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Abstract: The field of remote sensing has undergone a remarkable shift where vast amounts of
imagery are now readily available to researchers. New technologies, such as uncrewed aircraft
systems, make it possible for anyone with a moderate budget to gather their own remotely sensed
data, and methodological innovations have added flexibility for processing and analyzing data. These
changes create both the opportunity and need to reproduce, replicate, and compare remote sensing
methods and results across spatial contexts, measurement systems, and computational infrastructures.
Reproducing and replicating research is key to understanding the credibility of studies and extending
recent advances into new discoveries. However, reproducibility and replicability (R&R) remain issues
in remote sensing because many studies cannot be independently recreated and validated. Enhancing
the R&R of remote sensing research will require significant time and effort by the research community.
However, making remote sensing research reproducible and replicable does not need to be a burden.
In this paper, we discuss R&R in the context of remote sensing and link the recent changes in the
field to key barriers hindering R&R while discussing how researchers can overcome those barriers.
We argue for the development of two research streams in the field: (1) the coordinated execution of
organized sequences of forward-looking replications, and (2) the introduction of benchmark datasets
that can be used to test the replicability of results and methods.
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1. Introduction

Over the last decade, the field of remote sensing has undergone a remarkable shift, with
a considerable amount of data now easily accessible at higher spatial, temporal, spectral,
and radiometric resolutions than ever before. Researchers can browse and immediately
download data from vast catalogs like USGS EarthExplorer, Google Earth Engine (GEE),
or the ESA Copernicus Open Access Hub, or request data from private sector firms like
Planet that are imaging the earth every day. Cloud-based computing platforms like GEE
have made the process even easier by allowing researchers to bundle image acquisition,
processing, and analysis tasks altogether and rapidly conduct large-scale computations in
the cloud [1]. Complementing the availability of satellite-based remote sensing data has
been the advent of low cost, easy to use, close-range remote sensing technologies including
uncrewed aircraft systems (UAS, or drones). It is now possible for anyone with a moderate
budget to gather their own remotely sensed data by mounting sensors on a UAS, and that
data can then be shared through open platforms online.

Researchers have gained similar flexibility in their data processing and analysis options.
The continuous collection of multi-sensor, high resolution data that is too large to efficiently
process using traditional techniques has motivated an explosion of artificial intelligence
(AI) research within the remote sensing community [2,3]. New methods are released
almost daily, and investments in large-scale infrastructure initiatives and high-performance
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computing aim to make these methods readily accessible. As importantly, tools such as
Binder and WholeTale that facilitate the documentation and sharing of the data, code, and
software environment used to generate research findings with these emerging methods are
also free and widely available [4–6].

The increasing data availability, methodological expansion, and tool proliferation in
remote sensing creates both the need and opportunity to reproduce, replicate, and compare
new research methods and findings across spatial contexts, measurement systems, and
computational infrastructures. At the core of the scientific method is the idea that research
methods and findings are progressively improved by repeating and expanding the work
of others. This process is called reproduction and replication (R&R). By reproducing or
replicating studies, and examining the evidence produced, scientists are able to identify and
correct prior errors [7,8], verify prior findings, and improve scientific understanding. R&R
is likewise closely linked with Popper′s falsifiability criterion [9] because the falsification
of scientific theories depends in part on the verification of auxiliary assumptions that link
the hypothesis in question to something observable. When falsification attempts are made,
reproductions and replications can help researchers identify, make explicit, and test the
often unacknowledged auxiliary assumptions. As such, reproductions and replications can
help researchers differentiate whether a research result is the product of some violation of
the hypothesis or some auxiliary assumption. That knowledge can then be used to refined
the specification of hypothesis and further develop theory [10]. Moreover, falsification is
only informative if researchers discover a reproducible effect that refutes a theory [9,10].

There are innumerable opportunities for R&R in remote sensing due to the open
availability of data and the consistency of repeat coverage from sensors like Landsat and
Sentinel. As a complement, local data collected from UAS and other aerial platforms
offer the opportunity to examine outcomes more closely and test new methods across
measurement systems. As these new methods are developed, reproductions can be used to
test their validity and credibility, and replications can be used to assess their robustness
and reliability. These opportunities have not yet been fully explored though because basic
reproducibility remains an issue in remote sensing research [11,12]. In a recent survey of
230 synthetic aperture radar (SAR) researchers, 74 percent responded that they experienced
some difficulty when attempting to reproduce work in their field, while an additional
19 percent responded that they have never attempted a reproduction [10]. In a review of
200 UAS studies, Howe and Tullis [12] found that a mere 18.5 percent of authors shared
their data, and only 8 percent shared their workflow or code. At the same time, the
privatization of earth observation by companies like Planet and Maxar has created new
challenges for reproducibility such as the need to rectify sensor discrepancies across rapidly
progressing sensor generations and standardize radiometric and geometric corrections [13].
The growing use of UAS adds to the challenge of collecting and sharing data in dynamic,
multi-user environments without recognized documentation or reporting standards [14,15].

As in other fields, remote sensing researchers also face a set of tradeoffs surrounding
reproducibility when planning and implementing their studies. Ensuring that a remote
sensing study can be accessed and recreated by others requires that researchers spend
time and resources that might otherwise be dedicated to original research [16]. Recording
workflow details, adequately commenting code, containerizing, preserving, and sharing
research artifacts, and running internal reproducibility checks all take time, but are often
met with little direct reward. While it is true that increasing the accessibility of work
may increase its adoption by others, beyond adopting reproducibility badging systems,
publishers have done relatively little to incentivize reproducibility. It also remains difficult
across disciplines to publish reproductions and replications, even when this type of study
may be particularly salient to resolving competing conceptual or policy claims [17–19].
Similarly, we are unaware of any criteria that reward the adoption of practices that facilitate
R&R in the promotion and tenure process. Beyond these practical considerations, Wain-
wright [20] poses a range of ethical questions a researcher might consider when planning
the reproducibility of their work. These questions include the ethics of sharing data that by
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themselves may not violate ethical principles to do no harm, but could when combined
with other data streams allow others to infer sensitive information resulting in a violation of
privacy principles and cause harm. Wainwright similarly questions the for-profit motives
of publishing companies seeking to expand their business models into data and metadata
analytics. Bennett et al. [21] offer a still wider view of the challenge by situating remote
sensing in the broader political economy. Adopting their framing, researchers could well
ask whether making their research reproducible also reproduces existing power dynamics
that disadvantage some communities relative to others.

These challenges hinder scientific progress in remote sensing research, but they can
be overcome. This paper discusses R&R in the context of remote sensing and links the
recent changes in the field to key barriers preventing R&R. We argue that foregrounding
R&R during the design of individual studies and remote sensing research programs can
position researchers to take advantage of recent developments and hasten progress. We
organize this paper into three parts. First, we define the terms and connect R&R to some of
the central objectives of remote sensing researchers. We then discuss the challenges that
current developments in remote sensing present for R&R. We link those challenges to steps
the remote sensing community can take to improve the reproducibility of research. Lastly,
we look forward and discuss how planning for R&R can be incorporated into the research
design and evaluation process. We aim to show how the challenges that presently exist in
remote sensing research can be turned into opportunities, and we present actionable steps
to facilitate that conversion.

2. Reproducible, Replicable, and Extensible Research

Different fields have adopted different definitions and uses of the terms ‘reproducible’
and ‘replicable’. We adopt the U.S. National Academy of Sciences, Engineering, and
Medicine (NASEM) definitions of R&R [22] (Figure 1). A remote sensing study is repro-
ducible if an independent research team can obtain results that are consistent with an
original study using the same input data, computational steps, methods, code, and con-
ditions of analysis as the original research team. Within the AI literature, Gunderson and
Kjensmo [23] make a distinction between the conceptual approach to a problem (AI Method)
and the implementation of that approach in the form of a computer program (AI Program),
which is also a useful distinction in remote sensing. Separating methods from programs, the
authors introduce what they call data reproducibility, which allows for an alternative imple-
mentation of the method used in the prior study. A test of data reproducibility isolates the
effect of the implementation of a method as a program. This distinction is useful in remote
sensing because researchers often wish to know how well a method, such as a classification
algorithm, is performing independent of its computational implementation and, conversely,
how consistent and relatively efficient different implementations of the programming are.
Therefore, we discuss both methodological and programmatic reproducibility.
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Figure 1. Typology of R&R concepts showing progression of effort and time. Adapted from
Essawy et al. [24].

Using the NASEM definition, a remote sensing study is replicable if an independent
research team addressing the same question can obtain consistent results when using
different data. Replications provide information about the robustness and reliability of
the claims of a study [25,26] because they provide evidence that the findings are not just
characteristic of the original study. If the replication used all of the same methods and only
changed the data, then the replication can support the inference that the remote sensing
method, and the software(s) in which the analysis was implemented, are reliable. For
example, a study replicating a new classification algorithm that was originally tested in a
grassland environment using Landsat data may find that the algorithm produces consistent
results using Sentinel data captured in the same grassland location. This replication would
demonstrate the robustness of the classification method across the two sensors, but it
does not provide any evidence that the method would work in a different location or
ecosystem. Therefore, the method may be well suited for grasslands, but may perform
poorly in urban systems. If the replication was instead performed using Landsat data
but in an urban system, and the algorithm performed similarly well as in the grassland
system, then the replication would demonstrate the robustness of the algorithm across
study areas/environments. However, until the study is replicated successfully in different
locations and with different sensors, it cannot be assumed that the algorithm is scientifically
valid in all contexts.

Of the two concepts, R&R, reproductions are generally considered more straight-
forward and easier to implement as long as the researchers who conducted the prior
study share the complete set of provenance information from their study. Provenance
documentation records the full set of components and activities involved in producing a
research outcome, which includes data-focused descriptive metadata and process-focused
contextual metadata. With the complete provenance of a study, an independent researcher
should be able to check the study for errors, or develop a research design that attempts to
replicate the result with a new dataset. In this way reproducibility facilitates replication.
Reproductions are also often easier to interpret than replications. Holding constant aspects
of the research process, a researcher would expect a reproduction to produce the same
results as a prior study. When a replication is pursued, the injection of new data requires
that a researcher develop some criteria to make the comparison to the results of the prior
study. Selecting those criteria can be complicated because different amounts of natural
variation can occur across studies [27–29].

Reproducibility is also a key stepping stone for making remote sensing research exten-
sible. Extensibility refers to the potential to extend existing research materials by adding
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new functionality or expanding existing functionality [30]. There are many examples of
extensibility in remote sensing, but one brief one is the evolution of spectral unmixing
methods. Spectral mixture analysis was introduced to remote sensing in the 1980s [31,32] to
extract multiple signals from a single pixel. Since then, the field has built on and extended
those original methods to account for endmember variability [33] and incorporate spatial
information [34], among other uses.

Extensibility depends on the research materials of a study having three characteristics:
they must be available, reproducible, and understandable to the point that an independent
research team can reuse them [30]. For example, remote sensing research material that
is reproducible and understandable, but not available, can only be used as the basis for
future development if an independent researcher takes the time to carefully reconstruct
that material. Research materials may be reproducible and available, but if they are not
intelligible or are not prepared in a transparent and understandable manner, then they
have limited use as the foundation of further development. Of course, materials that are
not reproducible cannot be fully vetted by independent researchers, which then requires a
researcher to take on faith or reputation that the materials are reliable and worthy of further
development.

The ability to build on prior research depends on the reproducibility of research ma-
terials in combination with their availability and transparency. Sharing data and code is
essential, but it is also necessary to make the methods transparent and provide under-
standable documentation of the provenance of a study. A key challenge facing the remote
sensing community is not just to create repository systems that store data and code, as many
systems already exist. Rather the challenge is to make it easier to understand the prove-
nance information that researchers share. This challenge is non-trivial as remote sensing
workflows become more complex, integrate data from multiple platforms, require greater
computational resources and customized software, and involve larger research teams.

3. Reproducibility and Replicability in Remote Sensing

While structures such as the wide availability of open data captured through cali-
brated sensors like Landsat that consistently re-image the same spots on Earth should help
foster reproducibility, replicability and extensibility in remote sensing research, these goals
remain elusive for several reasons. First, the top journals in the field including Remote
Sensing of Environment, ISPRS Journal of Photogrammetry and Remote Sensing, and IEEE
Transactions on Geoscience and Remote Sensing prioritize publishing new methods and
algorithms rather than supporting reproductions or replications of existing methods. This
preference by editors and publishers for new methods deters researchers from completing
highly valuable, yet underappreciated, reproductions and replications. The result is that the
field of remote sensing has become flooded with new methodologies, many of which are
only ever used by the researcher or team that developed them. Researchers are drowning
in a sea of methods and thirsting for evidence to help them decide which ones to use. At
best, many methodological studies include pre-existing methods as a comparison case
against the new method being introduced. These comparisons should not be mistaken for
reproductions or replications as it is not the original study that is being scrutinized, it is
the new method. Furthermore, these comparisons are only typically included when they
support the development of the new method, and they are omitted if their performance
disproves the new method. Thus, these comparisons are wrought with reporting biases.

There are also intrinsic reasons why replications and reproductions are not frequently
attempted by the remote sensing community. Within a remote sensing workflow, a myriad
of small but important decisions are made by the analyst/s. These decisions include
everything from how the data will be geometrically and radiometrically corrected, to any
spatial and spectral resampling that might be needed to match the resolution of other
data sources, to band or pixel transformations to make the images more interpretable.
While each of these decisions may seem minor on its own, when taken together, they can
produce thousands or even millions of different possible outcomes even when the basic
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methodology described in the paper is followed. Exacerbating this issue is the fact that
intermediate data that are produced during an analysis and result from these decisions are
often not preserved, making it difficult to trace back these decisions, errors, and uncertainty.
In the rare case that these intermediate products are included, they usually do not include
accompanying metadata, making it difficult for researchers to fit them into the puzzle.

The uptick in UAS has also complicated the R&R of remote sensing studies. While
these alternative data streams have put more options and control over data collection
into the hands of users, they also decrease the consistency and stability of data sources,
which was one of the advantages enhancing the potential for R&R in remote sensing.
Specifically, when users collect their own data with UAS, an entirely new set of decisions
is added into the workflow that impact the data and analyses. These decisions include
the type of platform and sensor, altitude of the flight, ground sampling distance, flight
pattern, flight speed, image/flight line spacing, and sensor trigger cadence, among many
others. Since researchers rarely report a complete set of image collection parameters in their
publications [14], it can be nearly impossible to replicate a data collection event in a new
study area. Most concerning for UAS remote sensing is that the commercial, off-the-shelf
(COTS) sensors being used to capture imagery from drones are almost never calibrated
pre-flight, and the image reflectances are rarely validated against reflectance targets [14].
Since it is notoriously difficult to determine the reflectance from COTS sensors because
manufacturers do not publish the spectral responses [35], researchers are using unknown
reflectances to extract biophysical and/or biochemical properties, such as through NDVI.
Not only is this problematic for individual remote sensing studies and calls into question
any biophysical and biochemical findings based on COTS sensors, but it makes it nearly
impossible to replicate UAS studies since mimicking the data collection when using a new
platform, sensor, and having to recreate all the flight parameters is all but impossible.

Commercial smallsats introduce parallel, yet unique, issues for R&R in remote sensing.
These ‘cubesats’ are much smaller than traditional satellite platforms (about the size of a
loaf of bread) and do not require a dedicated launch vehicle, making them easy to build and
quickly deploy into space. The sensor systems on cubesats are more sophisticated than the
digital cameras being flown on drones, and there is more transparency in the band positions
and spectral responses compared to COTS sensors. However, unlike traditional platforms
like Landsat and Sentinel in which a single platform/sensor is capturing each image,
cubesats rely on hundreds of platforms in a constellation to capture data. This multiplicity
leads to substantial scene-to-scene variation in spectral reflectance [36] (Figure 2), and
the scenes often require considerable preprocessing to correct radiometric effects prior to
running any analyses [13]. Since repeat acquisitions for the same spot on earth may not be
imaged by the same platform/sensor, it is not as straightforward to complete replications
over time in the same place as with traditional platforms like Landsat or Sentinel.

From a methodological standpoint, the increasing use of machine learning and neural
networks in remote sensing workflows make the field subject to data leakage concerns. Data
leakage exists when there is a spurious relationship between the predictor and response
variables of a model that is generated by the data collection, sampling, or processing
strategy of a researcher [37,38]. Kapoor and Avind [38] identify three distinct forms of data
leakage, which are all relevant to the performance and R&R of remote sensing models. First,
data leakage can occur when features are used during training that would not otherwise be
available to other researchers during the modeling process. For instance, higher resolution
proprietary data are often used to train and test spectral unmixing techniques [39], but
these data are often unavailable when the model is being run by an independent researcher.
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Second, data leakage can occur when data used to train the model are drawn from
a distribution that does not match the distribution of the features of interest or the en-
vironment in which the model will eventually be deployed. This form of leakage may
be particularly challenging for remote sensing researchers because models trained with
data from a spectral library or a single reference site are commonly used to make predic-
tions about new locations at new times. Even when deployed in the same ecosystem, a
model may not perform well if the ecosystem has undergone seasonal or other longer term
changes. Both temporal and spatial leakages are of increasing concern in remote sensing as
the impacts of climate change alter the environment and raise the variability of phenomena.

Finally, remote sensing researchers often touch on security issues and study vulnerable
communities that may make it inappropriate to share the information needed to ensure
reproducibility [40,41]. When studying such issues, researchers may simply not be allowed
to share their data or their workflow information. In these instances, Shepard et al. [42]
propose creating and releasing simulated datasets that match the important characteristics
of the real data. Whether this approach would work well in remote sensing is debatable, as
the spatial, temporal, and spectral structure of remote sensing data often carry indicators
of from where and when observations were drawn. As Bennett et al. [21] note, remote
sensing research may also reinforce entrenched representations of the world and the
unequal hierarchies of power that create them. Replicating research that reinforces existing
inequalities may serve to further amplify those inequalities and could be misconstrued as
lending credibility to the social and economic structures that generate them.

4. Laying the Groundwork to Capitalize on Reproducibility and Replicability

Concern over the reproducibility of remote sensing research has motivated a range
of responses from the remote sensing community. Many of these responses center on
improving the sharing of data and code and the collection of provenance information–a
record trail that describes the origin of the data (in a database, document or repository)
and an explanation of how and why it got to its present place [12,43]. A popular solution
to these challenges in computational remote sensing studies is the combined adoption of
computational notebooks that implement literate programming practices and version con-
trol software that track and manage project code [44–46]. Jupyter and R Markdown are the
most commonly used notebooks in many contexts [47] and have recently seen integrations
into the increasingly popular Google Earth Engine for remote sensing applications [48]. An
important feature of executable notebooks using either Jupyter or R Markdown is that they
can be stored and rendered within Github, which allows a researcher to share a detailed
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history of code development with an interactive rendering of their final analysis. Joint
adoption of both technologies has the additional merit of being an already popular, user
driven solution to workflow tracking and sharing, which allows remote sensing researchers
to make rapid, if incremental, improvements in reproducibility. A systematic review of
what remote sensing researchers have already done with these technologies could yield
insights into what a set of best practices for the discipline might look like. However, we are
of unaware of any such reviews existing at this time.

Another solution to the challenge of deciding what to share is to develop repro-
ducibility checklists that set criteria for recording and reporting provenance information.
Checklists have been developed in several fields that intersect with remote sensing research
including machine learning and artificial intelligence [49,50] that can easily be applied
to remote sensing studies that use these techniques. Tmusic et al. [51] provide a similar
reference sheet, which lists technical and operational details to be recorded during UAS
data collection, while Nust et al. [52] provide a list for geocomputational research.

These checklists and standards are also being integrated into the publication pro-
cess. For example, James et al. [53] created reporting standards for geomorphic research
employing structure from motion (SfM) photogrammetry that have been adopted by the
journal Earth Surface Processes and Landforms as the benchmark for studies utilizing SfM.
The IPOL Journal (Image Processing Online) is incentivizing reproducible research prac-
tices by publishing fully reproducible research articles that are accompanied by relevant
data, algorithm details, and source code [54,55]. The journal has published 130 public
experiments since 2018. Others have translated standards into badging systems to credit
authors for reproducible research [56,57]. For example, Frery et al. [58] developed a badging
system specific to remote sensing research and included a proposal for implementing this
system through a reproducibility committee, which would oversee the four journals of the
IEEE Geoscience and Remote Sensing Society. In alignment with this effort, the IEEE has also
introduced the Remote Sensing Code Library [59], which collects and shares code used in
remote sensing research. However, that library is not currently accepting new submissions,
and Frery et al.’s badging system has not been adopted, which reflects ongoing hurdles to
implementing and sustaining efforts even with interest from the community.

Scaling checklists and badging systems to cover the diversity of work within the
remote sensing community presents a further challenge. While laudable, the IEEE effort to
ensconce Frery et al.’s badging system covers only a small subset of the publication outlets
where remote sensing researchers share their work. That work is also diverse. While the
badging system may indeed work well for computationally intensive workflows, it will
likely be difficult to apply the same system to mixed methods research in which remote
sensing forms only a portion of the larger workflow, which might also include household
surveys, stakeholder interviews, or archival analyses. For example, badging may not be a
sufficient system for the type of remote sensing imagined in Liverman et al.’s [60] classic
People and Pixels, or for the complicated and integrated workflows of many projects funded
through the NSF Dynamics of Integrated Socio-Environmental Systems (DISES) program.

While checklists and badges facilitate standardized reporting of remote sensing re-
search, they are commonly used only at the end of the research process as reminders of
what to report, and they do not include specific recommendations about how to record
provenance information in a standardized format. Linking these checklists and badges
to provenance models and reporting standards already in place would increase the legi-
bility of provenance information and interoperability across studies. Provenance models
standardize the reporting about the products (e.g., data, code, reports) made during the
research process, the researchers that were involved in creating those things (agents), and
the actions those researchers took to make them (activities).

One option is for remote sensing researchers to adopt the W3C PROV model [61],
which has a specific syntax and ontology for recording entity, agent, and activity infor-
mation. The W3C PROV model has specific advantages over the use of a checklist. For
example, if a data file of a land cover classification is one product of a remote sensing
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research study, a checklist will remind the researcher to share that original imagery and
code that went into creating that land cover product. While the code may provide some
insight into how the classification was created, it is often difficult to interpret code due
to poor commenting practices. Even when code is commented, details about who gener-
ated that code or how the code was used in combination with other research materials
(e.g., hardware) to create the final product is often omitted. The W3C PROV model can
overcome these challenges and be used to track these relationships and ascribe specific
actions to individuals and times. In this way the development history of the same code
could be viewed. Moreover, if sections of that code are borrowed from previous code, those
relationships can also be tracked thereby marking the intellectual legacy of the new code.
The provenance model could similarly record connection with data inputs of even dataset
used to develop and test code performance, which would again provide greater insight
into how and why the code was developed as it was.

Integrating the W3C PROV model with other computational resources would further
improve consistency across remote sensing workflows and facilitate the comparison and
extension of research. For example, remote sensing researchers could containerize their
workflows and track progress with version control software. Containerization packages
the data, code, software dependencies, and operating system information of an analysis
together in a format that can run consistently on any computer. Sharing a container,
rather than individual scripts, data, and software and hardware documentation facilitates
reproductions and replications by making the computational aspects of a remote sensing
analysis explicit. When a researcher couples a container with documentation following a
widely adopted provenance model, they make their analysis understandable, available,
and reproducible, and therefore extensible.

One challenge to containerization and sharing is the use of specialized infrastructure
(e.g., institutional supercomputing resources) or sensitive/proprietary data in analyses.
Limited or restricted availability of these resources make it difficult or impossible for
other researchers to execute containers on their own hardware. However, even when a
container cannot be run, containerization and provenance documentation still improve
the legibility of research by linking data and code with provenance. Moreover, if the
container, restricted data, and provenance record are stored on specialized infrastructure,
the researcher that developed that analysis could allow curated access to that infrastructure
and container. Developing protocols, review procedures, and standards for access that
institutions can adopt for remote sensing research is an important task to facilitate the
transition to containers and provenance documentation. A leading example of this type of
system that the remote sensing community might emulate is the developing Geospatial
Virtual Data Enclave [62,63] hosted by the Inter-university Consortium for Political and
Social Research. That enclave not only makes data and code accessible through virtual
machines, its creators are also developing a credentialing system that allows varied levels
of access to sensitive information to different researchers.

While combining containerization and provenance models has clear benefits for com-
putational analyses in remote sensing, it must be stressed that this pairing can also improve
the capture and communication of the entire remote sensing research process, including
projects that use remote sensing data streams from multiple platforms (e.g., satellites,
cubesats, and UAS). Consider the example of the Central Arizona-Phoenix Long Term Eco-
logical Research Project (CAP LTER)—a multi-decade, multidisciplinary research project
monitoring and assessing the socio-ecological dynamics of the Phoenix metro-area and
Sonoran Desert. The CAP LTER team uses satellite-based optical data, aerial imagery, and
lidar data to support numerous ongoing analyses of the entire Phoenix region. CAP LTER
researchers are now also using UAS to collect high-resolution data in specific locations, and
are analyzing that data in combination with the satellite- and airborne-base data products
for the wider region. Applied at the level of an individual research project within CAP
LTER, a researcher could use the W3C PROV Model to track UAS mission details and
data processing steps. If the researcher also used satellite-based products (e.g., land cover
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classification) prepared by another researcher in the CAP LTER in their analysis, and that
processing was also documented using the W3C PROV model, the two independently
executed research components could be linked and shared. Moreover, if both processes
were containerized, a researcher using the two data streams could create and share a con-
tainer with their complete analysis. Scaled to the CAP LTER project as a whole, consistent
provenance documentation and containerization of all remote sensing data collection and
analysis within the project would create interoperable and extensible research packages
that could be compared and recombined through new analyses.

5. Leveraging Recent Developments in Remote Sensing by Focusing on the
Reproducibility and Replicability of Research

While developing and adopting systems that facilitate community-wide documen-
tation of provenance information and data sharing are clearly critical to enhancing the
reproducibility of remote sensing research, we have the opportunity to look beyond these
tasks as well. If remote sensing researchers focus on the function that reproductions and
replications play in scientific investigation, they will find opportunities to restructure ex-
isting research streams and open new avenues of investigation. Here, we discuss two
such opportunities: (1) forward-looking replication sequences, and (2) benchmarking for
multi-platform integration.

5.1. Forward-Looking Replication Sequences

Rather than looking at replication as a means of assessing the claims of prior studies,
we can instead design sequences of replications to progressively and purposefully gather
information about a topic of interest [64,65]. The simultaneous improvement of the resolu-
tion of remote sensing data and our capacity to process that data through high-performance
or cloud-based computing creates this opportunity to design forward looking research
programs around the error correcting function of replication. For example, there is presently
debate around how to best approach ecological niche modeling [66,67] and conservation
in terrestrial and aquatic environments [68]. If a set of competing niche models that use
remote sensing data were specified, they could leverage the global scope of remote sensing
data to fit those models across a sequence of locations. At each location, researchers could
compare the performance of the niche models, and use a measure of that performance
(e.g., Bayesian Information Criteria) to update a vector of model weights using Bayes
theorem. Repeated across successive studies, that vector of model weights would reflect the
information available about each model from the complete prior sequence of studies. Niche
models that repeatedly fit the data and consequently receive greater weight would garner
greater belief. This same approach could be applied to identify which implementation of a
remote sensing method, such as a ML-based classification method, is the most robust to
changes in location or data inputs.

There is also a crucial link between forward-looking replication studies in remote
sensing and the need to address climate change. The IPCC 6th Assessment Report [69]
makes clear not only that climate change is happening, but that we have technologies
and interventions to mitigate its impacts. A pressing question then is how to efficiently
scale those technologies and interventions across the planet. Framed in this way, scaling
is a question of whether an intervention will replicate in another location. Adapting
the approach above, we might design intervention sequences across places that have
been closely matched but are also known to vary in key dimensions from remote sensing
studies. Such sequences could test what environmental limits constrain the effectiveness of
those interventions.

The data and computational foundations needed to begin implementing replication-
based approaches are already in place. The niche modeling example presented above could
be implemented using the datasets, APIs, and computational resources available through
Google Earth Engine [70] or the Microsoft Planetary Computer [71]. However, realizing the
potential of this approach remains constrained by a set of challenges succinctly summarized
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by the Trillion Pixel Challenge [72]. While researchers may be able to replicate and compare
models across contexts, delving deeper into the theories behind those models and the
processes they represent will depend on expanding the variety of remote sensing data
available, integrating localized data sampled from non-orbital platforms, improving our
ability to learn from labeled and unlabeled data, and developing a better understanding of
the effects of the sequencing of replication series.

Ongoing research taking place inside and outside of remote sensing could be used
to address these challenges. Researchers at Oak Ridge National Laboratory have recently
developed the RESflow system that uses AI to identify, characterize, and match regions
in remotely sensed data [73]. Understanding what characteristics regions do or do not
share is important for designing replication sequences to maximize information about the
applicability of a model, or the scalability of a policy intervention. Al-Ubaydil et al. [74–76]
have explored this problem in depth within the experimental economics literature and have
introduced a model and framework that outlines the threats to scaling policy interventions.
The authors highlight four factors that shape the chances of an intervention scaling: the
quality of the initial inference, situational confounds, population characteristics, and gen-
eral equilibrium effect. Using this framework, they suggest designing study sequences that
first evaluate a model or interventions where it is most likely to work, and then test the
model in edge situations that vary on some dimension that could lead to non-replication.
While not a perfect match for all types of remote sensing research, the lessons of this
approach could be applied to the investigation or monitoring of interventions using re-
motely sensed data such as the climate change adaptation/mitigation strategies discussed
above. For example, remotely sensed data could be used to identify environmental factors
or population dynamics that define edge locations that provide information about why
interventions might fail.

Another provocative avenue forward is to link remote sensing research sequences
with randomized control trials (RCT) of landscape-scale interventions. In the language of
scaling, RCT can provide clear answers about the efficacy of an intervention (what works
here), while study sequences address the question of effectiveness (does it, or will it work
somewhere else). Facilitated by the capabilities of remote sensing technologies, landscape-
scale RCTs that cover multiple large geographic extents have the potential to answer both
questions simultaneously. We are aware of few such studies in the literature. Wiik et al. [77]
use remote sensing to monitor participant compliance in an RCT testing the impact of an
incentive-based conservation program in the Bolivian Andes. Weigel et al. [78] similarly
use satellite image-derived estimates of crop cover to measure adoption of an agricultural
conservation program in the Mississippi River Basin. Both studies demonstrate how
remote sensing can be integrated into RCTs but also open potentially insightful avenues for
reproduction and reanalysis. For example, a researcher using the data shared by Weigel
et al. could identify geographic variation in program adoption and then create imagined
intervention sequences to test how rapidly different sequence structures converged to the
known result. That knowledge could be used to plan subsequent interventions, which
could again be monitored remotely.

Shifting the remote sensing research agenda in the direction of replication sequences
will also require a shift in researcher incentives from ‘one-off’ examinations to holistic
programs of study. As Nichols et al. [65] note, academic institutions and funding agencies
appear to value standalone contributions with the potential for high citation more than
repeated reproductions or replications. One solution could be for journal editors to com-
mission articles or letter series that give updates about progress on a specific issue being
studied by a replication sequence. Commissioning these series would be in the interest of
the publisher and enhance the standing of a publication if that journal became the source of
reference for the repeated release of evidence about key issues in remote sensing. Just as the
release of datasets such as the National Landcover Dataset (NLCD) are anticipated every
five years, a well-designed sequence of replication testing competing ecological theories or
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assessing the relative performance of new methods could garner similar attention. Acting
as the lead researcher of such an effort would have clear career advantages.

Agencies like the NSF and NASA that offer external funding opportunities can also
start to change researcher incentives to perform replications and plan replication sequences
by releasing calls for proposals for this specific type of work. To begin a transition, agencies
can start with small targeted calls. For example, it would make sense to target funding
for replication sequences at graduate students or early to mid-career scholars who are still
forming their research programs. Funding for replication sequences could also be attached
to existing data gathering missions or monitoring programs that are already designed to
repeatedly produce the consistent quality data needed to compare models of methods
through replication. This approach has the additional advantage of lowering barriers to
adoption because research teams already using these datasets are already familiar with
accessing and analyzing repeatedly collected data. Funding could also be directed to
educational programming or as an additional educational component to already funded
research. While emphasizing education would help improve future research practices by
training future remote sensors in reproducibility standards and practices, one hindrance
to this approach would be the limited capacity to teach these practices in the current
research community.

5.2. Benchmarking Datasets for Method Comparisons and Multi-Platform Integration

When a researcher introduces a new remote sensing procedure, algorithm, or program
and shares the provenance information and materials used in their development, another
researcher is able to understand and assess what they have done and build on their work.
Through reproduction, assessments can be made in relation to the materials used in the
original work. Through replication, assessments can be made in relation to a new dataset,
population, or context. However, researchers can only directly assess the method and
materials used in a study in relation to other competing methods when both sets of methods
are executed on a common dataset.

Benchmark datasets are openly accessible datasets that a community uses for testing
and comparing new methods. By controlling for variation in data, benchmark datasets can
be the basis for the fair comparison and validation of new remote sensing methods [79,80].
Good benchmark datasets have at least four characteristics. First, they are discoverable,
accessible, and understandable. Prominent publication outlets such as Scientific Data
already exist where benchmark remote sensing data could be shared. Remote sensing
can also leverage its connection to well-established government data providers as sites
to host benchmarks related to those products. Ideally, these datasets would also carry
open source licenses that permit re-use with proper attribution (see Stodden [81,82] for a
discussion of licensing and reproducibility). Second, good benchmark data are linked to
a specific remote sensing problem (e.g., classification, change detection) and are complex
enough to be interesting. For example, if the benchmark data will be used to compare
the accuracy of classification algorithms, then a heterogenous mixture of land covers that
includes features with different minimum mapping units is preferable over a homogenous
scene with little variation.

Third, good benchmark data should be ground-truthed and labeled in a way that is
relevant to the remote sensing problem it is being used to assess. A recent issue of Remote
Sensing outlines some of the challenges of selecting remote sensing datasets for specified
tasks and the need to understand what information datasets may contain [83]. Returning to
the classification example above, the land cover classes must be able to be labeled correctly
otherwise it is impossible to assess the performance of the algorithm. Remote sensing has
established performance measures that can be used as the basis for straightforward com-
parisons, such as differences in overall classification accuracy or user/producer accuracy.
However, it may be more difficult to compare methods that vary in complexity. For exam-
ple, if a newly developed classification method is developed and tested using a bundle of
datasets in a benchmark dataset but is compared to an existing approach that was originally
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trained on a single dataset, it may not compare well because its performance threshold is
now higher. Should the second approach be penalized for being more rigorous than the
first? The field must grapple with these types of questions as algorithms become more
complex and standards are simultaneously rising. Lastly, good benchmark data should be
well documented with metadata that is written in a way that is accessible to a non-expert.
The metadata should follow a widely adopted provenance model and contain information
about how the data was constructed and for what purpose. Procedures that were used
to clean and prepare the data should also be documented, and a container implementing
those processes should be shared. To promote use and further ease access, an explanation
of how to load and inspect the benchmark data would be shared.

Benchmark datasets that have these four characteristics can be used to address a
range of remote sensing challenges. Perhaps the most obvious application is the relative
comparison of new algorithms and programs. Several researchers have already introduced
highly cited benchmark datasets with their remote sensing papers [84,85]. Less obviously,
a collection of related benchmark datasets can be used to address the challenge of remote
sensing data gathered from multiple platforms. For example, if a collection of benchmark
datasets included traditional satellite-based (e.g., Landsat), personal data (e.g., 4-band
imagery collected with a UAS), and terrestrial (e.g., ground-based Lidar) remote sensing
products, researchers could use that data to compare data integration and analysis workflow
linked to a specific research problem. To test the sensitivity of the resulting workflows to
features like coverage or resolution, the packages could be altered and re-analyzed. For
instance, the spatial coverage of the UAS data included in the original package may be
changed to only partially overlap with the traditional data products.

6. Conclusions

Recent changes in the technologies, practices, and methodologies of remote sensing
have created opportunities to observe and understand the world in new ways. To capitalize
on these opportunities, the remote sensing community should bring R&R questions forward
on the disciplinary research agenda. Activities to improve reproducibility should include
prioritizing the collection and sharing of provenance information in standardized and easily
understood formats. However, we argue that researchers should give equal, if not greater
attention, to the functions reproduction and replication play in scientific research and act to
build individual and community-wide research programs around those functions.

Well-designed sequences of replications focused on a topic could help researchers
distinguish between competing explanations and methods, which could translate into
better monitoring and intervention programs. Establishing benchmark datasets and in-
centives to use those resources in methods comparisons and data integration challenges
could simultaneously create a culture of reproducible research practices and facilitate the
assessment and extension of new methodologies. Funding agencies and academic publica-
tions can facilitate both activities by creating calls for proposals, or papers or organizing
Special Issues around benchmark datasets or replication sequences on a particular topic
or method. Such calls could also be organized in the form of competitions in which repro-
ducible research that makes the most progress on a specific task receives a cash award and
prominent publication.
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