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Abstract: In recent decades there has been an increasing use of remotely sensed data for precision
agricultural purposes. Sericulture, the activity of rearing silkworm (Bombyx mori L.) larvae to produce
silk in the form of cocoons, is an agricultural practice that has rarely used remote sensing techniques
but that could benefit from them. The aim of this work was to investigate the possibility of using
satellite imaging in order to monitor leaf harvesting in mulberry (Morus alba L.) plants cultivated for
feeding silkworms; additionally, quantitative parameters on silk cocoon production were related to
the analyses on vegetation indices. Adopting PlanetScope satellite images, four M. alba fields were
monitored from the beginning of the silkworm rearing season until its end in 2020 and 2021. The
results of our work showed that a decrease in the multispectral vegetation indices in the mulberry
plots due to leaf harvesting was correlated with the different parameters of silk cocoons spun by
silkworm larvae; in particular, a decrease in the Normalized Difference Vegetation Index (NDVI) and
Soil Adjusted Vegetation Index (SAVI) had high correlations with quantitative silk cocoon production
parameters (R? values up to 0.56, p < 0.05). These results led us to the conclusion that precision
agriculture can improve sericultural practice, offering interesting solutions for estimating the quantity
of produced silk cocoons through the remote analysis of mulberry fields.

Keywords: Morus alba L.; Bombyx mori L.; silk; cocoon; precision agriculture; remote sensing;
sericulture; vegetation index; satellite images

1. Introduction

Sericulture, or silk farming, is the rearing of silkworms (Bombyx mori L.) to produce
silk in form of cocoons. Since B. mori is basically a monophagous insect, the amount of
available mulberry (Morus alba L.) leaf is a major constraint on the maximum productive
potential because silkworm larvae can be fed only with fresh mulberry leaves [1,2].

Based on a thorough literature review, we discovered an important knowledge gap: at
the moment, there are only “rules of thumb” that relate the potential yields of mulberry
leaves to the potential yield in cocoons, but these are mostly based on the experience of
farmers. To the best of our knowledge, the only relevant work on this topic was presented
by Lakshmanan in 2007 [3], who proposed an econometric analysis of the factors influencing
silk production. Lakshmanan considered the cultivation of mulberry as a factor influencing
silk production in the quoted article, but only in the introduction to the proposed models
of binary variables in regard to adoption/non-adoption of new high-yielding varieties of
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mulberry for leaf production and in terms of adoption/non-adoption of irrigation in the
investigated mulberry fields.

In terms of precision agricultural approaches, remote sensing techniques have been
successfully applied to monitor several herbaceous and perennial tree crops [4-12]. Never-
theless, an extensive literature review revealed that remote sensing has rarely been applied
to mulberry cultivation and production. To the best of our knowledge, the only relevant
study using remotely sensed data in mulberry cultivation is the work of Purohit et al. [13].
Remote sensing data were used in this study to find suitable locations for mulberry cultiva-
tion. Environmental models, different soil characteristics (e.g., pH, texture, or soil depth)
and climate data were used to perform a large-scale land classification of India to identify
potential areas for establishing new mulberry fields. Nevertheless, despite the fact that
Purohit et al. [13] focused on mulberry cultivation, remote sensing data were not directly
linked to mulberry monitoring.

When remote sensing techniques are applied to agriculture, the crop canopy is usually
the target. Remote sensing cameras or sensors can be mounted on unmanned aerial
vehicles (UAVs), drones, aircraft, or satellites. Currently, various constellations of satellites
are available for precision agricultural purposes [14], with PlanetScope satellites serving
as an important source of remote sensing data that can be used for crop monitoring. The
PlanetScope mission is composed of approximately 130 nanosatellites orbiting at a height
of about 470 kilometres and equipped with a multispectral camera that collects data in four
spectral bands (RGB and NIR), with a spatial resolution of 3.0 m and a revisiting time of
up to one day. This high spatial resolution enables the accurate detection of plant vigour
and its changes even in small fields and orchards; the high temporal resolution, on the
other hand, facilitates the fine characterization of the temporal evolution of vegetation.
Several types of information can be derived from remotely sensed data, the most useful of
which are those derived from the analysis of vegetation indices for precision agricultural
purposes. Vegetation indices can be described as proxies that quantitatively represent the
status of vegetation [15,16]. Different studies have demonstrated that, using vegetation
indices from remotely sensed data, it is possible to estimate plant biomass [4,17-19], water
stress [5,20-23], yield level [7,8,24-29], and product quality [28,29]; this approach has been
applied in recent decades to both annual herbaceous crops [22,24,26,28,29] and perennial
tree crops [4,5,7,8,10-12]. To the best of our knowledge, no study has considered the
possibility of applying remote sensing techniques, by means of vegetation indices, to
M. alba fields.

In this context, precision agricultural and remote sensing techniques can benefit
sericulture. A potentially interesting application to sericulture is the possibility of collecting
information, in the form of vegetation indices, about leaf production and leaf harvesting in
mulberry fields from satellite images and using it to estimate parameters relevant to the
silk market as they relate to cocoon production.

The main objective of this work was to evaluate the applicability of classical basic
procedures for the analysis of remote sensing images collected with high-spatial-resolution
cameras from PlanetScope satellites to monitor the biomass of mulberry fields cultivated
to feed silkworms. Additionally, the work aimed to investigate the possible correlation
between harvested biomass and quantitative parameters from cocoon production. The
specific objectives of this work were (a) to analyse the correlations and regressions between
vegetation indices derived from remote sensing data and cocoon quantitative produc-
tion parameters and (b) to identify the best-performing vegetation indices for estimating
cocoon yield.

2. Materials and Methods

In the present work, we retrieved the satellite images of four mulberry fields located
in the Veneto Region (Italy) from PlanetScope satellites by georeferencing their borders
and defining the temporal period of interest, corresponding to the B. mori rearing periods
in 2020 and 2021. From the downloaded images we computed several vegetation indices
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and studied their temporal development as a consequence of M. alba development and
leaf harvesting operations. Finally, we related the parameters derived by the analysis of
vegetation indices to economically relevant parameters that characterize cocoon production.
In Figure 1, a schematic representation of the process is provided; further description of the
procedure is provided in the following paragraphs of this section.
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Figure 1. Schematic resume of working procedure.

2.1. Experimental Area Description

This study considered four M. alba fields used to feed silkworms for commercial silk
production as the experimental areas. The leaves from these mulberry fields were harvested
to feed B. mori larvae in two different years, namely 2020 and 2021. All of the selected
farms and fields were located in the Veneto Region, north-eastern Italy, in the provinces of
Padova and Treviso; Figure 2 depicts their geographic location.

02 d
1 g
N - ) i
;\11\2_5 25 50Km A 0 125 25 50m A 0 25 50  100m A 0 25 50 100m A 0 125 25 50m A
L 1 | ot L L 1 J L L 1 1 L L 1 ] L L 1 ]

N N

N h N ?
0 125250  S00Km A 0 125 25 50m A 0 25 50 100m A o 25 50 100m A o 125 25 50m A
L 1 ] S| | L L 1 L L L J L 1 1 ] L " 1

Figure 2. Location of M. alba experimental fields considered in the present work and their representation:
top, high resolution from Google Earth (visible), bottom, high resolution from PlanetScope (NDVI).
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The mulberry fields selected for this study were representative of typical Italian farms,
with an orchard area smaller than 5 hectares (data from ISTAT, Italian National Statistical
Institute, authors” elaboration).

In the Italian scenario, mulberry fields were typically arranged in two ways, as follows:

e High density: from 0.6 to 1.2 m in rows and 1.3 m between rows. This arrangement
was represented by Field 02 and Field 04.

e  Low density: 3.5 m in rows and 4 m between rows. This arrangement was represented
by Field 01 and Field 03.

In both arrangements, plants at the maximum of vegetative growth tended to cover
almost the entire inter-row space.

2.2. Silkworm Rearing

The life cycle of B. mori, from the hatching to the cocoon production period, is divided
into five phases of active growth and alimentation called instars, which are interrupted by
four phases of momentary halting of alimentation called moultings, which are characterised
by important physiological activities. In this work, we referred to this simplified life cycle
of B. mori as the “commercial life cycle” to distinguish it from the biological life cycle. A more
detailed presentation of the biological life cycle of B. mori was beyond the scope of this
article. For more details about the biology and physiology of the insect, see the Sericulture
Training Manual [1] and the Encyclopedia of Insects [2].

All the B. mori polyhybrid larvae involved in the present work were reared from
hatching to the beginning of the third instar in a centralized building and then distributed
to the farmers. In fact, the first two instars of B. mori larvae are less resistant to diseases,
suboptimal environmental conditions, and malnutrition [1,2].

Starting from the third instar, the B. mori larvae were reared by the farmers. Under
standard rearing conditions [1], the third instar lasts four days, and the total consumption
of fresh leaves per box (corresponding to 20,000 eggs) is approximately 13-15 kg. The fourth
instar lasts five days, and the fresh leaf consumption during this period is approximately
10% of the total demand [2]. During the fifth instar, B. mori larvae ingest approximately
the remaining 88% of the fresh leaves needed for their development [2], corresponding to
approximately 300-340 kg of fresh leaves; this final instar lasts seven to eight days under
standard conditions. The fifth instar is the period when the silk proteins for cocoons are
actively biosynthesized by B. mori larvae and, therefore, farmers must provide an adequate
supply of mulberry leaves. The last part of the commercial life cycle of B. mori is the cocoon
production period, or mounting period, which lasts eight to ten days; during this period,
the insects no longer need to be fed.

2.3. Data Acquisition and Analysis
2.3.1. Cocoon Yield Data Collection

To characterize the cocoon production of different farmers, five objective parameters
were considered:

- Total production: This was the total production of cocoons from all reared boxes, per
farmer and per year.

- Production per box: This was calculated as total production/number of boxes.

- Average cocoons weight: This was the average value of the individual weights of
sampled cocoons.

- Average silk shells weight: This was the average value of the individual weights of
sampled cocoons after the removal of the pupae.

- Average silk percentage: This was the average value of, calculated as silk shell
weight/cocoon weight x 100.

The last three parameters were measured by sampling 30-40 cocoons per replicate,
i.e., per farmer and per year; weights were measured as detailed in Saviane et al. [30] using
a precision balance with a resolution of milligrams.
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2.3.2. Remote Sensing Data

Remotely sensed data were used to track the evolution of the in-field situation of the
mulberry fields according to the feeding necessities of silkworms in each farm. To this aim,
data from the PlanetScope constellation (Planet Labs, Inc., San Francisco, CA, USA) were
examined and downloaded.

To download the multispectral data from PlanetScope satellites, regions of interest
(ROIs) were delineated for each mulberry field as a shapefile.

Rearing periods were defined on the basis of the record journals for silk production
filled by the farmers themselves and in agreement with the official protocols and periods
defined by the official national best practices. Key dates in these rearing periods were
defined as follows:

- Start of Feeding: This day marked the start of harvesting of mulberry leaves in the
fields. This day corresponded to the first day of the third instar when the B. mori
larvae were given to farmers.

- Start of the fourth instar: The fourth larval instar of the silkworms began on this day.

- Start of the fifth instar: The last larval instar of the silkworms began on this day.

- End of Feeding: This was the last day of the fifth instar. The silkworm larvae stopped
feeding on this day and began to spin cocoons.

Dates for both 2020 and 2021 and per field are listed in Table 1.

Table 1. Dates when PlanetScope images of each field were downloaded in relationship with each
rearing period.

Field Spring 2020 Spring 2021

ie
ID Start of Start of Start of End of Start of Start of Start of End of

Feeding 4th Instar 5th Instar Feeding Feeding 4th Instar 5th Instar Feeding

01 15 May 20 May 25 May 2 June 27 May 1 June 8 June 15 June
02 15 May 21 May 27 May 2 June 27 May 1 June 9 June 13 June
03 15 May 20 May 25 May 2 June 27 May 1 June 6 June 13 June
04 15 May 20 May 25 May 2 June 27 May 1 June 9 June 17 June

The downloaded PlanetScope images belonged to the type of surface reflectance
(bottom of atmosphere reflectance), and only images with less than 30% cloud coverage
were pre-selected. PlanetScope satellites were launched in different flocks and, according
to this, they mounted a different type of sensor, namely PS2, PS2.SD, and PSB.SD [31].
Preferentially, we downloaded images from satellites equipped with PS2.SD or PSB.SD
to reduce the source of error due to sensor differences; when this was not possible, PS2
images were also used. In this way, a total of 32 images were selected and downloaded
from the platform.

2.4. Feature Extraction from Planet Data

Vegetation indices, as mentioned in the Introduction, are instruments designed to
retrieve information about vegetation from remotely sensed images. The theoretical foun-
dation of vegetation indices is that vegetation responds precisely to different wavebands.
The absorption of light by leaves depends on their status: healthy leaves register a peak
of light absorption, i.e., a low reflection, of incident radiation in the red (R) region of the
spectrum and a high reflection of wavelengths in the near-infrared region (NIR), while
senescent leaves reflect more red radiation than healthy ones. The peculiar pattern of light
reflectance of leaves allows for the discrimination of vegetation from bare soils, water, or
urbanized regions [16]. Considering remotely sensed images storing-per-pixel reflectance
values in different wavelengths, vegetation indices are a mathematical instrument that
combine information from different wavebands to discriminate and study vegetated areas,
and they are generally based on the differences in red—NIR reflectance values. The simplest
vegetation indices considered the ratio between the reflectance of NIR-red, being high
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(25-30) in pixels representing dense and healthy vegetation. A step forward is made by
normalizing the difference between NIR and red bands; normalized indices, as NDVI [32],
are more stable [16] and simplify the interpretation and comparison of data since it ranges
between +1. Several authors have subsequently proposed modifications to NDVI in order
to reduce the influence of the signals of soil, this being the SAVI [33] or its modifications,
MSAVI2 [34], introducing corrective factors, and to reduce the influence of aerosols in the
red band, in this case by correcting the red reflectance with information from reflectance in
the blue region of spectrum.

In the present work, seven vegetation indices were calculated using the data organised in
spreadsheets. For the present work, seven different vegetation indices were considered, select-
ing the most commonly used and quoted in the scientific literature for precision agricultural
and crop monitoring purposes as well as the ones that could be computed from the spectral
bands available from the PlanetScope images. Table 2 lists the used vegetation indices.

Table 2. Vegetation indices used in the present study.

Index Reference Range
Atmospherically Resistant Vegetation Index (ARVI) Kaufman and Tanré [35] (=1, +1)
Enhanced Vegetation Index (EVI) Wang et al. [36] (—1,+1)
Green Normalized Difference Vegetation Index (GNDVI) Wang et al. [37] (—1,+1)
Modified Soil Adjusted Vegetation Index (MSAVI2) Qi etal. [34] (—1, +1)
Normalized Difference Vegetation Index (NDVI) Rouse et al. [32] (—1,+1)
Soil Adjusted Vegetation Index (SAVI) Huete [33] (—1,+1)
Visual Atmosphere Resistance Index (VARI) Schneider et al. [38] (=1, +1)

According to Huete [15], correcting v factor for ARVI was set as y = 1 and correcting L factor for SAVI was set to
L=0.5.

Following the calculation of the vegetation indices, data were rearranged according to
vegetation index and the chronological flow of the selected days. Table 2 shows the dates
for which the vegetation indices were calculated (dates reported on the official traceability
formats of silk production compiled by farmers). The total amount of information for the
selected dates amounted to 1.4 Mb, with an average digitization footprint for the operation
of 0.31 Mb/(ha-year) [39].

After the calculation of the vegetation indices, six parameters were extracted from this
analysis. The mean values of each vegetation index, per field and per year, were computed
in each date mentioned in Section 2.3.2, thus obtaining four average values per field and
year of each vegetation index. Additionally, we computed the decrease in the vegetation
indices during the rearing period of B. mori, subdividing them into two parts:

- Decreasing during third and fourth instars: The difference in values between the start
of the fifth instar day and start of the feeding day was calculated. The authors determined
the values corresponding to the first quartile, quartist, by converting the resulting
negative values (i.e., the points associated with a decrease in the selected vegetation
index) into positive ones. The authors then calculated the average value av;,; while
excluding the values lower than quart1st, which were regarded as points with erratic
variations in the vegetation index evolution. The measurement error was determined
as the standard deviation of error, SDe, from previously excluded values. This
parameter thus represented the areas impacted by leaf harvesting during the third
and fourth instars.

- Decreasing during the fifth instar: This parameter was calculated in the same way
as the previous one but by determining the differences in values of the end of feeding
and the start of the fifth instar; the same data filtering and correction were applied. As
a result, this parameter took into account only the points that represented the areas
impacted by leaf harvesting during the fifth instar.
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2.5. Statistical Analysis

Two-way factorial ANOVA was performed on the data regarding the average cocoon
weight, average silk shell weight, and average silk percentage with the four different
mulberry fields and the two considered years as factors; the interaction between the
two factors was also considered. When statistically significant differences were found,
Tukey’s HSD tests were performed as post hoc tests for mean separation. To analyse the
data of the average silk percentage, an arcsine transformation was applied.

Correlation and regression analyses on the recorded data were performed. Correlations
between the dataset of the cocoon and vegetation index parameters were analysed in depth.
To this aim, the Pearson correlation coefficient r was calculated.

In addition, linear regression analyses between the cocoon and vegetation index pa-
rameters were performed with the ordinary least squares method; the statistical significance
of defined regressions was tested using ANOVA.

For the statistical analysis of the data, JMP Pro Version 15.2.0 (JMP Statistical Discovery
LLC, SAS Institute, Cary, NC, USA) statistical software and Microsoft® Excel® software
were used.

3. Results and Discussion

In the present paragraph, we present the results of our work and provide a discussion
about them. This paragraph is organized in four sub-sections, covering the results of
the analysis of the quantitative parameter of cocoons (from Section 2.3.1), the temporal
development of vegetation indices in the selected dates (from Sections 2.3.2 and 2.4), and
the correlation and regression analysis (from Section 2.5).

In general, the present work analysed the possibility of estimating the yield of silk
cocoons spun by the silkworm B. mori using different remotely sensed vegetation indices
obtained from mulberry fields cultivated for insect feeding. Therefore, the present work
applied to a rather original field an approach which has been successfully applied in the
recent past to other tree crops through different vegetation [4,5,7,8,10-12,40,41]. In this
work, the authors considered the average values of the vegetation indices on precise days
and their evolution during the considered timespans.

3.1. Cocoon Parameters

Table 3 summarises total production and production per box; Table 4 presents the data
on the average cocoon weight, silk shell weight, and silk percentage.

Table 3. Productive data per farm and per year.

Field Years Number of Total Production per
ID Boxes Production [kg] Box [kg/Box]
2020 2 95.42 47.71
01 2021 2 92.77 46.39
2020 1 27.94 27.94
02 2021 1 33.51 33.51
2020 3 130.01 43.34
03 2021 4 153.21 38.30
2020 3 102.90 34.30
04 2021 1 35.40 35.40

The cocoon data were analysed by performing two-way factorial ANOVA. For the
average cocoon weight, average silk shell weight, and average silk percentage, statistically
significant differences (p < 0.01) were found. The factor “field” was statistically significant
for each of the three parameters under consideration and similar results were obtained for
the interactions; the factor “year” was statistically significant only in the case of the average
silk percentage. Since the omnibus test evidenced statistically significant differences, we
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performed the Tukey HSD test as a post hoc test for mean separation; the results of the
Tukey HSD test (& = 0.05) are reported in Table 4.

Table 4. Average cocoon weight, average silk shell weight, and average silk percentage of sampled

cocoons, divided per farm and per year. Different letters indicate significant differences among
samples according to Tukey’s HSD test (cx = 0.05).

Field Years Av. Cocoon Aw. Silk Shell Awv. Silk

ID Weight + SD [g] Weight = SD [g] Ratio £ SD [%]
2020 2.620 +0.379 a 0.570 & 0.075 a 220+ 1.8a

01 2021 2.429 + 0.367 ab 0.538 4+ 0.054 a 225+ 28a
2020 1.397 £ 0.221d 0.283 + 0.050 d 203+ 14b

02 2021 1.601 +0.279 d 0.316 + 0.055 d 199 +26Db
2020 2.389 + 0.330 ab 0.487 + 0.067 b 204+ 1.3b

03 2021 2.347 +£0.395 b 0.538 +0.078 a 232+ 31a
2020 2.065 4+ 0.302 ¢ 0.413 4+ 0.047 ¢ 20.2+2.0b

04 2021 1.905 £ 0.267 ¢ 0.408 + 0.045 ¢ 21.7 £ 2.6 ab

3.2. Evolution of Vegetation Indices

Except for EVI, the mean values of the examined vegetation indices increased in the
first half of B. mori’s rearing season, increasing from the start of feeding to the start of the fifth
instar, and from the start of the fifth instar to the end of feeding, while the mean values of the
vegetation indices decreased. The rearing seasons of 2020 and 2021 both supported this
tendency (Figure 3). In Figure 4, a graphical example of the in-field evolution of vegetation

is provided.
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Figure 3. Evolution of five vegetation indices from the considered M. alba fields on the four previously
defined dates: SF = start of feeding, S4th = start of fourth instar, S5th = start of fifth instar, EF = end
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Figure 4. Spatial evolution of NDVI from the ID 03 M. alba field during 2021 rearing season.

The graphs in Figure 3 show that the entire rearing season was about 12 days later in
2021 than in 2020, resulting in higher mean values of the vegetation indices (see Table 2).
Additionally, compared to 2020, the changes in the mean values of the vegetation indices
were greater in 2021. Analysing the time series of the vegetation indices remotely collected
from crops by satellites is a well-established procedure in the field of remote sensing and
precision agriculture, as it allows researchers to follow the growing seasons of crops and
derive and analyse several biophysical parameters from them, such as the phenological
stage of monitored crops [27,40-42]. Although similar methodologies could also have been
tested for M. alba, at present no study has applied remote sensing techniques to M. alba
cultivation. This first result of our works showed that this practice was also suitable for the
characterization of M. alba fields, in particular the decrease in vegetation due to harvesting
could be clearly detected during the fifth instar of B. mori larvae, thus opening new possible
and more deep investigations into this topic.

In Table 5, NDVI is shown as an example of the extent of the vegetation index decreas-
ing due to leaf harvesting; data are divided per field and per year in the table. As a first
consideration, the magnitude of the decrease was higher in 2021 than in 2020 for all the
fields; secondly, the decrease during the fifth instar was greater than the total in the third
and fourth instars summed together.

In general, the standard error SDe;r was low, except for Field 01 in both 2020 and 2021
and in Field 04 in 2021. In some cases, as for Field 01 in 2021, the decrease in the vegetation
indices was not detectable, and for this reason, this parameter was not considered in further
analysis. A possible explanation for this is that the B. mori larvae consumed low quantities
of leaf in this period [1,2]; thus, the effect of leaf harvesting on the vegetation indices was
probably masked by the development of the plants, demonstrated by the general increasing
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trends of the vegetation indices in the first part of the rearing seasons, as previously shown
in Figure 3.

Table 5. Decrease in NDVI during 2020 and 2021 rearing seasons. Values of the decrease during the
third and fourth instars and during the fifth instar are illustrated.

Third + Fourth Instars Fifth Instar

Field ID Years quartlst aViot SDesr quartlst aViot SDerr
2020 0.005 0.024 0.001 0.074 0.145 0.022

01 2021 <0001 <0001  <0.001 0.152 0.233 0.038
2020 0.009 0.028 0.003 0.015 0.041 0.004

02 2021 0.007 0.020 0.002 0.024 0.048 0.006
2020 0.015 0.032 <0.001 0.013 0.036 0.004

03 2021 0.004 0.018 0.001 0.089 0.117 0.007
2020 0.010 0.048 0.003 0.039 0.086 0.011

04 2021 0.022 0.059 0.015 0.045 0.101 0.031

3.3. Correlation Analysis between Vegetation Indices and Cocoon Production Parameters

The values of Pearson’s correlation coefficient r between the cocoon production data
and vegetation indices are reported in Table 6 along with the correlations’ statistical signifi-
cance; to better highlight interesting correlations, statistical significances at different levels
are highlighted with different colours.

The first four columns on the left-hand side of the matrix (Table 6) illustrate the corre-
lation coefficients among the parameters derived only from cocoons. The total production
was highly correlated with the average weight of both the cocoons and shells, with both
being statistically significant; when the production per box was taken into account, the
correlations were even higher, and the statistical significance increased. The correlations
among these two parameters and the average silk percentage were not statistically sig-
nificant. As expected, the average weight of the cocoons was highly correlated with the
average weight of the silk shells (r = 0.98); these results were in accordance with previous
studies on the topic [43—46].

The columns in the right-hand side of the matrix show the correlation coefficients
between the vegetation indices and the considered parameters of cocoon production. The
table is arranged as follows: the main row from the left indicates the cocoon production
parameter that was tested against a particular parameter derived from the vegetation
indices. So, for example, considering the production parameter “Cocoon weight” in
the left side of the table, “0.69 *” is the value of the correlation coefficient r obtained
testing the correlation of the “decreasing during the fifth instar” of “NDVI” against the
“Cocoon weight” itself. The average values of the vegetation indices on specific days were
not correlated with the cocoon production parameters; only the decrease in the chosen
vegetation indices during the fifth instar was correlated with some of the considered cocoon
production parameters.

More specifically, no statistically significant correlation between the vegetation indices
and the total production of cocoons was found. This was explained by the fact that, as
shown in Table 1, the number of boxes reared by each farmer changed over the years, and,
accordingly, the total production did so too. Therefore, the correlations with increased
indices normalized the total production per number of boxes (i.e., the production per
box parameter): good results were achieved by decreasing the ARVI (r = 0.73), MSAVI2
(r=0.71), NDVI (r = 0.74), and SAVI (r = 0.74). In addition, the average weight of the cocoon,
the average weight of the silk shell, and the average silk percentage were correlated with
a decrease in the considered vegetation indices at different levels of statistical significance.
In those last cases, the best results were achieved by decreasing the NDVI tested against the
silk shell weight (r = 0.75) and decreasing the SAVI against the silk percentage (r = 0.75).
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Table 6. Pearson’s correlation coefficients r describing correlations among vegetation indices and cocoon production data.

Parameter Production per Box Cocoons Weight Silk Shell Weight Silk Ratio Date ARVI EVI GNDVI MSAVI2
Start of feeding

Start of the 4th instar

Total production Start of the 5th instar

End of feeding

Decreasing during the 5th instar

Start of feeding

Start of the 4th instar

Production per box Start of the 5th instar

End of feeding

Decreasing during the 5th instar

Start of feeding

Start of the 4th instar

Cocoons weight Start of the 5th instar

End of feeding

Decreasing during the 5th instar

Start of feeding

Start of the 4th instar

Silk Shell weight Start of the 5th instar

End of feeding

Decreasing during the 5th instar 0.68 *

Start of feeding

Start of the 4th instar

Silk Percentage - - - - Start of the 5th instar

End of feeding

Decreasing during the 5th instar

*** statistical significance at oc = 0.01, ** statistical significance at & = 0.05, * statistical significance at o = 0.1.

NDVI

SAVI

VARI
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In general, not all the analysed vegetation indices could be used to estimate the
parameters related to silk cocoon production. According to [15], in fact, not every vegetation
index works in the same way when applied to different crops, and researchers should
perform comparative analyses to find the best-performing vegetation indices for their field
of study. In this case, we found that the ARVI, NDVI, and SAVI performed better than the
other indices. Two vegetation indices, EVI and VARI, did not show any correlation with
the considered cocoon production parameters

Lastly, we found high correlations among the different indices (data not shown).
This behaviour was caused by the fact that all of the chosen vegetation indices were
calculated through the same spectral bands. These results clearly indicated that a multiple
regression analysis with these vegetation indices should be avoided due to bias related to
the collinearity of variables.

3.4. Regression Analysis of Vegetation Indices and Silk Production Parameters

In the following paragraphs, the most relevant results for the tested regressions and
their statistical significance are reported. This section is organised into paragraphs for the
different analysed silk cocoon production parameters to make the discussed themes easier
to understand.

3.4.1. Production per Box

The determination coefficient R? values of the NDVI and SAVI were approximately
0.55, and for the ARV], it was approximately 0.52; in all three cases, the regressions were
statistically significant with associated p-values lower than 0.05. The regressions between
the ARVI, NDVI, and SAVI and the average production per box are shown in Figure 5.

Average Production per box - Decreasing of Vegetation Indices
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Figure 5. Average production per box [kg] in relation to decreasing vegetation indices during the
fifth instar of B. mori. Gray shaded areas represent the confidence interval of regression at 95%.

3.4.2. Average Weight of Cocoons

With values of the determination coefficient R? of approximately 0.47 for the NDVI
and SAVI and approximately 0.42 for the ARVI, the accuracy of the calculation of the total
weight of cocoons using the vegetation indices was low. The regressions with all three
considered indices exhibited a low statistical significance. The regressions between the
ARVI, NDVI], and SAVI and the average weights of cocoons are shown in Figure 6.
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Average Weight of cocoons - Decreasing of Vegetation Indices
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Figure 6. Average weight of cocoons [g] in relation to decreasing vegetation indices during the fifth
instar of B. mori. Gray shaded areas represent the confidence interval of regression at 95%.

3.4.3. Average Weight of Silk Shell

The determination coefficient R? values computed for the best-fitting regression lines
were approximately 0.56 for the NDVI and SAVI. The regressions with decreasing NDVI and
SAVI were statistically significant with associated p-values lower than 0.05. The regressions
between the ARVI, NDVI, and SAVI and the average weights of the silk shells are shown in
Figure 7. This result was particularly interesting since the weight of silk shells is one of the
most important parameters used for the estimation of yield in raw silk terms [1,42,43].

Average Weight of silk shells - Decreasing of Vegetation Indices
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0.7

0.2
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Figure 7. Average weight of silk shell [g] regressions in relation to decreasing vegetation indices during
the fifth instar of B. mori. Gray shaded areas represent the confidence interval of regression at 95%.

3.4.4. Average Silk Percentage

Among all the considered indices, for the NDVI and SAVI, R? = 0.56; the regressions
were statistically significant. The regression between the average silk percentage and the
ARVI was low, with R? = 0.37, and was not statistically significant. In Figure 8, the graphs
of the tested correlations are shown.
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Figure 8. Average silk percentage of cocoons [%] regressions in relation to decreasing vegetation
indices during the fifth instar of B. mori. Gray shaded areas represent the confidence interval of
regression at 95%.

4. Conclusions

This research represents a first attempt at the possibility of applying precision agri-
culture to sericulture for estimating silk cocoon production, taking advantage of high-
resolution remote sensing data. The reported results gave evidence of how a remote
sensing approach could be usefully implemented for sericultural purposes, showing how
economically relevant parameters, such as the silk shell weight of cocoons, were correlated
with the temporal evolution of different vegetation indices. More specifically, the decrease
in NDVI (r = 0.75) and SAVI (r = 0.74) over time were reported. Regression models were
derived from these correlations, thus allowing for the estimation of the quoted parameters.

Additionally, this work opens up to the possibility of focusing on further well-
established approaches typical of precision agriculture, such as the integration of different
data for homogeneous management zone delineation, which here was meant to differ-
entiate the harvested leaves for silkworms’ feeding. Accordingly, future work will focus
on the investigation of other correlations among relevant parameters characterizing leaf
production (yield and quality) and remotely sensed vegetation indices.
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