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Abstract: Urban morphology refers to the physical form of a city that is constantly transformed
and updated in the process of urbanization. A valuable source of data on ‘built forms’ is modern
remote sensing technology, which provides a variety of products on building footprints and heights
at national, continental, and global levels. A large-scale comparison of urban morphologies is
important for assessing urban development as well as its influence on urban ecology; however, this
has not been well documented so far. This study includes 41 cities in China and 36 in Europe with
various city sizes, population densities, and climate features. We applied 3D landscape metrics and
principal component analysis (PCA) to compare the spatial aspects of the urban morphology of
these cities. We found: (1) measurements of the building height, surface fluctuation, and texture
directionality of urban building layouts in China are higher than those of European cities, while the
latter are high-density and compact built landscapes; (2) a significant clustering phenomenon for
Chinese and European cities revealed by PCA, with the former showing a much more aggregated
pattern, indicating a relatively uniform morphology of urban buildings in China; (3) distinctions
between cities in China and Europe are suggested by the first principal component, to which building
height, surface fluctuation, building complexity, and spatial distance among buildings contribute
significantly; and (4) the second principal component (mainly represented by maximum building
height, surface area, volume, and shape metrics) can separate large metropolitan cities and provincial
capitals from cities with lower urban population, smaller size, and slower economic development.
Our results demonstrate the potential of 3D landscape metrics for measuring urban morphology.
Together with a temporal analysis, these metrics are useful for quantifying how urban morphology
varies in space and time on a large scale, as well as evaluating the process of urbanization.

Keywords: urban morphology; 3D landscape metrics; Chinese and European buildings; principal
component analysis; cluster

1. Introduction

Climate change is a pressing issue today and makes cities increasingly suffer from
extreme weather events, such as flooding and heat episodes. The adaptation of cities to
long-term environmental changes demands a transformation of their morphology. Interdis-
ciplinary studies of urban morphology focus on the spatial analysis of urban structures,
land use, street patterns, buildings, and open spaces [1,2]. Providing a complex reflection
of human–nature interactions in cities, urban morphology involves a wide range of land-
scape features, characteristics of urban architecture, and ecological parameters, including
air quality, ventilation, traffic noise, and accessibility [3–6]. Of particular interest is the
formation of the urban thermal landscape, which involves the urban heat island (UHI)
phenomenon [7–9]. In the UHI, the heat balance of cities is considerably modified compared
with their surroundings, and this depends on urban structures as well as on the climate.
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Urban morphology refers to the physical form of a town or city. It is defined by
buildings and their related open spaces, plots or lots, and streets [1]. These elements
undergo continuous transformation and replacement—these processes can be used for
the adaptation to a changing environment. The morphological elements are considered
at specified levels of spatial resolution and time periods. To facilitate studies exploring
associations between urban structures and the urban thermal environment, this paper aims
to suggest a set of characteristics of the urban morphology that are useful for heat studies.
While specific studies of associations have been made previously [8,9], here, we focus on
the definition of morphological characteristics that can be derived from remote sensing
data. For that purpose, we follow a spatial analytical approach [10], analyzing ‘built forms’
derived from satellite images at high resolution. Various remote sensing data sources have
been applied to extract building information, such as light detection and ranging (LiDAR)
data [11], high-resolution remote sensing imagery [12], synthetic aperture radar (SAR)
images [13,14], and aerial imagery [15]. However, large-scale studies of urban morphology
are not well documented due to discontinuous data collection processes and high costs.

The restricted availability of methods to describe and analyze building forms in 3D
space is another limitation for a large-scale comparison. Common metrics for measuring
urban building characteristics mainly include building height, building density, and the
spatial proportion of various building classes [8,15]. These metrics focus on composition
characteristics and can describe the fluctuation of building surfaces to a certain extent;
however, they ignore configuration characteristics (e.g., building compactness, texture,
and diversity). Although some studies chose the sky view factor as an openness indicator
by measuring sky visibility, in addition to the fractal dimension metric as a complexity
indicator in a built landscape [8,16–18], building details are still insufficiently involved. A
weakness in these studies is that building texture is rarely considered, which refers to the
regularity and directionality of the spatial arrangement of urban buildings and can directly
affect urban ventilation. Benefitting from scientific planning, modern building layouts
are usually much more regular and disordered in comparison to traditional and historical
building layouts [8]. Therefore, systematic and efficient indicators for measuring urban
morphology are particularly important.

Landscape metrics for pattern recognition are widely applied to measure the spatial
heterogeneity and fragmentation of natural landscapes [18–20]. These metrics were de-
signed from two functional aspects: (i) landscape composition, i.e., the relative proportion
of LULC, and (ii) spatial configuration, i.e., the spatial arrangement of patch types [21].
Traditional landscape metrics are capable of 2D raster data; however, building objects
actually refer to 2.5D or 3D representation [8]. To deal with this insufficiency, Kedron et al.
(2019) and Guo et al. (2021) proposed a set of 3D landscape metrics for building objects
that aim to systematically analyze the built landscape, and they tested their effectiveness in
various cities across space and time [8,22]. Despite some interesting metrics (e.g., building
spacing, building shape, and richness metrics), surface metrics, particularly texture and
fluctuation parameters, are ignored. Building texture, particularly directionality, is vital to
the urban ventilation effect, which has a direct influence on urban heat [8]. Wu et al. (2017)
demonstrated how surface metrics can be computed in 3D space; however, they did not
test them for urban built landscapes [23]. According to their work, the texture direction
of building layouts can be calculated from the spatial autocorrelation spectrum using
buildings’ footprint and height data. In this study, we focus on building characteristics
that reflect the differences in urban morphology between Chinese and European cities,
aiming to find significant differences between these cities and to explain which building
characteristics are causing such differences.

2. Materials and Methods
2.1. Study Region

In this study, we selected 77 cities (including 41 cities in China and 36 in Europe)
based on the criteria of city size, economic level, urban population, and climate features
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(Figure 1). For China, most of these cities are metropolitan or provincial capitals with a
population density over 1000/km2, gross domestic product (GDP) over CNY 14 billion,
and a whole-city size larger than 1900 km2 (Table A1 in Appendix A). The selected Chinese
cities are mainly distributed in five climate zones, including severe cold, cold, hot-summer–
cold-winter, hot-summer–warm-winter, and temperate regions. In each country or region in
Europe, a typical city was selected, usually the country’s capital, to ensure the diversity and
comparability of urban morphology. Europe has three main climate zones—marine west
coast, humid continental, and the Mediterranean. Five additional climate zones appear
in small areas of Europe—subarctic, tundra, highland, steppe, and humid subtropical.
Selected European cities cover almost all these climate zones.
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Figure 1. Locations of selected cities in China and Europe. In China, YRD (Yangtze River Delta) cities
include Shanghai, Nanjing, Jiaxing, Shaoxing, Hangzhou, Suzhou, and Wuxi. PRD (Pearl River Delta)
cities include Guangzhou, Shenzhen, Dongguan, Huizhou, Foshan, and Zhuhai.

2.2. Data

The data applied in this study mainly refer to the building’s footprint and height. For
China, data is downloaded from the Resource and Environment Science and Data Center,
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Chinese Academy of Science, which originates from Baidu Map services. Original data
type is vector file using UTM projection with an overall accuracy of the building height
product of 86.78% [20]. For Europe, the building data comes from the European Union’s
Earth observation program Copernicus with 10 m spatial resolution raster using the Slovak
Basic Database for the Geographic Information System (ZBGIS). The building data was
collected in 2012, and relative accuracy descriptions of building heights are attached with
the raster data. In addition, Szatmári et al. [24] verified the accuracy of building heights
for the Europe dataset. Four different tests showed that an error larger than 6 m fell in the
interval 17–30%. This accuracy is sufficient for large-scale environmental analyses [24].

2.3. Methods
2.3.1. Urban Building Metrics

This study used previously proposed 3D landscape metrics [8,23] to measure spatial
heterogeneity of urban morphology. These metrics are designed based on the patch mosaic
model and the digital terrain model, which are applicable to discrete data. Once categorized,
boundaries of patches were defined [19,22,25]. An urban built landscape can be seen as a
mixture of multiple buildings within a certain area in 3D space [8,22].

To calculate the metrics, firstly we divided all buildings into several classes based
on their height. Considering a lower building height in Europe than in China, this study
applied the European classification standard and divided built landscapes into 5 classes:
low buildings (below 6 m), sub-low-rise buildings (6 m–10 m), middle-rise buildings
(10 m–20 m), sub-high-rise buildings (20 m–60 m), and high-rise buildings (over 60 m).
Four heterogeneity levels of cells, patches, classes, and landscapes should be defined:
‘cell’ refers to building pixel in classified raster data, ‘patch’ refers to a closed building
region where the internal building pixels have similar height attributes but are significantly
different from the outside pixels, and ‘class’ refers to the mixture of different building
patches with the same or similar height.

The selected landscape metrics include composition and configuration metrics, aiming
to characterize the diversity, complexity, compactness, and spatial arrangement regularity
of urban buildings (Table 1). The composition metrics are further divided into 2D and 3D
metrics depending on whether 3D vertical landscape elements were taken as main variable
for calculation or not. In addition, this study implemented the relevant software LPA3D in
a MATLAB library, which is important for a straightforward application of these metrics.

Table 1. Selected 3D landscape metrics for measuring urban morphology. For detailed calculation
steps, please see literature [8,23].

Metrics Abb. Type Measure of the . . .

Patch density PD Composition-2D spatial heterogeneity and evenness of urban building
patterns.

Euclidean nearest-neighbor
mean distance ENN Composition-2D isolation degree of each building’s class, and can be

taken as indicator for measuring road width.

Percentage of patch type PLAND Composition-2D proportion of each building’s class in the urban building
pattern.

Edge density ED Composition-3D boundary density of urban buildings.

Mean building height BH Composition-3D mean height of urban buildings.

Maximum building height BHMAX Composition-3D highest building height.
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Table 1. Cont.

Metrics Abb. Type Measure of the . . .

Surface area SA Composition-3D surface fluctuation compared with plane area.

Mean volume index VOL Composition-3D mean volume of urban buildings.

Standard deviation of height SQ Composition-3D undulation of the urban building’s surface.

Surface skewness SSK Composition-3D
SSK > 0, which represents more building height, while
SSK < 0 represents less building height than an average
plane.

Surface kurtosis SKU Composition-3D spatial distribution of extreme building height
conditions.

Building surface slope SSL Composition-3D integral slope of building surface, which is the sum of
surface fluctuation at adjacent building pixels.

Texture direction aspect ratio STR Configuration

building surface texture direction. STR approaches 1,
meaning building pattern has no dominant orientation;
STR approaches 0, meaning building pattern has
dominant orientation (Figure 2).

Building shade metrics BSM Configuration effect of buildings forming ventilation paths, defined by
the ratio between building height and spacing (ENN).

Building object to building
patch number ratio BN2PN Configuration

complexity and fragmentation of buildings. Each
individual building object might be divided into several
patches due to height differences.

Largest patch index LPI Configuration largest space occupation of single building.

Landscape shape index LSI Configuration deviation between patch shape and regular circle or
square with same area.

Cohesion index COI Configuration connectivity and aggregation of the urban building
pattern.

Effective mesh size MESH Configuration fragmentation and aggregation of urban buildings
landscape.

Shannon’s diversity index SHDI Configuration diversity of urban buildings landscape.
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2.3.2. Principal Component Analysis

Principal component analysis (PCA) is a dimensionality reduction method that can
retain trends and patterns [26,27]. PCA is an orthogonal linear transformation of multiple
variables or high-dimensional data into a new coordinate system, sometimes only using
few important components and neglecting the rest. These components are independent
and uncorrelated [26]. PCA starts from the matrix F(c), which contains building features
in the rows for the cities arranged in the columns.

F(c) =


f1(c1) f1(c2)
f2(c1) f2(c2)

· · · f1(cn)
· · · f2(cn)

...
...

fm(c1) fm(c2)

. . .
...

· · · fm(cn)

 (1)

where fi (i = 1, 2, · · · , m) represents the i-th building feature (out of m = 24) and
ci (i = 1, 2, · · · , n) represents the i-th city in Europe or China (out of n = 77 cities).

Computing the mean for every dimension of the whole dataset using Equation (2),

fi =
1
m ∑n

j=1 fi
(
cj
)

(2)

We normalized the data matrix as follows:

F′(c) =


f1(c1)− f1 f1(c2)− f2
f2(c1)− f1 f2(c2)− f2

· · · f1(cn)− fn
· · · f2(cn)− fn

...
...

fm(c1)− f1 fm(c2)− f2

. . .
...

· · · fm(cn)− fn

 (3)

We computed the covariance matrix of the whole dataset

COV =
1
m

F′T F′ (4)

The last step is to compute eigenvectors ψi and the corresponding eigenvalues λi using
Equation (5) [26]:

(COV − λi I)ψi = 0 (5)

where I represents the identity matrix (m×m). After sorting the eigenvalues by decreasing
eigenvalues (λ1 > λ2 > · · · > λm), we choose k eigenvectors with the largest eigenvalues
to form n× k dimensional matrix W, from which we obtain the principal component score
Spca and principal component coefficients Cpca. The centered data can be reconstructed
by Spca × Cpca

′. Usually, most of the variance is contained in the first few components,
which retain important information with less noise. In this case, PCA reduces the degrees
of freedom and removes noise, and the first few components are seen as sensitive features
for detecting patterns [26–28].

3. Results
3.1. Different Metrics of City Groups in China and Europe

For a better comparison of the spatial heterogeneity of urban buildings in China and
Europe, standardization of the calculated metrics was firstly conducted. Among the 2D
composition metrics, European cities have higher building density (PD), narrower distance
among building patches (ENNPA), and more low-rise and sub-low-rise buildings (LB and
SLB), while the buildings in selected Chinese cities are much higher (SHB and HB) and
the buildings spacings are wider (ENNPA). Among the 3D composition metrics, building
height (BH), fluctuation of building surface (SQ), and building edge density (ED) in China
significantly exceed those of Europe (Figure 3).
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Figure 3. Results of 3D landscape metrics belonging to three groups. Red color represents Chinese
cities, while blue color represents European cities.

Maximum building height (BHMAX), surface area (SA), and volume (VOL) did not
show significant differences between the two regions. In spite of higher building height
and wider building spacing in China, their ratio (BSM) was much lower than that in
Europe, which indicated a stronger influence of building spacing. Together with building
density, both reflected a much more compact building layout in European cities. For other
configuration metrics, the spatial arrangement of urban buildings might be more isotropic
in Europe, with higher STR values than those in China. A lower STR value means an
anisotropic tendency in urban building layouts. In addition, the building diversity and
building fragmentation levels in China also exceeds those of Europe. The differences may
be related to the urbanization. China is witnessing giant changes in urban form. In most of
the selected cities, historical buildings, traditional houses, and modern buildings are all
included. Compared with history and traditional buildings, modern buildings are planned
in a much more regular way.

3.2. More Uniform Urban Morphology in China Than in Europe

PCA results indicated a significant cluster phenomenon for Chinese and European
cities. The former displayed a much more aggregated pattern than those in the latter
through comparing the longest radius of circumscribed ellipse for these two regions
(Figure 4a–c). This suggests that the urban morphology of Chinese cities might be relatively
uniform compared with Europe cities, which might be related to urbanization level, urban
population, and local architecture culture.

The first two components together explain 64.5% of variations, while Component 3
additionally explains 9.3% of the variance. Figure 4b,c indicate that Component 1 can
distinguish well between cities in China and Europe. It is obvious that most of the European
cities are characterized by a negative value of Component 1, while cities of China all have
a positive value of Component 1 (Figure 4c). By ranking the relative contribution of
building metrics to Component 1, we found that building height, spatial proportion of
different building classes, building surface fluctuation, the complexity of buildings, and
distance among buildings contributed more than others (Figure 5). The results in Section 3.1
demonstrate that Chinese cities have higher urban buildings, larger surface fluctuations,
and wider building distances.
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Figure 4b also shows that the second component is sensitive to the degree of urban
development and does not reflect the geographic region as the first component does. To
be specific, no matter whether it is for Europe or China, higher Component 2 values
indicate international metropolitan cities and province capitals. In Western Europe, major
metropolitan cities, such as London, Paris, Madrid, and Berlin, had higher values of
Component 2 than cities in Eastern and Northern Europe. The Northern European cities
display a much lower level of Component 2, in particular Reykjavik, which has almost
the lowest. Compared with European cities, the spatial distributions of Component 2 for
Chinese cities are much more aggregated. Higher values of Component 2 were found in
Shanghai, Beijing, Chengdu, and Shenzhen, with fast urbanization occurring over the past
few decades. These cities kept a similar level with cities in Western Europe cities, except
London and Paris, which show the dominant characteristics in Component 2 (e.g., shape
metrics, surface area, volume, edge density, and cohesion metrics), and these cities may be
similar, as is suggested by Figure 5. For other cities in China, the values of Component 2
were similar to Eastern European cities.
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4. Discussion

In this study, a set of 3D building metrics was applied to measure and compare built
landscapes in terms of their composition and configuration, avoiding the insufficiencies
of traditional methods. The selected metrics can effectively distinguish the spatial hetero-
geneity of urban building characteristics in China and Europe. The PCA identified a very
significant clustering of European and Chinese cities; however, whether the proposed met-
rics play a key role for this phenomenon needs additional experiments. Can the traditional
metrics (e.g., building height, building density, sky view factor, and spatial proportion) do
the same without these new metrics? Figure 6 displays the PCA results using only tradi-
tional buildings metrics, and the results do not reveal any significant pattern for Chinese
and European cities. Compared with Figure 4, these differences demonstrate the huge
potential of landscape metrics in measuring urban morphology. While traditional metrics
consider the building height and spatial proportion of different building types [29], they
neglect the spatial structures and texture features of building layouts. Figure 5 indicates
that combining building height, building complexity, building surface fluctuations, and
building spacing explains the differences in urban morphology between China and Europe.
Traditional metrics only explained variations of building height; however, the landscape
metrics proposed and used here can complement this with more detailed building infor-
mation. This is advantageous because it reflects a more realistic building morphology and
addresses the complexity and diversity of urban forms.
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The first component in Figure 4 represents the differences in urban morphology
between China and Europe. However, this component is unaffected by differences in the
local genesis and urbanization processes of these cities. Of the European cities studied
here, most have a long history, which means their urban development took place over a
long period of time. Building heights and the proportion of high-rise buildings, which
make a significant contribution to Component 1, do not differ significantly across European
cities. The Chinese cities analyzed are mostly metropolises or provincial capitals. They
have been modernized in recent decades and have consistently tall buildings and large
building spacing; therefore, Component 1 cannot distinguish them well. However, cities
vary according to their size due to urban population and economic development levels. As
a result, the characteristics of total area, total volume, and building edges differ significantly
between cities, even in the same region. This explains why Component 2 is sensitive to the
degree of urban development and can distinguish large cities from others. Comparing the
values of Component 2, some Chinese cities such as Shanghai and Guangzhou have reached
a very similar level to Berlin; however, they still have significant differences to London and
Paris. Another point is that most Chinese cities have similarities with the capitals of Eastern
European countries. Considering that China has started modernization and urbanization
since the 1980s, this study is direct evidence of the high pace of urbanization and urban
transformation in China.

Despite a large body of literature dealing with urban landscape metrics, the systematic
comparison of building features in 3D space, especially the spatial structure of building
footprints, is not yet well documented [8,9,18,20]. Three-dimensional landscape metrics
can fill this gap and contribute to a global-scale comparison of urban morphology with
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more targeted and efficient indicators. With the development of high-resolution remote
sensing technologies, products for building footprints and heights have been released
at national, continental, and global scales [30–33]. In fast developing countries, such as
China, India, and Brazil, urbanization is undoubtedly having a significant impact on urban
morphology [8,9,15]—quantifying the extent of this impact is still challenging for urban
researchers. Figure 4 shows a clear variability between cities and a more aggregated pattern
of Chinese cities in comparison with European cities. The 3D landscape metrics can also
be used to find associations with socioeconomic activities. For example, BSM and ENN
metrics are designed to reflect the compactness of the spatial arrangements of buildings. An
irregular and compact building layout may cause traffic congestion and increased energy
consumption [8]. These findings provide meaningful support for future studies of changes
in urban morphology.

However, this study fails in temporal analysis. Time is a fundamental component
for urban morphology research due to continuous urban transformations and replace-
ments [1,2]. The extent and speed of change varies from city to city due to economics and
culture. Furthermore, the dynamics of urban morphology relate not only to the geometric
features of buildings but also to building materials, roofing styles, street patterns, and
urban green spaces. It is essential to study the complex changes in urban physical forms to
improve urban planning and management.

Over the past few decades, the effects of urban morphology on the urban thermal
environment have been studied [34,35]. Most of these studies applied the moving window
method, aiming to propose feasible scientific suggestions for urban temperature mitigation.
The metrics and software proposed in this study can complement this research and provide
useful novel approaches to study the urban heat environment over multiple scales and
multiple cities in a more efficient way. At different scales, the dominant building character-
istics in each window may vary between 3D (building height, surface area, and volume),
2D (building coverage ratio, building number, and building spacing), and configuration
features. Compared with the conclusions made at a single scale and city, multiscale studies
covering different climate zones are conducive to revealing the influencing mechanisms
in much more depth [8,32], allowing for researchers to make targeted proposals for local
urban planning from the perspective of heat management.

5. Conclusions

Applying 3D landscape metrics and principal component analysis, this study demon-
strated the effectiveness of selected metrics in describing the spatial heterogeneity of urban
buildings, and identified a significant difference in urban morphology between China
and Europe. The height, surface fluctuation, and spatial proportion of sub-high and high
buildings in China significantly exceeded that of European cities, while the latter show
higher building density, narrower distances among buildings, and a weaker texture direc-
tion of building layouts. Among selected cities, the urban morphology in China is more
uniform than in European cities, as indicated by a smaller diameter of the circumscribing
ellipse and a more aggregated pattern in the PCA results. To be specific, the first principal
component explains 48.9% of variability and can well distinguish between the urban mor-
phology in Europe and China. For this component, building height, surface fluctuation,
building complexity, and nearest distances among buildings contributed more than other
features. The second component is sensitive to the degree of urban development. Large
metropolitan and province capitals are well separated from other cities, with less urban
population and relatively slow economic development. This property is obvious among the
selected cities in Europe, and has a descending order: western, eastern and northern parts.
Configuration metrics, maximum building height, surface area, and volume contributed
most to this component. The main reason for the differences in urban morphology between
China and Europe could be rapid urbanization; however, this conclusion requires further
investigations. Unlike the selected cities in China, the cities in Europe were chosen from
36 countries or regions with different architecture cultures and climate conditions. Future
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studies should therefore select more cities of various sizes around the world and combine
them with remote sensing earth observation products to further investigate the impact of
urbanization on urban morphology over time.
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Appendix A

Table A1. Selected cities in China and Europe.

Chinese Cities Abb. Chinese Cities Abb.

BAODING BD NANJING NJ
BEIJING BJ NANNING NN

CHANGCHUN CC NINGBO NB
CHANGSHA CS QINGDAO QD
CHENGDU CD SANYA SY

CHONGQING CQ SHANGHAI SH
DALIAN DL SHAOXING SX

DONGGUAN DG SHENYANG SHY
FOSHAN FS SHENZHEN SZ
FUZHOU FZ SHIJIAZHUANG SJZ

GUANGZHOU GZ SUZHOU SUZ
GUIYANG GY TIANJIN TJ
HAERBIN HEB WENZHOU WZ
HAIKOU HK WUHAN WH

HANGZHOU HZ WUXI WX
HEFEI HF XIAMEN XM

HUIZHOU HZ XIAN XIAN
JIAXING JX XINING XN
JINAN JN ZHENGZHOU ZZ

JINHUA JH ZHUHAI ZH
LANZHOU LZ

European Cities Abb. European Cities Abb.

RIGA RIGA REYKJAVIK RVK
AMSTERDAM AMS SKOPJE SK

ATHINA ATH SOFIA SO
BERN BERN TALLINN TLL

BRATISLAVA BL TIRANA TIA
BRUSSEL BR VALLETTA VLT

BUCURESTI BUC WARSZAWA WAW
BUDAPEST BUD WIEN WIEN
HELSINKI HKI ZAGREB ZAG

KOBENHAVN KBH ROMA ROMA
LEFKOSIA NC LONDON LDN

LJUBLJANA LJ PARIS PAR
LUXEMBOURG LU BERLIN BER

MADRID MAD STOCKHOLM STH
OSLO OSLO LISBOA LX

PODGORICA TGD BEOGRAD BGD
PRAHA PRA ANKARA ANK

PRISTINA PRI DUBLIN DUB

https://land.copernicus.eu/local/urban-atlas/building-height-2012
https://land.copernicus.eu/local/urban-atlas/building-height-2012
https://www.resdc.cn/Default.aspx
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