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Abstract: The classical planar-wavefront-based TomoSAR imaging model suffers from the problem
that the effective integration interval is not enough to cover the target distribution region in the low-
altitude airborne case. It will lead to a deterioration of the performance of tomogram reconstruction
and inaccuracy of estimated scatterers. This paper reviews the exact and approximate forms of the
aforementioned inaccurate model based on planar wavefront and points out the problem with the
conventional model. To solve this problem, we propose spherical wavefront models with the exact
form or an approximate form of the slant range formula. The estimated variable for the scatterer’s
location is converted from elevation to off-nadir angle, and the effective integration interval has been
extended. In addition, we explore relationships between the exact form of the conventional model
and the exact form of the proposed model, and the relationship between the approximate form of
the conventional model and the approximate form of the proposed model. This provides a basis for
modifying the inversion algorithm that is designed based on the conventional model to adapt to the
low-altitude airborne case. Eventually, through experiments based on simulated data and measured
data, the imprecise reconstructions obtained with the conventional model are demonstrated, and the
correctness of spherical wavefront models and the effectiveness of transformation between models
are proved.

Keywords: TomoSAR; low altitude airborne; spherical wavefront; sparse reconstruction; building
modeling

1. Introduction

Synthetic aperture radar (SAR) produces two-dimensional (2-D) images with high
resolution in the range–azimuth plane by performing pulse compression in the range
direction and forming a synthetic aperture in the azimuth direction [1]. However, it is the
projection of the 3-D reality onto the range–azimuth imaging plane and cannot estimate
the height of scatterers. Interferometric SAR (InSAR) can estimate the terrain topography
using the phase differences between two different trajectories or antennas with different
positions, but it is not able to get the distribution of different scatterers in the elevation
direction within a range–azimuth resolution cell, i.e., the overlapping phenomenon [2,3].
SAR tomography (TomoSAR) [4,5] synthesizes one more aperture in the elevation direction
by employing more than two different trajectories or antennas with different positions.
For this reason, TomoSAR has the ability of realizing the real three-dimensional (3-D)
reconstruction. TomoSAR has many applications in urban mapping and monitoring [6],
natural disaster assessment [7], biomass estimation [8], military reconnaissance [9] and
other fields.
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SAR data for tomographic processing can be acquired in two ways; one is through
single pass acquisition with multiple antennas, and the other is through multiple pass
acquisition. There are two kinds of tomographic processing frameworks; one is pixel-by-
pixel processing of the 2-D SAR images stack [10], and the other is 3-D backward projection
processing directly from the original echo domain [11]. In this paper, we only consider the
pixel-by-pixel processing framework for the SAR images stack acquired through single pass
with multiple antennas, and the imaging area is urban, for which the reflectivity function
in the third dimension can be assumed to be sparse.

The slant range from antennas to scatterers plays the most important role in SAR. To
formulize the slant range, we need to know not only the positions of antennas, but also
the locations of scatterers. The positions of antennas can be obtained by the position (POS)
system and the antenna configuration [12]. Scatterers are set on the discrete samples of the
illuminated space. In 2-D SAR processing, the illuminated area is sampled in azimuth and
range directions. Benefiting from the change of the slant range between the antenna and
the same scatterer at a different azimuth time, a high azimuth resolution can be obtained.
In 3-D TomoSAR processing, the reflectivity function of an urban area is sparse in the
third dimension [13]. The locations and the reflectivity of scatterers in a 2-D pixel can be
estimated utilizing the slant range from different antennas to the same scatterer.

In the conventional TomoSAR imaging model, complex values of a set of cells in
a specific azimuth and range index in a SAR images stack can be modeled as a Fourier
transform of a reflectivity function in the elevation direction [14]. There are two points
about the conventional model we want to argue:

1. In a low-altitude airborne case, should the reflectivity function of the illuminated
scene corresponding to a pixel in a 2-D SAR image still refer to elevation in the
third dimension?

2. The purpose and consequence of making the approximation to obtain the
Fourier transform.

In previous studies [5,10,15], on account of the large slant range from antennas to
scatterers, scatterers in the same azimuth–range cell are assumed to be distributed on a
planar wavefront. In conventional TomoSAR geometric model, the reference terrain is
essential to obtain the reference line of sight (LOS) at each range cell. Then, the planar
wavefront is normal to the LOS. As shown in Figure 1, the intersection of the planar
wavefront and the LOS is termed the reference point in this paper. The slice line on the
planar wavefront at the azimuth sample is denoted as the elevation axis with the reference
point as the origin, and the LOS is denoted as the range axis. The rectangular coordinate
form of the radar frame is composed of these axes [16]. Indeed, radar receives echoes from
scatterers on the same spherical wavefront at the same time, and scatterers in the same
azimuth–range cell should be assumed to be distributed on a spherical wavefront. The gap
between the planar wavefront and the spherical wavefront will increase with the decrease
of the slant range.

In recent years, many high-resolution data have been acquired from platforms other
than satellites and airplanes flying at high altitude, such as low-altitude airplanes and
unmanned aerial vehicles (UAV) [17]. In contrast to the spaceborne and high-altitude
airborne cases, the slant range from the sensor to the observed scene is shorter in low-
altitude airborne and UAV-borne cases. It will result in a greater degree of separation
between the planar wavefront and the spherical wavefront, especially at the boundary of
the illuminated region away from the reference terrain in the elevation direction, as the
red arrow in Figure 1. The distance between an estimated scatterer on a planar wavefront
and the corresponding scatterer on a spherical wavefront may be larger than one range
resolution cell, which results in the conventional TomoSAR imaging model no longer being
interpretable in this case. By modifying the conventional TomoSAR imaging model, we
propose a TomoSAR imaging model based on the spherical wavefront geometry. The area
where scatterers are located is changed from a planar wavefront to a spherical wavefront
in the TomoSAR imaging geometry. In the new model, the reflectivity function in the
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third dimension will refer to off-nadir angle rather than elevation. The pixel’s formula
changes from a line integral to an integral along the arc of a circle. The slant range from
antennas to scatterers is reformulated and the geodetic coordinate transform is changed.
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In the conventional model based on the planar wavefront geometry, the Fourier
transform form of a pixel is attributed to some approximation of the slant range [10,18].
To visualize and quantify the effect of these approximations on the reconstruction of
the illuminated scene, we derive the approximation procedure and construct some new
TomoSAR imaging models using the exact and approximated formulas of the slant range
from antennas to scatterers on a planar wavefront. We denote these models as planar
wavefront models. When the compressed sensing method is introduced into the TomoSAR
field, it is not necessary to approximate the formula of the slant range and obtain the
Fourier transform form of the reflectivity function in the third dimension. Therefore, in our
model based on a spherical wavefront geometry, the formula of the slant range is the exact
distance between antennas and scatterers on a spherical wavefront. In order to compare
it with planar wavefront models with approximated formulas of the slant range, we also
derive the approximated formula of the distance between antennas and scatterers on a
spherical wavefront, and we construct a new model using this formula. We denote these
models as spherical wavefront models.

In this paper, TomoSAR imaging models based on a planar wavefront geometry or
a spherical wavefront geometry and with different formulas of slant range are derived in
detail, and we propose transformations between some of these models. Results obtained from
experiments on simulated data and measured data verify the effectiveness of the spherical
wavefront models and transformations we proposed. The findings in this paper will benefit
the study of TomoSAR in low-altitude cases. This paper is organized as follows. In Section 2,
planar wavefront models and spherical wavefront models are introduced in detail. We explore
the relationship between planar wavefront models and spherical wavefront models, and we
provide two transformation methods. In Section 3, experimental results based on simulated
data and real data under different models are presented and quantitatively analyzed. A
discussion and conclusions are given in Section 4 and Section 5, respectively.

2. TomoSAR Imaging Models

The TomoSAR imaging model consists of three parts:

1. The distribution of scatterers. There are two kinds of distributions. One is a straight-
line distribution and the other is an arc-line distribution;

2. The formulas of the range between antennas and scatterers and the expression of the
value of the 2-D SAR image. Regarding the former, for different scatterer distribu-
tions, there are different range formulas, and these formulas will lead to different
approximate forms. As for the latter, the expression is formed in the radar frame. For
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the straight-line distribution, the radar frame is in rectangular coordinate system. For
the arc-line distribution, the radar frame is in polar coordinate system;

3. The geodetic coordinate transformation method. Because the expression of the value
of the 2-D pixel is formed in the range-azimuth plane, the inversion results should be
transformed into the geodetic coordinate system to be more intuitive.

In total, there are six models mentioned in this paper, as shown in Table 1, of which
four models are constructed based on the planar wavefront and different range formulas,
and two models are constructed based on the spherical wavefront and different range
formulas. To facilitate the representations of different models, we will number these models
from 1 to 6, and superscript is used in the formula to indicate which variable belongs to
which model.

Table 1. Details of models.

Geometric Pixel Formula Range Formula Geodetic Transform

model 1 planar wavefront (2) (3) (13)
model 2 planar wavefront (2) (10) (13)
model 3 planar wavefront (2) (11) (13)
model 4 planar wavefront (2) (12) (13)
model 5 spherical wavefront (17) (18) (22)
model 6 spherical wavefront (17) (21) (22)

2.1. Planar Wavefront Models

As shown in Figure 2, we only consider the ground range–height plane of an azimuth
sample position and assume all targets are isotropic point-like scatterers for the sake of
convenience. The mode of tomography is single pass with an antenna array with M
antennas at positions P0, P1, · · · , PM−1, and we set antenna P0 as the master antenna.
Assume that these antennas are colinear but not necessarily uniform, which is common in
practice. There are two coordinate systems, one is called ground frame and is made up of
the ground range rg and the height h (perpendicular to the ground range), and the other
is called radar frame and is made up of the slant range r and elevation s (normal to the
LOS) [13]. r0 is the distance between the master antenna and the center of the pixel at the
same azimuth position, and r0 is also the minimum distance from master antenna to the
planar wavefront in the planar wavefront geometry,

r0 = rstart + (nr − 1)ρr (1)

where rstart is the slant range at the near end of the SAR image obtained by the master
antenna, nr is the range index of the pixel in the SAR image, and ρr is the length of a range
cell. r0 is also denoted as the distance between the master antenna and the reference terrain.

Assume the 2-D images obtained from each antenna are properly co-registered and
the phase of each pixel depends only on the scattering property of the scatterer and the
distance between the corresponding antenna and the scatterer. That is to say, the amplitude
and phase calibration have been conducted in advance. Then, the measurement vector g
contains the values of the image sets of the same pixel and the mth element can be expressed
as [18].

gm =
∫ L

2

− L
2

γ(i)(s) exp

(
−j2π

2r(i)m (s)
λ

)
ds, m = 0, . . . , M− 1; and i = 1, 2, 3, 4 (2)

where L is the length of integral interval, γ(i)(s) is the reflectivity function along elevation
s, λ is the operating wavelength in ith model, and r(i)m (s) is the distance from mth antenna
to the scatterer at elevation s in ith model.
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In model 1, using the exact form of the range between antennas and scatterers, r(1)m (s)
can be represented as [18].

r(1)m (s) =

√(
r0 − b‖m

)2
+ (s− b⊥m)

2, (3)

where
b‖m = bm sin

(
θre f − αm

)
, (4)

b⊥m = bm cos
(

θre f − αm

)
, (5)

bm is the length of mth baseline corresponding to the connecting line between mth antenna
and the master antenna; b‖m is the projection length of mth baseline on the connecting
line between the master antenna and the reference terrain, i.e., the reference LOS of the
master antenna; b⊥m is the distance from the mth antenna to that connecting line; θre f is the
off-nadir angle of the reference LOS; and αm is the baseline inclination of mth baseline.

In model 2 to 4, different approximate forms of the range between antennas and
scatterers are used. In the early days of the TomoSAR field, spectral analysis was often
used for inversion. Therefore, Equation (3) is usually approximated to become the form of
Fourier transform. From (3), we have

r(1)m (0) =

√(
r0 − b‖m

)2
+ b⊥m

2, (6)

and we let Rm = r(1)m (0) represent the range between the mth antenna and the reference
point. Subsequently, we substitute Rm back into (3) and get

r(1)m (s) =
√

R2
m + s2 − 2b⊥ms. (7)

It should be noticed that
r0 = R0 = r0(0), (8)

which means that the slant range of a pixel in the SAR image obtained from the master
antenna, the distance between the master antenna and the reference point, and the slant
range from the master antenna to a scatterer at 0 m elevation are equal.

Based on the 1st Taylor approximation with respect to
(
s2 − 2b⊥ms

)
, Equation (7) can

be converted to

r(1)m (s) =
√

R2
m + s2 − 2b⊥ms ≈ Rm +

s2 − 2b⊥ms
2Rm

= Rm +
s2

2Rm
− b⊥m

Rm
s. (9)
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Then, the formula of the slant range in model 2 is

r(2)m (s) = Rm +
s2

2Rm
− b⊥m

Rm
s. (10)

Compared with the exact form (3), this is a relatively accurate approximation and
basically does not affect the inversion results, which will be verified in Section 3. But this
approximation is always followed by another further approximation

r(3)m (s) = Rm +
s2

2r0
− b⊥m

Rm
s. (11)

It seems that Rm ≈ r0, but this approximation will affect the inversion results in the
low-height airborne case. The goal of these approximations is that researchers want to
transform the exam form of the planar wavefront model into the Fourier form. Therefore,
the formula of r(3)m (s) in (11) should be divided into three parts. The first part only depends
on positions of antennas, and this part can be eliminated by the so-called deramping
operation [10]. The second part depends on the position of scatterer, and this part can
be compensated by postprocessing. The third part is the coupling term of the variable
which refers to the positions of antennas and the variable which refers to the position of the
scatterer, and this part plays the role of Fourier base. The second term in (11) only affects
the phase of the inversion results and can be temporarily ignored. Then, r(i)m (s) becomes

r(4)m (s) = Rm −
b⊥m
Rm

s, (12)

which is equal to the first-order Taylor expansion of r(1)m (s) at s = 0.
For these planar wavefront models, transformation relations from the radar frame to

the ground frame are  rg = rgre f + s cos
(

θre f

)
h = hre f + s sin

(
θre f

) , (13)

where rg and h denote the ground range and height of the scatterer. θre f is the off-nadir
angle of the reference LOS. rgre f and hre f denote the ground range and height of the reference
point, and can be expressed as rgre f = rg0 + r0 sin

(
θre f

)
hre f = h0 − r0 cos

(
θre f

) , (14)

where rg0 and h0 denote the ground range and height of the master antenna.
The conventional TomoSAR model chooses a one-line segment in each pixel as the

reference inversion area, i.e., the part where the elevation axis coincides with the spherical
wavefront, and denotes it as elevation axis s. The center of the line segment is located on
the reference terrain and denoted as the origin of the elevation axis. The maximum length
Lmax (see Figure 3a) of the line segment is limited by the range and the range resolution

Lmax = 2

√(
r0 +

ρr

2

)2
−
(

r0 −
ρr

2

)2
(15)

However, most studies choose the origin of the elevation axis in the center of the pixel,
so the length L (see Figure 3b) of the line segment is

L = 2

√(
r0 +

ρr

2

)2
− r2

0. (16)



Remote Sens. 2022, 14, 5452 7 of 31

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 32 
 

 

The conventional TomoSAR model chooses a one-line segment in each pixel as the 

reference inversion area, i.e., the part where the elevation axis coincides with the spherical 

wavefront, and denotes it as elevation axis 𝑠. The center of the line segment is located on 

the reference terrain and denoted as the origin of the elevation axis. The maximum length 

𝐿max (see Figure 3a) of the line segment is limited by the range and the range resolution 

𝐿max = 2√(𝑟0 +
𝜌𝑟

2
)

2

− (𝑟0 −
𝜌𝑟

2
)

2

 (15) 

However, most studies choose the origin of the elevation axis in the center of the 

pixel, so the length 𝐿 (see Figure 3b) of the line segment is 

𝐿 = 2√(𝑟0 +
𝜌𝑟

2
)

2

− 𝑟0
2. (16) 

Nevertheless, in the low-height airborne and UAV-borne cases, 𝐿 is similar with 𝐿max 

and both are usually smaller than the length of the extension of the illuminated scene, 

which is mentioned in Section 3.1. As shown in Figure 3, when a scatterer in the resolution 

cell is not located on the elevation axis, there are two cases. In the first case, the scatterer 

may be located in the green area, except the elevation axis. The assumption that scatterers 

are located on a planar wavefront is reasonable. In the second case, the scatterer may be 

located in the yellow area. The elevation axis no longer overlaps with the resolution cell. 

The planar wavefront assumption no longer holds, and the geodetic transform is in (13). 

In Section 2.4, transformation between models is proposed to solve this problem. 

  
(a) (b) 

Figure 3. The effective integral interval under the planar wavefront model: (a) the maximum 

length of the effective integral interval, (b) the common length of the effective integral interval. 

2.2. Spherical Wavefront Models 

In order to solve the problem that the integral interval of the planar wavefront mod-

els can not cover the distribution region of scatterers in the low-height airborne case, we 

choose one arc line at the center of the pixel as the reference inversion area, as shown in 

Figure 4. 𝑟0 is the distance from the master antenna to the center of the pixel at the same 

azimuth position, and all scatterers on the same spherical wavefront have the same dis-

tance from the master antenna. Subsequently, the pixel 𝑔𝑚 can be represented as the cir-

cular integral about the off-nadir angle 𝜃 rather than as a linear integral about the eleva-

tion 𝑠 

𝑔𝑚 = ∫ 𝛾(𝑖)(𝜃) exp (−𝑗2𝜋
2𝑟𝑚

(𝑖)(𝜃)

𝜆
)

𝜃max(𝑟0)

𝜃min(𝑟0)

𝑑𝜃 𝑚 = 0, … , 𝑀 − 1; and 𝑖 = 5,6 (17) 

where 𝜃min(𝑟0) and 𝜃max(𝑟0) are the minimum and maximum off-nadir angles of the illu-

minated scene at slant range 𝑟0, respectively. 𝛾(𝑖)(𝜃) is the reflectivity function related to 

Figure 3. The effective integral interval under the planar wavefront model: (a) the maximum length
of the effective integral interval, (b) the common length of the effective integral interval.

Nevertheless, in the low-height airborne and UAV-borne cases, L is similar with Lmax
and both are usually smaller than the length of the extension of the illuminated scene,
which is mentioned in Section 3.1. As shown in Figure 3, when a scatterer in the resolution
cell is not located on the elevation axis, there are two cases. In the first case, the scatterer
may be located in the green area, except the elevation axis. The assumption that scatterers
are located on a planar wavefront is reasonable. In the second case, the scatterer may be
located in the yellow area. The elevation axis no longer overlaps with the resolution cell.
The planar wavefront assumption no longer holds, and the geodetic transform is in (13). In
Section 2.4, transformation between models is proposed to solve this problem.

2.2. Spherical Wavefront Models

In order to solve the problem that the integral interval of the planar wavefront models
can not cover the distribution region of scatterers in the low-height airborne case, we choose
one arc line at the center of the pixel as the reference inversion area, as shown in Figure 4.
r0 is the distance from the master antenna to the center of the pixel at the same azimuth
position, and all scatterers on the same spherical wavefront have the same distance from
the master antenna. Subsequently, the pixel gm can be represented as the circular integral
about the off-nadir angle θ rather than as a linear integral about the elevation s

gm =
∫ θmax(r0)

θmin(r0)
γ(i)(θ) exp

(
−j2π

2r(i)m (θ)

λ

)
dθ m = 0, . . . , M− 1; and i = 5, 6 (17)

where θmin(r0) and θmax(r0) are the minimum and maximum off-nadir angles of the illumi-
nated scene at slant range r0, respectively. γ(i)(θ) is the reflectivity function related to the
off-nadir angle θ in ith model, and r(i)m (θ) is the distance between the mth antenna and the
scatterer with off-nadir angle θ in ith model.

In model 5, the exact form of the range is

r(5)m (θ) =

√
(r0 sin(θ − αm)− bm)

2 + (r0 cos(θ − αm))
2 =

√
r2

0 + b2
m − 2bmr0 sin(θ − αm). (18)

Compared with (3), (10), (11) and (12), the advantages of this model are not only the
extension of the inversion region, but also that there is no need for the reference terrain.
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Although the approximate expansion of the model is no longer necessary under the
compressed sensing method, Taylor expansion is also carried out here to compare with the
approximate form of the conventional model based on the planar wavefront geometry. We
use Rm to denote the distance from mth antenna to the reference terrain

Rm = r(5)m

(
θre f

)
=

√
r2

0 + b2
m − 2bmr0 sin

(
θre f − αm

)
, (19)

and substitute it into Equation (18). After first-order Taylor expansion with respect to(
sin(θ − αm)− sin

(
θre f − αm

))
, we have

r(5)m (θ) =

√
R2

m − 2bmr0

(
sin(θ − αm)− sin

(
θre f − αm

))
≈ Rm −

2bmr0

(
sin(θ − αm)− sin

(
θre f − αm

))
2Rm

. (20)

Then, the formula of the slant range in model 6 is

r(6)m (θ) = Rm −
bmr0

Rm

(
sin(θ − αm)− sin

(
θre f − αm

))
, (21)

For these spherical wavefront models, transformation relations from the radar frame
to the ground frame are {

rg = rg0 + r0 sin(θ)
h = h0 − r0 cos(θ)

(22)

2.3. Discretization of Models

The continuous-space system models can be approximated by discretizing the continuous-
reflectivity function along s, or refer to θ. We assume that there are only a few scatterers in
each pixel, and the point spread functions of these scatterers are delta functions. Then, the
formula of the pixel can be approximated from the integral about the scattering distribution
function as the sum about the backscattering coefficients of several scatterers. In order to
unify the discretization processing of models and the quantitative analysis of results by
planar wavefront models and spherical wavefront models, we transform elevation s in
planar wavefront models to off-nadir angle θ using

s = r0 tan
(

θ − θre f

)
. (23)

These models become
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gm =
K

∑
k=1

γ
(1)
k exp

(
−j2π

2
λ

√(
r0 − b‖m

)2
+
(

r0 tan
(

θ
(1)
k − θre f

)
− b⊥m

)2
)

, m = 0, . . . , M− 1 (24)

gm =
K

∑
k=1

γ
(2)
k exp

−j2π
2
λ

Rm +

(
r0 tan

(
θ
(2)
k − θre f

))2

2Rm
− b⊥m

Rm
r0 tan

(
θ
(2)
k − θre f

)
, m = 0, . . . , M− 1 (25)

gm =
K

∑
k=1

γ
(3)
k exp

−j2π
2
λ

Rm +

(
r0 tan

(
θ
(3)
k − θre f

))2

2r0
− b⊥m

Rm
r0 tan

(
θ
(3)
k − θre f

)
, m = 0, . . . , M− 1 (26)

gm =
K

∑
k=1

γ
(4)
k exp

(
−j2π

2
λ

(
Rm −

b⊥m
Rm

r0 tan
(

θ
(4)
k − θre f

)))
, m = 0, . . . , M− 1 (27)

gm =
K

∑
k=1

γ
(5)
k exp

(
−j2π

2
λ

(√
r2

0 + b2
m − 2bmr0 sin

(
θ
(5)
k − αm

)))
, m = 0, . . . , M− 1 (28)

gm =
K

∑
k=1

γ
(6)
k exp

(
−j2π

2
λ

(
Rm −

bmr0

Rm

(
sin
(

θ
(6)
k − αm

)
− sin

(
θre f − αm

))))
, m = 0, . . . , M− 1 (29)

The objective of TomoSAR is to retrieve θ
(i)
k and γ

(i)
k for each azimuth–range pixel,

and the compressed sensing method can solve this inverse problem. These discrete models
can be represented as [19]

g = R(i)γ(i), i = 1, 2, 3, 4, 5, 6 (30)

where g is the measurement vector with M elements gm, i is the model’s number, R(i) is
an M× N mapping matrix with R(i)

mn = exp
(
−j2π · 2r(i)m (θn)/λ

)
, and γ(i) is the discrete

reflectivity vector with N elements γn = γ(θn). θn (n = 1, . . . , N) denotes the discrete
off-nadir angles. There are many algorithms to solve the inversion problem (30), but it is
not the focus of this article and will not be discussed here.

2.4. Transformation between Models

By analyzing the experimental results and expressions of each model, we find some
transformation relations between these models and propose two transformation methods,
which can convert the results of the poorly performing model based on the planar wavefront
into the results of the model based on the spherical wavefront. In this section, we first give
out the transformation relation from the exact form of the planar wavefront model to the
exact form of the spherical wavefront model. Then, the transformation relation from the
approximate form of the planar wavefront model to the approximate form of the spherical
wavefront mode is discussed.

Although there are errors on geodetic coordinates of scatterers produced by the exact
form of the planar wavefront model as shown in Section 3.1.3, the off-nadir angle of
estimated scatterers is nearly accurate. This also confirms that the tomography processing
is sensitive to the off-nadir angle of the scatterer but cannot distinguish the offset of the
scatterer in the range direction. It is easy to see that we keep the off-nadir angle obtained
by the exact form of the planar wavefront model and abandon the geodetic coordinate
transformation method corresponding to this model, but use the geodetic coordinate
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transformation method (13) corresponding to the spherical wavefront model. Then, the
transformed ground range rg

′ and height h′ of the scatterer arerg
′ = rg0 + r0 sin

(
θ(1)
)

h′ = h0 − r0 cos
(

θ(1)
) (31)

From the experimental result shown in Section 3.1.3, the phase of scatterers on the
reference terrain is flat, but the phase of the other scatterers is rambling, which should be
corrected in applications which depend on the signal phase characteristics. We assume
that the scatterers are distributed at the center of the pixel, i.e., the arc line considered
as the reference inversion area in the spherical wavefront model. Phase correction is to
compensate for the effect of the distance difference between the segment line in model 1
and the arc line in model 5. Both model 1 and model 5 deal with the same pixel, so

K

∑
k=1

γ
(1)
k exp

(
−j2π

2
λ

r(1)m (θk)

)
=

K

∑
k=1

γ
(5)
k exp

(
−j2π

2
λ

r(5)m (θk)

)
, m = 0, . . . , M− 1 (32)

And we assume that the amplitude of scatterers can be inversed correctly under both
model 1 and model 5 ∣∣∣γ(1)

k

∣∣∣ = ∣∣∣γ(5)
k

∣∣∣, k = 1, . . . , K (33)

which will be verified in Section 3.1. To be honest, the next step is not very rigorous. We try
to prove the universality of the transformation obtained through this derivation process in
Section 3.1. We presume that

γ
(1)
k exp

(
−j2π

2
λ

r(1)m (θk)

)
≈ γ

(5)
k exp

(
−j2π

2
λ

r(5)m (θk)

)
, k = 1, . . . , K and m = 0, . . . , M− 1 (34)

therefore,

γ
(5)
k ≈ γ

(1)
k exp

(
−j2π

2
λ

(
r(1)m (θk)− r(5)m (θk)

) )
, k = 1, . . . , K and m = 0, . . . , M− 1 (35)

meaning that

r(1)i (θk)− r(5)i (θk) ≈ r(1)j (θk)− r(5)j (θk), i 6= j and i, j = 0, . . . , M− 1 (36)

which can be verified by the numerical experiment, and the difference between
r(1)m (θ)− r(5)m (θ) with different m is minimal as shown in Figure 5. Eventually, the trans-
formed reflectivity γ(1) ′(θ) can be represented as

γ(1) ′(θ) = γ(1)(θ) exp
(
−j2π

2
λ

(
r(1)0 (θ)− r(5)0 (θ)

) )
. (37)

The transformation relation between the approximate form of the planar wavefront
model and the spherical wavefront model is more difficult. Here we define a new coor-
dination system named the baseline coordinate system, as shown in Figure 6 by the red
solid line. The origin is the position of the master antenna, the abscissa axis denoted as n
is the direction normal to the baseline direction, and the vertical axis denoted as b is the
baseline direction. It is worth noting that it is based on the assumption that the antennas
are collinear. Then, we represent the ordinate of the scatterer and the reference point as b
and bre f , respectively.
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radar frame of the planar wavefront model is in blue. The radar frame of the spherical wavefront
model is in green. And the baseline frame is in red.

Model 4 is represented in the radar coordinate system in rectangular form, and model
6 is represented in the radar coordinate system in polar form. Next, we transform them
into the baseline coordinate system. The relation between elevation s and b in model 4 is

s(4)k =
b(4)k − bre f

cos
(

θre f − α
) (38)

In Section 2.3, the elevation s(4)k of kth scatterer has been transformed into a formula

which refers to off-nadir angle θ
(4)
k

s(4)k = r0 tan
(

θ
(4)
k − θre f

)
(39)

Then, considering (5), (38), (39), model 4 in the discrete form (27) becomes

gm =
K

∑
k=1

γ
(4)
k exp

(
−j2π

2
λ

(
Rm −

bm

Rm

(
b(4)k − bre f

)))
, m = 0, . . . , M− 1 (40)

The relation between off-nadir angle θ and b in model 6 is

r0 sin
(

θ
(6)
k − α

)
= b(6)k (41)

r0 sin
(

θ
(6)
re f − α

)
= b(6)re f (42)
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Then, the discrete version of model 6 in (29) becomes

gm =
K

∑
k=1

γ
(6)
k exp

(
−j2π

2
λ

(
Rm −

bm

Rm

(
b(6)k − bre f

)))
, m = 0, . . . , M− 1 (43)

From (40) and (43) we can see that model 4 and model 6 are the same in the baseline
frame, so we can get

b(4)k = b(6)k . (44)

γ
(4)
k = γ

(6)
k (45)

Using (38), (39), (41), (42) and (44), we can get the relation of the off-nadir angle of the
scatterer in model 4 and model 6

θ
(6)
k = asin

 sin
(

θ
(4)
k − α

)
cos
(

θ
(4)
k − θre f

)
+ α, (46)

so that the transformed off-nadir angle θ(4) ′ of scatterers can be expressed as

θ
(4)
k

′
= asin

 sin
(

θ
(4)
k − α

)
cos
(

θ
(4)
k − θre f

)
+ α. (47)

Then, the transformed ground range rg
′ and height h′ of the kth estimated scatterer are

rg
′ = rg0 + r0 sin

(
θ
(4)
k

′
)

h′ = h0 − r0 cos
(

θ
(4)
k

′
) (48)

3. Experiments and Results
3.1. Experiments on Simulated Data

In this subsection, 3-D reconstructions of illuminated scenes which resulted from process-
ing simulated data with different TomoSAR imaging models are analyzed. Two experiments
are designed with different simulated scenarios. In experiment 1, in order to get a better
reconstruction of the illuminated scene, we develop a simulated scenario where scatterers
have the same amplitude and phase of reflectivity. In experiment 2, a simulated scenario
where scatterers have different amplitudes and phases of reflectivity, is constructed to
verify the universality of the transformation between model 1 and model 5.

3.1.1. Simulated Dataset

We simulated eight 2-D SAR images corresponding to different trajectories, which are
isometry and coplanar. The configuration of the antenna array and the structure of the
simulated scene are shown in Figure 7. The scene is composed of a ground at 0 m height,
a vertical façade at 0 m ground range and a roof at 57.0524 m height, resulting in layover
areas with different sparsity in the SAR images. The reference terrain is a 0 m ground plane,
which can be used in models 1, 2, 3, 4 and 6. More details about the system configuration
and the illuminated scene are listed in Table 2.

For the sake of computational efficiency, we simulate only one scatterer in azimuth
direction, and slice a line containing scatterers in the stack of SAR images to perform
tomographic processing. In order to better calculate the inversion error of scatterers, every
scatterer is located on the sampling grids in both azimuth direction and range direction. By
this means, there will be no error between simulated scatterers and estimated scatterers
in the azimuth and range directions. We only need to analyze the error between them in
ground range and height direction.
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Table 2. Parameters of simulated data.

Parameter Symbol Value

Wavelength λ 0.02 m
Range resolution ρr 0.25 m

Azimuth resolution ρa 0.2083 m
Flight height h0 1000 m

Channel number M 8

Baseline length bm
0 m, 0.141 m, 0.283 m, 0.424 m, 0.566 m,

0.707 m, 0.848 m, 0.990 m
Baseline incline angle αm 0◦, 0◦, 0◦, 0◦, 0◦, 0◦, 0◦, 0◦

Range r0 1369.2 m~1414.2 m
Minimum off-nadir angle θmin 43.0846◦

Maximum off-nadir angle θmax 46.9648◦

Referring to Equation (16), the length L of the effective integral interval under the
planar wavefront models is about 37 m and 37.61 m at the near and far ends of the
illuminated scene, respectively. Referring to Equation (15), the maximum length Lmax of
the effective integral interval under the planar wavefront models is 52.33 m and 53.18 m
at the near and far ends of the illuminated scene, respectively. The height of the scene is
about 57 m and the off-nadir angle of the center of the scene is about 45◦. Therefore, the
extension in the elevation direction is about 81 m. The lengths L and Lmax are smaller than
the length of the extension of the illuminated scene.

In experiment 1, all the simulated scatterers have the same amplitude and phase as
shown in Figure 8. The phase and amplitude of scatterers are 1 and 0 rad, respectively.
For convenience, the amplitude of the scatterer in this paper has no dimension. In this
experiment, we focus more on the locations of scatterers reconstructed under different
models and transformed models, and we only consider whether the amplitude and phase
of estimated scatterers are constant to analyze the accuracy of inversion. It is meaningless
to determine whether the amplitude and phase of the inversed results are the same as the
true value exactly due to the effect of 2-D SAR imaging.

For experiment 2, the simulated scenario is shown in Figure 9. The amplitude and
phase of scatterers on the roof are 2 and −π/2 rad, respectively. The amplitude and phase
of scatterers on the façade are 3 and 0 rad, respectively. The amplitude of scatterers on
the ground is 1 and their phase is random from −π rad to π rad. In this experiment,
the effectiveness of the transformation between model 1 and model 5 in a more complex
scenario will be verified.
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3.1.2. Evaluation Metrics

In order to quantitatively analyze the experimental results, some evaluation metrics
are introduced in the experiments. The mean error (ME) is used to evaluate the average de-
viation between estimated and simulated scatterers in ground range and height directions.
The root mean squared error (RMSE) can reflect the uniformity degree of the deviation. The
expressions of ME and RMSE on the ground range and height are given here,

MErg =
∑Q

j=1

(
r̂g j − rg j

)
Q

, (49)

RMSErg =

√√√√∑Q
j=1

(
r̂g j − rg j

)2

Q
, (50)

MEh =
∑Q

j=1

(
ĥj − hj

)
Q

, (51)

RMSEh =

√√√√∑Q
j=1

(
ĥj − hj

)2

Q
, (52)

where Q is the number of the estimated scatterers; r̂g j and ĥj are the ground range and
height of jth estimated scatterer, respectively; and rg j and hj are the ground range and
height of the simulated scatterer corresponding to the jth estimated scatterer, respectively.
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The smaller these four metrics are, the higher the position estimation accuracy of the
scatterers is.

Due to the effect of 2-D SAR imaging on the amplitude of scatterers and the nearly
constant phase bias, it is hard to compensate the amplitude and phase. We directly calculate the
sample mean and standard deviation of the phase error and amplitude of estimated scatterer.

∆φj = arg

(
γ̂j

γj

)
, j = 1, . . . , Q (53)

µ∆φ =
∑Q

j=1 ∆φj

Q
(54)

σ∆φ =

√√√√∑Q
j=1

(
∆φj − µ∆φ

)2

Q− 1
(55)

Aj =
∣∣γ̂j
∣∣, j = 1, . . . , Q (56)

µA =
∑Q

j=1 Aj

Q
(57)

σA =

√√√√∑Q
j=1

(
Aj − µA

)2

Q− 1
(58)

where γ̂j is the reflectivity of the jth estimated scatterer and γj is the reflectivity of the
simulated scatterer corresponding to the jth estimated scatterer. ∆φj and Aj are the phase
error and amplitude of the jth estimated scatterer, respectively. The more similar the µ∆φ of
all parts in the simulated building are, the more accurate the estimated phase is. The smaller
σ∆φ is, the more accurate the estimated phase is. The estimated amplitude proportions of
each part of the building should be consistent with the simulated amplitude proportions,
and σA needs to be an order of magnitude smaller than µA to ensure the stability of the
estimated amplitude.

3.1.3. Results of Experiment 1

Under model 1 in (24) (the exact form of the planar wavefront model) and model 2
in (25) (the first approximate form of the planar wavefront model), the inversion results
and error analysis are presented in Figures 10 and 11, respectively. Results from these
two models are very similar, which shows that the approximation in (10) is very accurate.
Model 2 will not be considered in future analyses. From the mapping lines in Figure 10a,
we can see that the farther the scatterer is from the reference terrain, the farther the position
of the inversion result is from the simulated scatterer in the direction of the line of sight.
Figure 10b shows that the amplitude of the inversion result is flat, which is consistent with
the property of the simulation scene, but the phase of the inversion result is not constant
when the scatterer is not located at the reference terrain as shown in Figure 10c. Figure 10d
shows that the off-nadir angle of the inversion result is consistent with the simulated one,
and this provides evidence that TomoSAR can only distinguish scatterers with different
off-nadir angles and is insensitive to the range of the scatterer. When the scatterer is not
located at the reference integral area, i.e., straight line in the planar wavefront model and
arc line in the spherical wavefront model, the off-nadir angle of the inversion result will
be similar with the one of simulated scatterers. The error of the position of different parts
of the building is displayed in Figure 10e. The roof, façade and ground of the building
are denoted with red, green and blue colors, respectively. The circle symbol represents the
error of the inversion result which refers to the simulated scatterer in the ground range, and
the cross symbol indicates the error in the height direction. All the scatterers on the roof are
far away from the reference terrain; therefore, the error of the ground range and height is
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large. The scatterers with small range on the façade are at the top and far away from the
reference terrain, so the error is large. The scatterers with large range on the façade are at
the bottom and close to the reference terrain, so the error is small. Because the error of the
ground range is positive and the error of the height is negative except the scatterers on the
ground, the estimated scatterers are located at the bottom right of the simulated scatterers.
In Figure 10f, the phase error of different parts of the building is shown. The phase of the
estimated scatterers on the ground is flat, but the phase of the estimated scatterers on the
roof and façade is rambling.
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Figure 10. The reconstruction obtained using model 1 (the exact form of the planar wavefront model):
(a) reconstruction with colors denoted as height, (b) reconstruction with colors denoted as amplitude,
(c) reconstruction with colors denoted as phase, (d) the off-nadir angle of the reconstruction, (e) the
error of the ground range and height, (f) the error of the phase.
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wavefront model): (a) reconstruction with colors denoted as height, (b) reconstruction with colors
denoted as amplitude, (c) reconstruction with colors denoted as phase, (d) the off-nadir angle of the
reconstruction, (e) the error of the ground range and height, (f) the error of the phase.
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Regarding model 3 in (26) (the second approximate form of the planar wavefront
model) and model 4 in (27) (the third approximate form of the planar wavefront model),
inversion results and error analysis are presented in Figures 12 and 13, respectively. They
are similar except the phase of the inversion result. Model 3 will not be considered in future
analyses. From the mapping lines in Figure 13a, we can see that the farther the simulated
scatterer is from the reference terrain, the father the position of the inversion result is from
the simulated scatterer in the direction normal to the baseline. Figure 13b,c show that
the amplitude and the phase of the inversion results are flat, which is consistent with the
properties of the simulation scene. Figure 13d shows that there is a large deviation between
the off-nadir angle of the inversion results and the simulation results when the scatterer
is not located at the reference integral area. The error of the position of different parts of
the building is displayed in Figure 13e. The ground range of all parts of the building is
accurate, but there is a large error on the height of the roof and the façade. In Figure 13f,
the error in the phase of different parts of the building is shown. The phase of the scatterers
is flat.
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Figure 12. The reconstruction obtained using model 3 (the second approximate form of the planar
wavefront model): (a) reconstruction with colors denoted as height, (b) reconstruction with colors
denoted as amplitude, (c) reconstruction with colors denoted as phase, (d) the off-nadir angle of the
reconstruction, (e) the error of the ground range and height, (f) the error of the phase.

The reconstructions obtained using the exact and approximate forms of the spherical
wavefront model are shown in Figures 14 and 15. The results of these two models are
generally consistent. We can see that positions of estimated scatterers almost coincide with
positions of simulated scatterers, and the amplitude and phase of estimated scatterers are
almost constant. The correctness of the spherical wavefront model is proved.

The reconstructions obtained using the exact and approximate forms of the planar
wavefront model after transformation are shown in Figures 16 and 17. Figures 14–17 are
almost the same. The effectiveness of the transformation methods is verified.
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Figure 13. The reconstruction obtained using model 4 (the third approximate form of the planar
wavefront model): (a) reconstruction with colors denoted as height, (b) reconstruction with colors
denoted as amplitude, (c) reconstruction with colors denoted as phase, (d) the off-nadir angle of the
reconstruction, (e) the error of the ground range and height, (f) the error of the phase.
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Figure 14. The reconstruction obtained using model 5 (the exact form of the spherical wavefront 
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Figure 15. The reconstruction obtained using model 6 (the approximate form of the spherical wave-
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Figure 14. The reconstruction obtained using model 5 (the exact form of the spherical wavefront
model): (a) reconstruction with colors denoted as height, (b) reconstruction with colors denoted as am-
plitude, (c) reconstruction with colors denoted as phase, (d) the off-nadir angle of the reconstruction,
(e) the error of the ground range and height, (f) the error of the phase.



Remote Sens. 2022, 14, 5452 19 of 31

Remote Sens. 2022, 14, x FOR PEER REVIEW 19 of 32 
 

 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 14. The reconstruction obtained using model 5 (the exact form of the spherical wavefront 

model): (a) reconstruction with colors denoted as height, (b) reconstruction with colors denoted as 

amplitude, (c) reconstruction with colors denoted as phase, (d) the off-nadir angle of the reconstruc-

tion, (e) the error of the ground range and height, (f) the error of the phase. 

   
(a) (b) (c) 

   
(d) (e) (f) 
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Figure 15. The reconstruction obtained using model 6 (the approximate form of the spherical
wavefront model): (a) reconstruction with colors denoted as height, (b) reconstruction with colors
denoted as amplitude, (c) reconstruction with colors denoted as phase, (d) the off-nadir angle of the
reconstruction, (e) the error of the ground range and height, (f) the error of the phase.
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Figure 16. The reconstruction obtained under model 1 (the exact form of the planar wavefront model)
after transformation: (a) reconstruction with colors denoted as height, (b) reconstruction with colors
denoted as amplitude, (c) reconstruction with colors denoted as phase, (d) the off-nadir angle of the
reconstruction, (e) the error of the ground range and height, (f) the error of the phase.
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3.1.4. Results of Experiment 2 

In this experiment, the amplitude and phase of scatterers on the roof are 2 and −𝜋/2  

rad, respectively. The amplitude and phase of scatterers on the façade are 3 and 0 rad, 

Figure 17. The reconstruction obtained under model 4 (the approximate form of the planar wavefront
model) after transformation: (a) reconstruction with colors denoted as height, (b) reconstruction with
colors denoted as amplitude, (c) reconstruction with colors denoted as phase, (d) the off-nadir angle
of the reconstruction, (e) the error of the ground range and height, (f) the error of the phase.

To give a comprehensive summary of this subsection, Table 3 shows the quantitative
analysis of inversion results using simulated data by different models. In this paper, bold
numbers in all tables indicate unqualified results. From this table, the conclusions are
drawn that the ground range, height and phase of inversion results under model 1 are
inaccurate, and that the height of inversion results under model 4 is inaccurate. After using
transformation methods mentioned in Section 2.4, the inversion results under transformed
model 1 and transformed model 4 are accurate.

Table 3. The quantitative analysis of inversion results using simulated data in experiment 1.

Ground Range (m) Height (m) Phase (rad) Amplitude

ME RMSE ME RMSE µ∆φ σ∆φ µA σA

Model 1
Roof 1.815 1.822 −1.517 1.524 0.214 1.884 1055.6 184.8

Façade 0.523 0.750 −0.580 0.754 −0.211 1.843 1157.1 127.0
Ground 0 0.103 0 0.102 1.571 0.049 1130.4 91.7

Model 4
Roof 0.104 0.218 −3.139 3.144 1.550 0.108 1051.6 211.8

Façade −0.020 0.094 −1.099 1.472 1.572 0.034 1157.6 136.0
Ground 0.007 0.104 0.007 0.103 1.565 0.024 1129.9 91.6

Model 5
Roof 0.093 0.181 0.098 0.193 1.553 0.090 1055.8 184.5

Façade −0.040 0.100 −0.041 0.103 1.576 0.033 1157.1 126.9
Ground 0 0.104 0 0.102 1.566 0.024 1130.4 91.7

Model 6
Roof 0.093 0.181 0.098 0.193 1.553 0.090 1056.3 184.0

Façade −0.040 0.100 −0.041 0.103 1.576 0.034 1157.0 126.7
Ground 0 0.104 0 0.102 1.566 0.024 1130.4 91.7

Transformed
Model 1

Roof 0.093 0.181 0.098 0.193 1.553 0.090 1055.6 184.8
Façade −0.040 0.100 −0.041 0.103 1.576 0.033 1157.1 127.0

Ground 0 0.104 0 0.102 1.566 0.024 1130.4 91.7

Transformed
Model 4

Roof 0.104 0.218 0.110 0.232 1.550 0.108 1051.6 211.8
Façade −0.020 0.094 −0.020 0.097 1.572 0.034 1157.6 136.0

Ground 0.007 0.104 0.007 0.102 1.565 0.024 1129.9 91.6
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3.1.4. Results of Experiment 2

In this experiment, the amplitude and phase of scatterers on the roof are 2 and −π/2
rad, respectively. The amplitude and phase of scatterers on the façade are 3 and 0 rad,
respectively. The amplitude of scatterers on the ground is 1 and their phase is random from
−π rad to π rad.

The random phase of scatterers on the ground deteriorates the 3-D reconstruction to a
small extent. As shown in Figure 18a, there are some outliers at the façade–ground corner
of the building. The off-nadir angle of estimated scatterers is jittering around the simulated
off-nadir angle in Figure 18d, which is caused by the random phase of scatterers on the
ground. In Figure 18e,f, the error distribution has the same trend as Figure 10e,f. Using the
transformation derived in Section 2.4, the positions of scatterers are modified to be close
to the simulated scatterers as shown in Figure 19a. The ground range error and height
error are around 0 m as shown in Figure 19e. In Figure 19c, the phase of scatterers on the
façade and roof are both flat. The phase error between estimated scatterers and simulated
scatterers is nearly constant as shown in Figure 19f. Although the error has a wider range
as shown in Figure 19e,d compared to Figure 16e,f, we still believe that the conversion
method is effective because the ground range error and height error are nearly unbiased
and the sample mean of phase error is nearly constant as shown in Table 4.
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(a) (b) (c) 

Figure 18. The reconstruction obtained under model 1 (the exact form of the planar wavefront model)
in experiment 2: (a) reconstruction with colors denoted as height, (b) reconstruction with colors
denoted as amplitude, (c) reconstruction with colors denoted as phase, (d) the off-nadir angle of the
reconstruction, (e) the error of the ground range and height, (f) the error of the phase.

Although the reconstruction is not perfect like Figure 16, the effectivity of the transfor-
mation between model 1 and model 5 in a complex scenario can still be verified.

3.2. Experiments on Measured Data

In this subsection, models 1, 4, 5 and 6 are used to process the measured data. The
transformation between model 1 and model 5 and the transformation between model 4
and model 6 are performed in experiments. Two local regions in the illuminated scene are
selected to conduct two experiments. In experiment 1, a tower crane with clear structure is
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chosen as an experimental target to analyze the 3-D reconstruction under different models.
In experiment 2, a region with two buildings and the ground between them is selected as
an experimental target. The reference terrain is 0 m ground plane.
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Figure 19. The reconstruction obtained under model 1 (the exact form of the planar wavefront
model) after transformation in experiment 2: (a) reconstruction with colors denoted as height, (b)
reconstruction with colors denoted as amplitude, (c) reconstruction with colors denoted as phase, (d)
the off-nadir angle of the reconstruction, (e) the error of the ground range and height, (f) the error of
the phase.

Table 4. The quantitative analysis of inversion results using simulated data in experiment 2.

Ground Range (m) Height (m) Phase (rad) Amplitude

ME RMSE ME RMSE µ∆φ σ∆φ µA σA

Model 1
Roof 1.742 1.787 −1.586 1.630 −0.427 1.624 2562.6 1551.0

Façade 0.528 0.752 −0.576 0.780 0.032 1.782 3629.1 1510.6
Ground −0.122 1.238 −0.122 1.233 1.607 0.522 1137.4 1236.5

Transformed
Model 1

Roof 0.024 0.374 0.025 0.399 1.518 0.327 2562.6 1551.0
Façade −0.036 0.178 −0.037 0.183 1.574 0.063 3629.1 1510.6

Ground −0.123 1.244 0.121 1.227 1.591 0.327 1137.4 1236.5

3.2.1. Measured Dataset

The experiments and discussions are based on the airborne Array-InSAR system by
Aerospace Information Research Institute, Chinese Academy of Sciences (AIRCAS) [17].
The system is a Ku-band high-resolution Array-InSAR and data was acquired in Yuncheng
City, Shanxi province, China. More details about the system parameters are listed in Table 5.

There are eight channels corresponding to eight antennas in total. The image size of
a single channel SAR image is 3100 × 1220 pixels in the azimuth and range directions as
shown in Figure 20b.
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Table 5. System parameters of the measured data.

Parameter Symbol Value

Wavelength λ 0.021 m
Range resolution ρr 0.1499 m

Azimuth resolution ρa 0.0734 m
Flight height h0 1073.621 m

Channel number M 8

Baseline length bm
0 m, 0.084 m, 0.170 m, 0.252 m, 0.336 m,

0.420 m, 0.504 m, 0.588 m

Baseline incline angle αm
0◦, 0.726◦, 0.725◦, 0.747◦, 0.742◦, 0.738◦,

0.747◦, 0.734◦
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Figure 20. The selected region in experiment 1: (a) the configuration of the antenna array. The 2-D SAR
image of the measured data: (b) the whole scene and (c) the inversion area in the red frame in (b).

In experiment 1, a region of 881 × 471 pixels is chosen as the inversion area, as shown
in Figure 20c. The tower crane in this region is our experimental target used to visually
compare the reconstruction of each model in three dimensions. Due to the overlap between
the tower crane and the façade of the building, the structure of the tower crane in Figure 20c
cannot be clearly seen. After tomographic processing, the tower crane will be clearly visible.
In Table 6, the parameters of this region are listed. Considering the complexity of the scene,
in order to avoid the ambiguity of reflectivity function in the third dimension, different
off-nadir angle limitations are adopted at different ranges.

Table 6. Parameters of the selected region in experiment 1.

Parameter Symbol Value

Range r0 1233.196 m~1303.647 m
Minimum off-nadir angle at different ranges θmin(r0) 28.022◦~33.378◦

Maximum off-nadir angle at different ranges θmax(r0) 36.448◦~42.392◦

Referring to Equation (16), the length L of the effective integral interval under the
planar wavefront models is about 27.19 m and 27.96 m at the near and far ends of the
illuminated scene, respectively. Referring to Equation (15), the maximum length Lmax of
the effective integral interval under the planar wavefront models is 38.46 m and 39.54 m
at the near and far ends of the illuminated scene, respectively. The height of the scene is
about 80 m. The extension in the elevation direction must be greater than the height of the
scene. Therefore, the lengths L and Lmax are smaller than the length of the extension of the
illuminated scene.

In experiment 2, a region of 601 × 301 pixels is selected as the experimental target,
as shown in Figure 21c. This region contains parts of two buildings and the ground
between them. The continuous ground and façade provide a good experimental scenario
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for comparing the reconstruction of each model and verifying the validity of the model
transformation we proposed. Table 7 summarizes the parameters of the selected region
in experiment 2.
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Figure 21. The selected region in experiment 2: (a) the configuration of the antenna array. The 2-D SAR
image of the measured data: (b) the whole scene and (c) the inversion area in the green frame in (b).

Table 7. Parameters of the selected region in experiment 2.

Parameter Symbol Value

Range r0 1303.647 m~1348.616 m
Minimum off-nadir angle at different ranges θmin(r0) 32.160◦~35.081◦

Maximum off-nadir angle at different ranges θmax(r0) 40.342◦~42.542◦

Referring to Equation (16), the length L of the effective integral interval under the
planar wavefront models is about 27.96 m and 28.44 m at the near and far ends of the
illuminated scene, respectively. Referring to Equation (15), the maximum length Lmax of
the effective integral interval under the planar wavefront models is 39.54 m and 40.21 m
at the near and far ends of the illuminated scene, respectively. The height of the scene is
about 60 m. The extension in the elevation direction must be greater than the height of the
scene. Therefore, the lengths L and Lmax are smaller than the length of the extension of the
illuminated scene.

3.2.2. Evaluation Methods

Unfortunately, we do not have the ground truth data for this area. Therefore, the
absolute accuracy of each model’s reconstruction cannot be evaluated. From Section 3.1, the
accuracy of model 5 is verified on simulated data. Model 5 is a spherical wavefront model
with the exact form of the slant range. We use the experiments on the measured data to
verify the relative relationship between the reconstruction of each model and reconstruction
of model 5.

In experiment 1, the relative relationship between tower cranes reconstructed under
different models is shown in three dimensions. Moreover, scatterers in a small area as
shown in Figure 22b are selected to quantitatively analyze the relationship between the
reconstruction of each model.

In experiment 2, the difference of the reconstruction of each model is demonstrated
in 2-D images. The ground range and height error of the estimated scatterer can be
shown obviously at each azimuth and range position. In addition, histograms provide the
distribution of the error.

3.2.3. Results of Experiment 1

From Section 3.1, we know that model 5 (the exact form of the spherical wavefront
model) is accurate, so the measured data is processed under model 5 first to provide a
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reference. The reconstruction result is shown in Figure 22a. The buildings and the tower
crane are clearly visible. The tower crane is shown in orange, and buildings are shown in
blue. To give a clearer comparison, we extract the tower crane out of the point cloud of
the scene by filtering the ground range of estimated scatterers. Then, we project the tower
crane to a 2-D image with the value representing the reflectivity of scatterers, as shown
in Figure 22b.
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(a) (b) 

Figure 22. The tower crane extracted from the selected region in experiment 1: (a) 3-D point cloud
containing the tower crane and buildings; (b) 2-D SAR image corresponding to the tower crane. The
red frame in (b) is used for the quantitative analysis of the reconstructions under different models.

Compared to experiments using simulated data, we do not have ground truth for
targets on the ground in experiments using measured data. For this reason, the MAE and
RMSE of the positions of estimated scatterers could not be calculated. Firstly, we compare
reconstruction results of different models visually. Then, we choose estimated scatterers
from the same area in 2-D SAR images under different models to do the quantitative
analysis. In Figure 23a,b, the reconstructed tower crane under model 5 (the exact form
of the spherical wavefront model) and model 6 (the approximate form of the spherical
wavefront model) are similar; the reconstructed tower crane under model 1 (the exact form
of the planar wavefront model) deviates from the reconstructed tower crane under model 5
in the direction of line of sight away from the antenna, and the reconstructed tower crane
under model 4 (the third approximate form of the planar wavefront model) deviates from
the reconstructed tower crane under model 5 in the direction normal to the direction of the
baseline. In Figure 23c, the reconstructed tower crane under the transformed model 1 is
similar to the reconstructed tower crane under model 5. In Figure 23c, the reconstructed
tower crane under the transformed model 4 is similar to the reconstructed tower crane
under model 5.

We slice out 7 × 4 pixels in azimuth and range directions as shown in the red frame in
Figure 22b to calculate the mean and the standard deviation of the ground range and the
height of estimated scatterers in these pixels, and the results are collected in Table 8. The
tower crane reconstructed under model 1 is 6.3 m lower than the one under model 5, and
the tower crane reconstructed under model 4 is 8.9 m lower than the one under model 5.

Table 8. The quantitative analysis of inversion results using measured data.

Ground Range (m) Height (m)

µ σ µ σ

Model 1 742.968 0.876 70.247 0.516
Model 4 738.474 0.784 67.645 0.488
Model 5 738.269 0.806 76.593 0.607
Model 6 738.297 0.817 76.613 0.612

Transformed model 1 738.269 0.806 76.593 0.607
Transformed model 4 738.358 0.782 76.659 0.625
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Figure 23. The reconstructed tower crane (a) under model 1 (the exact form of the planar wavefront
model), 4 (the third approximate form of the planar wavefront model), 5 (the exact form of the
spherical wavefront model) and 6 (the approximate form of the spherical wavefront model); (b) in the
ground range–height plane; (c) under model 1, transformed model 1 and model 5; (d) under model 4,
transformed model 4 and model 5.

3.2.4. Results of Experiment 2

Firstly, the scene is reconstructed using model 5 as shown in Figure 24a. The recon-
struction has been filtered to some extent. There are still some outliers caused by multiple
scattering in the near end of the scene in the ground range direction. These outliers are
not our experimental target. We extract the target by selecting scatterers that appear in
a specific range of ground range, and the extracted result is projected in a 2-D image as
shown in Figure 24b.
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In order to see the ground range and height of the scatterer in each pixel, the 2-D
image is colored to refer to ground range and height as shown in Figure 25. White color
means that the scatterers in this pixel are filtered out. When there is more than one scatterer
in the pixel, the highest scatterer remained. In Figure 25a, pixels in façades at the same
azimuth position are in the same color, which means that scatterers in these pixels have the
same ground range. In Figure 25b, pixels in an area between two facades are in the same
color, which means that scatterers in these pixels have the same height. This is consistent
with the fact that the façade is vertical and the ground is horizontal.
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Figure 25. The target obtained by model 5 (the exact form of the spherical wavefront model) and
shown in (a) 3-D point cloud and (b) 2-D SAR image.

To visually compare the difference of the reconstruction obtained by each model, we
color the 2-D image refer to the ground range and height error between model 5 and other
models. The formulas of the ground range and height error are

∆rg = r(i)g − r(5)g , i = 1, 4 and 6 (59)

∆h = h(i) − h(5), i = 1, 4 and 6 (60)

For the transformed models, the formulas are

∆rg = r(i)g
′
− r(5)g , i = 1 and 4 (61)

∆h = h(i)
′
− h(5), i = 1 and 4 (62)

In Figure 26, we can see that the ground range of most scatterers reconstructed using
model 1 is greater than for ones reconstructed using model 5, and the height of most scat-
terers reconstructed using model 1 is less than for ones reconstructed using model 5. This is
consistent with the experimental results on simulated data. After using the transformation
between model 1 and model 5, there is no difference between reconstructions of trans-
formed model 1 and model 5, ignoring a few pixels as shown in Figure 27. In Figure 27c,
the histogram of ground range error and the histogram of height error are overlapping.

To make it easier to understand the phenomenon of the ground range and height
error between model 4 and model 5, we compare model 6 and model 5 first. In Figure 28,
we can see that there is no difference between reconstructions of model 6 and model 5,
ignoring a few pixels, which means that the approximation of the slant range in model 6
does not affect the reconstruction. In Figure 28c, the histogram of ground range error and
the histogram of height error are overlapping. Therefore, we can regard the transformation
between model 4 and model 6 as the transformation between model 4 and model 5.

If we use the experience obtained from the experiments on simulated data, the ground
range error between model 4 and model 5 will be about 0 m. But in this experiment, the
error is approximately in the range of (−1 m, 1 m), as shown in Figure 29c. The reason is
that the baseline incline angles are not all 0◦ and are even not equal, as shown in Table 5.
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For the transformation between model 4 and model 6, the assumption of collinear antennas
is not strictly satisfied. Therefore, the scatterers reconstructed under model 4 do not strictly
move away from the ones reconstructed under model 5 along the direction normal to the
baseline. Since the baseline is close to the horizontal distribution, the height error between
model 4 and model 5 is more obvious. After using the transformation between model 4
and model 6, the significant height error is compensated to the level of the ground range
error, as shown in Figure 30.
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Figure 28. The ground range and height error between model 6 and model 5: (a) the ground range
error; (b) the height error; (c) a histogram of the ground range and height error.
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4. Discussion

Models 1, 2, 3 and 4 are based on a planar wavefront geometry. Scatterers estimated
with model 1 will move away from their correct positions along the direction of the LOS
when they are not on the reference LOS. The farther away the scatterer is from the reference
LOS, the farther away it is from its correct position. The reconstruction of model 2 is
basically the same as that of model 1, despite some approximation of the slant range. After
further approximating, the reconstruction of model 3 shows new characteristics. Scatterers
estimated with model 3 move away from their correct positions along the direction normal
to the baseline. Omitting a second-order phase about elevation, the reconstruction of model
4 is the same as model 3 in terms of the positions of scatterers. Models 5 and 6 proposed by
us are based on a spherical wavefront geometry. The reconstructions of these two models
are very accurate. The transformation between model 1 and model 5 and the transformation
between model 4 and model 6 are derived and proved. These transformations provide
support for the transplantation of tomography algorithms based on the traditional model
to the low-altitude airborne case and the conversion of reconstructions obtained by the
traditional model to ones under the spherical wavefront models we proposed.

The computation time of each model is nearly the same. The computation time is
mainly dependent on tomography algorithms. These models are adopted in the pixel-
by-pixel processing framework of TomoSAR imaging. This framework is based on an
assumption that the 2-D SAR images are well coregistered. However, in low-altitude
airborne cases, image coregistration becomes a new challenge. The discretization of models
is performed with the assumption that the reflectivity function of the illuminated scene
is sparse in the third dimension. When some distributed targets appear in the scene, the
sparsity assumption will no longer be satisfied.
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5. Conclusions

In this paper, the power of TomoSAR in building modeling is demonstrated. With
the improvement of data quality and the expansion of the variety of SAR platforms, more
accurate TomoSAR imaging models are urgently needed.

The conventional TomoSAR imaging models based on planar wavefront geometry can
no longer provide a satisfactory image reconstruction in the low-altitude airborne case. For
a more accurate reconstruction of the illuminated scene, TomoSAR imaging models based
on spherical wavefront geometry are proposed. The 3-D reconstructions of illuminated
scenes using these models were compared and the effectiveness of transformation methods
were proved through experiments on simulated data and real data.
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