which are downscaled from the CRU TS V4.02 to represent the 30-year mean
climate state, and the anomalies of the average precipitation and average temperature in 2007
from the mean climate state were also obtained.

2.2.4. Topography

The Shuttle Radar Topography Mission (SRTM) digital elevation data were measured
primarily by the National Aeronautics and Space Administration (NASA) and the National
Imagery and Mapping Agency (NIMA). The data cover more than 80% of the global
land surface from 56◦S to 60◦N with the spatial resolution of 1 arc-second (approximately
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30 m) [50]. We extracted the surfaces of elevation and slope as terrain variables from SRTM
V3 product in the GEE.

2.3. Forest AGB Estimation and Uncertainty Determination
2.3.1. Model Design

A pre-test scheme was employed to filtrate algorithms and environmental features.
We first collected ten machine learning algorithms that have been widely used in forest
AGB estimation research (Table 2) to conduct a 10-fold cross-validation pre-model on
GLAS-derived AGB and 22 environmental features (Table 3) under default parameter, then
screened algorithms by model performance which was assessed using the coefficient of
determination (R2) and RMSE, and screened environmental features by feature importance
which was assessed using the percentage increase in the mean-squared error. Finally,
5 algorithms and 20 environmental factors were retained to establish the forest AGB
estimation model (Tables 2 and 4). Note that in Table 4, using TMP_total_30a as an example,
its permutation importance in the XGB model is 0% but 1.62% in the CatBoost model;
if it was eliminated, the performance of the XGB did not increase or decrease, whereas
the performance of the CatBoost showed an unacceptable decrease, which would affect
the fairness of model performance evaluation. Therefore, the environmental features
we retained were the union rather than the intersection of features whose permutation
importance was more than 1% in Table 4.

Table 2. Performance of the ten models in the pre-test. * denotes that the model was eliminated due
to the low R2 and high RMSE.

Models R2 RMSE

Random Forest (RF) 0.74 23.36
Gradient Boosting (GB) 0.70 25.06

Extreme Gradient Boosting (XGB) 0.73 23.84
Light Gradient Boosting Machine (LGBM) 0.73 23.70

Categorical Boosting (CatBoost) 0.74 23.00
Linear Regression (LR) * 0.61 52.71

k-Nearest Neighbor (KNN) * 0.45 33.91
Multilayer Perceptron (MLP) * 0.18 69.32

Ridge Regression (RR) * 0.42 77.78
Support Vector Regression (SVR) * 0.29 38.52

Table 3. Abbreviations and source of the 22 features.

Feature Name Source

NDVI_mean Normalized difference vegetation index based on MOD13Q1 using mean synthesis
NDVI_max Normalized difference vegetation index based on MOD13Q1 using maximum synthesis
EVI_mean Enhanced vegetation index based on MOD13Q1 using mean synthesis
EVI_max Enhanced vegetation index based on MOD13Q1 using maximum synthesis

LAI_mean Leaf area index based on MOD13Q1 using mean synthesis
LAI_max Leaf area index based on MOD13Q1 using maximum synthesis

FPAR_mean Fraction of photosynthetically active radiation based on MOD13Q1 using mean synthesis
FPAR_max Fraction of photosynthetically active radiation based on MOD13Q1 using maximum synthesis

ET_max Evapotranspiration based on MOD13Q1 using mean synthesis
ET_mean Evapotranspiration based on MOD13Q1 using maximum synthesis

NPP Net primary productivity from GLASS
PRE_mean_30a Average precipitation of 30 years
PRE_total_30a Total precipitation of 30 years
PRE_2007_30a The anomalies of the average precipitation in 2007 from the 30-year average precipitation
TMP_max_30a Maximum temperature of 30 years

TMP_mean_30a Average temperature from of 30 years
TMP_min_30a Minimum temperature of 30 years
TMP_diff_30a Temperature range of 30 years
TMP_total_30a Total temperature of 30 years
TMP_2007_30a The anomalies of the average temperature in 2007 from the 30-year average temperature

Elevation Surface elevation extracted from SRTM
Slope Surface slope extracted from SRTM
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Table 4. Permutation importance of the 22 features in the pre-test. * denotes that the feature was
eliminated due to its importance was less than 1% in all the reserved models.

Feature Name
Permutation Importance/%

RF GB XGB LGBM CatBoost

Slope 1.90 0.07 1.49 0.82 1.06
Elevation 13.97 5.54 8.27 5.98 6.62
LAI_mean 12.79 1.98 4.44 2.55 3.07

NPP 65.06 37.33 39.26 37.26 29.61
FPAR_mean 7.18 0.67 4.16 1.58 3.37
LAI_max * 0.68 0.20 0.39 0.18 0.30
ET_mean 2.11 0.14 1.83 0.99 1.58

FPAR_max * 0.77 0.51 0.62 0.39 0.65
ET_max 4.23 0.77 1.64 1.05 1.30

NDVI_mean 12.15 12.26 29.25 21.50 30.39
EVI_mean 6.45 5.62 20.66 13.22 27.66
NDVI_max 6.63 2.73 4.34 3.28 3.47
EVI_max 2.09 0.32 1.77 0.80 1.60

PRE_mean_30a 8.13 4.76 37.23 24.98 13.23
PRE_total_30a 8.49 7.51 0 0 11.66
PRE_2007_30a 5.78 1.70 5.36 2.64 5.12
TMP_diff_30a 7.09 0.94 5.90 1.97 6.25
TMP_max_30a 3.57 1.01 3.39 1.86 3.44

TMP_mean_30a 1.91 0.48 6.36 2.13 2.49
TMP_min_30a 2.69 0.35 3.08 1.03 1.81
TMP_total_30a 1.89 0.56 0 0 1.62
TMP_2007_30a 12.13 5.61 12.34 7.18 12.59

A single machine learning algorithm may have high fitting accuracy but poor extrapo-
lation ability. Thus, we used the stacking algorithm to integrate multiple machine learning
algorithms to generate the ensemble model, and compared it with the model generated by
each single retained algorithm to reveal whether the ensemble model is more robust. In
order to argue the influence of different base learners on the model performance and deter-
mine the optimal construction, we established five stacked models for different base learner
combinations based on the retained five algorithms. We gradually enriched base learners in
sort of model performance in the pre-test (Table 2) to get different combinations, a simple
linear regression model (Ordinary Least Squares, OLS) was selected as the final estimator
in order to prevent the stacked model from overfitting. Moreover, the parameters of the
five algorithms were set to default. As a consequence, the model performance reported
by stacking the five algorithms were better than the other combinations (Table 5). Hence,
these five algorithms would be input together into the stacked model in the subsequent
modeling process.

Table 5. Performance of the five stacked model for the different combinations of base learners.

Base Learners R2 RMSE

RF + CatBoost 0.75 22.75
RF + CatBoost + LGBM 0.75 22.75
RF + CatBoost + XGB 0.75 22.74

RF + CatBoost + LGBM + XGB 0.75 22.74
RF + CatBoost + LGBM + XGB + GB 0.76 22.70

2.3.2. Forest AGB Estimation

According to the model design, six algorithms (RF, GB, XGB, LGBM, CatBoost,
and Stacking) were used to estimate forest AGB based on the GLAS-derived AGB and
20 environmental features. All features were resampled to 1000 m. The optimal parameters
(Table 6) of the five algorithms (RF, GB, XGB, LGBM, and CatBoost) were determined
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respectively by a 5-fold cross-validation grid search to produce five AGB estimation models.
Next, as the base learners, the five models were input together into the stacking algorithm
and the ordinary least squares linear regression model was selected as the final estimator
to aggregate the estimations of all the base learners. The six models (RF, GB, XGB, LGBM,
CatBoost, and Stacked) were trained and evaluated using a 10-fold cross-validation. The
importance of each feature was also assessed using the percentage increase in the mean-
squared error. The optimal model was employed to produce the spatially continuous forest
AGB map. We used the forest cover map in Section 2.1 to mask the AGB map and used
a tree cover product to rectify the pixel values of the map to narrow the impacts of forest
disturbances [42,51,52]. The RF, GB, and Stacking algorithms were implemented using the
sklearn package in python. The XGB, LGBM, and CatBoost algorithms were implemented
using the xgboost package, lightgbm package, and catboost package in python, respectively.

Table 6. Parameters of the retained algorithms.

Model Parameters

RF

n_estimations 100
max_depth 16

min_samples_leaf 6
Others default

GB
n_estimations 600

Others default

XGB All default

LGBM
n_estimations 300

max_depth 11
Others default

CatBoost All default

2.3.3. Uncertainty Determination

The uncertainty of the model was determined by the estimated values in cross-
validation, and it was calculated as follows at the pixel level [42,53]:

εprediction= P ×

√
1
N ∑N

i=1 (x i − µ)2

µ
(1)

where εprediction is the uncertainty of a pixel (Mg/ha); P is the estimated AGB value; N is the
fold number of cross-validation; x1, x2, . . . , xi are the estimated values in cross-validation;
µ is the average of all the estimated values in cross-validation.

2.4. Accuracy Assessment

We used an independent forest plot dataset and the Chinese Forest Resources Report
(FRR) to verify the accuracy of the estimated AGB values by the six models at the pixel and
provincial level, respectively. Owing to it being hard to find sufficient forest survey records
for 2007 across China to validate our estimates, we employed an available independent
forest plots dataset that was closest to 2007. The independent dataset included 189 samples
which were collected from 2011 to 2016 and covered the main forest areas throughout
mainland China [54]. Aiming to minimize the effects of the time inconsistencies, we
adopted the method manipulated by predecessors [42] to filter and rectify the samples.
Finally, 71 records were reserved for verification at the pixel level (Figure 1). We also
extracted the forest standing volume of each province (excluding Hong Kong and Macao)
from the FRR issued by the State Forest Administration for 2004–2008, and converted the
volumes into AGB through a conversion method [38] for verification at the provincial level.
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3. Results
3.1. Model Comparison and Accuracy Verification

The Stacked model (R2 = 0.76, RMSE = 22.40 Mg/ha) outperformed the other models by
a significant margin, with the CatBoost (R2 = 0.74, RMSE = 22.99 Mg/ha) in second place and
the XGB (R2 = 0.73, RMSE = 23.88 Mg/ha) at the bottom (Figure 2). Additionally, the Stacked
had a good ability to estimate AGB for different forest types in different geographical
regions (Figure 3), and the estimation accuracy was the highest in the broadleaf forest of
region N, followed by the broadleaf forest of region S.
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Especially, the verification at the pixel level based on 71 independent samples showed
that the accuracy of the AGB values estimated by the Stacked was the best (R2 = 0.78,
RMSE = 16.08 Mg/ha), which implies that the model had stronger generalization ability
than the others. Simultaneously, the Stacked AGB was closer to the FRR in the verification
at the provincial level (R2 = 0.53, RMSE = 14.05 Mg/ha) (Figure 4). Although the estimated
AGB was underestimated in 18 provinces and overestimated in 14 provinces, the provincial
average AGB density difference between the estimated and the FRR was only 19%. All these
indicate that the Stacked model is more capable of estimating the forest AGB. Accordingly,
we used the Stacked model to produce the wall-to-wall forest AGB map of China in 2007,
and the subsequent analyses were based on the map.
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3.2. Spatially Continuous Forest AGB Map and Uncertainty Analysis

The spatial distribution of the forest AGB map of China was higher in the region S
and lower in the region N, and the high AGB values were primarily distributed in the
virgin forests of Nyingchi and Lhoka of Tibet and the Central Range of eastern Taiwan
(Figure 5a). Generally, the average forest AGB density of the whole China was 53.16 Mg/ha,
with a total of 11.00 Pg. The average AGB density in region N (30.28 Mg/ha) was 44.29%
of that in region S. The broadleaf forest contributed 69.26% of the total AGB, which was
2.25 times that of the conifer forest. The spatial distribution of areas with high uncertainty
was consistent with that of areas with high AGB (Figure 5b). The uncertainty for the
entire study area ranged from 0 to 20.92 Mg/ha, with an average of 1.63 Mg/ha. Since
the areas with high AGB were mainly distributed in the broadleaf forest in region S, the
average uncertainty in region N (0.60 Mg/ha) was only 26.19% of that in region S, and the
uncertainty in broadleaf forest accounted for 66% of that in the entire area of China.
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3.3. Feature Importance

NPP, NDVI_mean, EVI_mean, PRE_mean_30a, and TMP_2007_30a were the five most
important environmental features for forest AGB estimation, while the contributions of
Slope and TMP_total_30a were the least (Figure 6). The importance of each environmental
feature had a similar distribution pattern in general, whereas there are some differences in
detail. For example, the importance of EVI_mean in the RF was obviously lower compared
with the others. The importance of TMP_mean_30a in the XGB was significantly higher than
that in the others. In the RF, GB, CatBoost, and Stacked, PRE_total_30a was a remarkable
feature, but opposite in the XGB and LGBM. Hence, it may be more accurate to measure
the impacts of feature on forest AGB estimation by summing up the feature importance
results from multiple models.
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4. Discussion
4.1. Comparison and Uncertainties

Forest inventory, remote sensing technology, or ecosystem process simulation are com-
mon methods for estimating forest AGB [55]. By setting fixed plots, forest inventory can
accurately measure forest biomass at plot scale and provide a precision benchmark for other
forest AGB estimation studies [56]. However, forest inventory is time-consuming and la-
bor intensive, which limits its application in large scale forest AGB mapping [9]. Low-cost
large-scale forest AGB estimation can be realized based on remote sensing technology by
extrapolating the statistical relationship between site scale forest AGB and remote sensing
environmental features (such as vegetation index and climate variables) [9,17]. Machine
learning is superior to traditional statistical methods, due to it being better at dealing with
the nonlinear relationship that may exist between forest AGB and environmental features;
thus, it has gradually become the mainstream method for forest AGB estimation [17,42,44,55].
Previous study [57] suggests that the tree model is more suitable for solving ecological remote
sensing problems. RF achieves high performance by constructing multiple decision trees
and introducing random attribute selection in the training process [57], which may lead to
good performance at different scales [58–60]. Therefore, although many machine learning
algorithms have been adopted by scholars [17,61–63], the frequency of RF shows that it has a
relatively important position in the current forest AGB estimation. Nevertheless, as the deci-
sion tree model is the base model of RF, the shortcomings of decision tree such as overfitting
are also reflected in RF. This may be one of the reasons for the greater difference between the
Chinese forest AGB estimated by previous studies and FRA data than our result. As we stated
in the introduction of this article, the performance of a single model is probably limited [34].

We compared the performance of ten machine learning algorithms in forest AGB
estimation in China and highlight that stacking multiple machine learning models can
effectively reduce the uncertainty of single machine learning model and increase model
stability. Compared with the five best-performing single machine learning algorithms, the
accuracy gap between the training and the cross-validation of the Stacked model generated
by the stacking algorithm is narrower than the others with the increasing size of the training
set according to the learning curves (Figure 7); meanwhile, the Stacked has the highest
accuracy in the independent validation (Figure 4), which means the Stacked effectively
mitigated overfitting and has stronger generalization ability. In addition, when other
sources of uncertainty [17] remain unchanged, we focus on comparing the uncertainty
of the six models in the forecasting process (Figure 8). Spatially, the distribution of low
uncertainty areas in the Stacked was the broadest, and the high uncertainty areas in the
XGB were more than the others. Quantitatively, the average (1.63 Mg/ha) and maximum
(20.92 Mg/ha) uncertainty given by the Stacked were the lowest among the six. The total
AGB uncertainty of the Stacked was 0.34 Pg, which was 10.53%, 19.05%, 64.95%, 41.38%
and 24.44% lower than the RF, GB, XGB, LGBM, and CatBoost, respectively. The results
further confirmed that the multi-model fusion method can reduce the uncertainty of forest
AGB estimation, which provides more available avenues to improve the accuracy of future
carbon estimates.
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The density and total of the estimated forest AGB of China in this paper are extremely
close to the FRA 2020 [1], with the relative error of −3.57% and −1.61%, respectively
(Table 7). It is reasonable for our results to be slightly lower than FRA, on the grounds
that the data given by FRA included total living standing tree carbon storage, while only
arbor layer AGB was used in our paper and understory vegetation was not included.
Compared with the other studies [36,38,49,55] on forest AGB estimation of China using
machine learning, our results are in better agreement with FRA. Especially, since we used a
larger forest area (219.71 × 104 km2 vs. 164.89 × 104 km2), the AGB density estimated in
our paper was lower while the total amount was slightly larger compared with Huang et al.,
2019 [36], suggesting that carbon stock estimates are profoundly influenced by different
forest cover maps [11,56,64,65]. Although the global forest biomass density estimated
by different studies varies greatly, the forest biomass density in China is generally lower
compared with the global average in all studies [17,59,66], which indicates Chinese forests
are still young and have considerable carbon mitigation potential. Overall, China may need
to strengthen the protection and cultivation of forest resources and attach importance to
the key role of forest ecosystems in ensuring ecological security and promoting sustainable
social development.



Remote Sens. 2022, 14, 5487 14 of 19Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 21 
 

 

 
Figure 8. Spatial distribution of forest AGB uncertainty of the six models. (a) RF; (b) GB; (c) XGB; 
(d) LGBM; (e) CatBoost; and (f) Stacked. Figure 8. Spatial distribution of forest AGB uncertainty of the six models. (a) RF; (b) GB; (c) XGB;

(d) LGBM; (e) CatBoost; and (f) Stacked.



Remote Sens. 2022, 14, 5487 15 of 19

Table 7. Comparison with previous studies.

Source Approach Method Study Area Year Object Average (Mg/ha) Total (Pg)

FRA 2020 1 [1]
Forest

inventory

Biomass
expansion

factor
China 2010

Forest
aboveground

biomass
55.13 11.18

Piao et al.,
2005 [11]

Remote
sensing

Regression
analysis
(Linear

Regression)

China 1997–1999 Forest biomass 93.68 11.98

Beaudoin et al.,
2014 [61]

Remote
sensing

Machine
learning
(KNN)

Canada 2001
Forest

aboveground
biomass

61.32 17.6

Ghosh et al.,
2018 [58]

Remote
sensing

Machine
learning (RF) 2

Katerniaghat
Wildlife

Sanctuary,
India

2017
Forest

aboveground
biomass

Luo et al.,
2021 [31]

Remote
sensing

Machine
learning

(CatBoost) 2

Jilin province,
China 2014

Forest
aboveground

biomass
25.77

Moradi et al.,
2022 [62]

Remote
sensing

Machine
learning
(ANN)

Hyrcanian,
Iran 2016

Forest
aboveground

biomass
210

Saatchi et al.,
2011 [17]

Remote
sensing

Machine
learning

(Maximum
Entropy)

Pan- tropical 2000-2001
Forest

aboveground
biomass

157.04 (116.58) 3 386 (19.62) 3

Santoro et al.,
2021 [65]

Forest
invention with
remote sensing

Biomass
expansion

factor
Global 2010

Forest
aboveground

biomass
108 (60) 3 521 (13.47) 3

Hu et al.,
2016 [59]

Remote
sensing

Machine
learning (RF) Global 2004

Forest
aboveground

biomass
210.09 (160.74) 3 532.75 (16.41) 3

Chi et al.,
2015 [49]

Remote
sensing

Machine
learning (RF) China 2006

Forest
aboveground

biomass
12.62

Su et al.,
2016 [38]

Remote
sensing

Machine
learning (RF) China 2004

Forest
aboveground

biomass
120

Huang et al.,
2019 [36]

Remote
sensing

Machine
learning (RF) China 2006

Forest
aboveground

biomass
69.87 10.88

Chang et al.,
2021 [55]

Remote
sensing

Machine
learning (RF) 2 China 2011-2015

Forest
aboveground

biomass
96.64 16.26

This Study Remote
sensing

Machine
learning

(Stacking)
China 2007

Forest
aboveground

biomass
53.16 11.00

1 Forest aboveground biomass statistical information of China in FRA were derived from the National Forest
Inventory (NFI) conducted by the State Forestry Administration. The inventory method is the internationally
recognized method of “Continuous Forest Inventory (CFI)” and using provincial surveys as a whole, a systematic
sampling method was used to establish and verify fixed sample plots (a total of 415,000 ground sample plots in
China). 2 The study used a variety of machine learning algorithms, the algorithm written in parentheses was the
best. 3 The data in the parentheses are for China in the study.

4.2. Feature Contribution

We highlighted the prominent contribution of NPP and climate factors. To further
quantify the impact of NPP and climate factors on forest AGB estimation, we removed
them from the modeling features and re-ran the models without changing other parameters.
The performances of all the models decreased by about 15% (Table 8), which supported the
previous research conclusions [39–41,67]. Furthermore, due to inconsistent rules identified
from the features in the different models (Figure 6), the persuasiveness of feature impor-
tance given by a single model is finite. The true effect of feature on forest AGB during
earth system ecological processes may be imprecisely assessed when using the result of
only one model. Comprehensive analysis of the feature importance results of multiple
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models may be able to better define the real contribution of environmental factors on forest
AGB estimations.

Table 8. The accuracy changes of the six models without NPP and climate factors.

Model R2 Percentage of Decrease

RF 0.62 15.07%
GB 0.60 17.80%

XGB 0.60 17.80%
LGBM 0.62 16.21%

CatBoost 0.63 14.86%
Stacked 0.65 14.47%

4.3. Limitations

The imperfect part of the allometric relationship establishment method is the source of
limitations. On the one hand, the relationship between tree height and biomass of different
tree species is quite different [67]. However, due to the constraint of the amount of forest
plot data, we only established allometric equations for different forest types, which reduces
the pertinence of allometric equations and the conversion accuracy from tree height to
biomass. On the other hand, we constructed the allometric models using tree height as the
unique independent variable, whereas the models are more precise when both tree height
and DBH are available [67]. Terrestrial laser scanning (TLS) and unmanned aerial vehicle
(UAV) LiDAR are the two main methods for extracting DBH at present; unfortunately, these
two modes still present challenges in large-scale DBH parameter measurement [68–70]. In
conclusion, more available forest plot data and reliable determination of DBH parameters
over a wide range are the keys to improving the accuracy of our results.

5. Conclusions

We compared the results of six machine learning models (RF, GB, XGB, LGBM, Cat-
Boost, and Stacked) for forest AGB estimation in China. The performances of the Stacked
were the best (R2 = 0.76, RMSE = 22.40 Mg/ha) in the 10-fold cross-validation, and the
forest AGB mapped by the Stacked well correlated with the independent forest plot dataset
(R2 = 0.78, RMSE = 16.08 Mg/ha) and the FRR (R2 = 0.53, RMSE = 14.05 Mg/ha), respec-
tively. The estimated average forest AGB density of China was 53.16 ± 1.63 Mg/ha, with
a total of 11.00 ± 0.34 Pg. Our results were extremely approximate to the FRA at the
average level (relative error = −3.57%). In contrast to previous studies, we highlighted the
important role of model integration in improving the performance of forest AGB estimation
and reducing uncertainty. However, the unavailability of large scale DBH data limits the
further improvement of accuracy. In addition, the long time series forest AGB dataset
provides basic data for studying the dynamic change of forest carbon source and sink,
which is one of the future research interests.
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