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Abstract: Given a source UAV (unmanned aerial vehicle) image Is and a target UAV image It, it is a
challenging problem to correct the color of all target pixels so that the subjective and objective quality
effects between Is and It can be as consistent as possible. Recently, by referring to all stitching color
difference values on the stitching line, a global bilateral joint interpolation-based (GBJI-based) color
correction method was proposed. However, because all stitching color difference values may contain
aligned and misaligned stitching pixels, the GBJI-based method suffers from a perceptual artifact
near the misaligned stitching pixels. To remedy this perceptual artifact, in this paper, we propose
an adaptive joint bilateral interpolation-based (AJBI-based) color blending method such that each
target pixel only adaptively refers to an adequate interval of stitching color difference values locally.
Based on several testing stitched UAV images under different brightness and misalignment situations,
comprehensive experimental results demonstrate that in terms of PSNR (peak signal-to-noise ratio),
SSIM (structural similarity index), and FSIM (feature similarity index), our method achieves higher
objective quality effects and also achieves better perceptual effects, particularly near the misaligned
stitching pixels, when compared with the GBJI-based method and the other state-of-the-art methods.

Keywords: adaptive joint bilateral interpolation; color blending; stitched images; subjective and
objective quality comparison; UAV (unmanned aerial vehicle) images

1. Introduction

Due to the advance of unmanned aerial vehicle (UAV) technologies, the images
captured by UAV are cost- and time-effective. In addition, they can provide high quality
geographic data and information from a low flight altitude. These advantages make UAV
images an increasingly popular medium for many applications [1–6], such as disaster
assessment, construction site monitoring, building change detection, military applications,
and heating requirement determination for frost management. However, the area that one
UAV image can cover is limited by the flight altitude. Therefore, to extend the area that UAV
images can cover, the method of stitching UAV images has received extensive attention.

To construct a stitched image, several seam cutting-based methods [7–12] have been
developed. They often include the image registration step, the seam searching step, and the
color blending step. In the image registration step, the feature points [13] are first extracted
from the source image Is and the target image It to establish the correspondence [14–17]
between Is and It, and then according to the established correspondence, a proper perspec-
tive transform is performed on the target image It such that the source image Is and the
transformed target image can be aligned as well as possible. After that, the overlapping
area of Is and It can be determined. The seam searching step is used to determine the best
stitching line to separate the overlapping area of Is and It into two disjoint parts.

Let Ωs and Ωt denote the pixel sets on the side of the stitching line in Is and It,
respectively, where Ωs ∩ Ωt = ∅. Usually, the color inconsistency problem is caused by
different exposure times, atmosphere illuminations, and different capturing times between
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Is and It, and it makes the stitched image visually unpleasant. In this study, we focus on
addressing the color consistency correction problem for the target pixels in Ωt to make
the stitched image have good subjective and objective quality performance. Note that
each stitching target pixel on the stitching line is only updated by simply adding the
corresponding stitching color difference to the color of that stitching target pixel. In the
next subsection, the classical representative works in the color consistency correction area,
as well as their advantages and shortcomings, are introduced.

1.1. Related Works

Brown and Lowe [18] proposed a multi-band blending (MBB) method to correct color
in low frequency over a large spatial range, and to correct color in high frequency over
a short spatial range. Their method could produce a smooth color transition across the
warped overlapping area of Is and It, denoted by Ow

s,t, but it cannot effectively solve the
color inconsistency problem in the area It - Ow

s,t, where the operator “-” denotes a set
difference operator. Fecker et al. [19] proposed a histogram matching-based (HM-based)
method to correct color between Is and It. They first built up the cumulative histograms of Is
and It, respectively, and then a mapping function was delivered to correct the color of each
target pixel in It. Although the HM-based method is very fast, it lacks the pixel position
consideration in the cumulative histograms used, limiting the color correction effect.

Xiong and Pulli [20] proposed a two-step approach to correct color. First they applied
a gamma function to modify the luminance component for the target pixels, and then
applied a linear correction function to modify the chrominance components. Based on a
parameterized spline curve approach for each image, Xia et al. [21] proposed a new gradi-
ent preservation-based (GP-based) color correction method. Using the convex quadratic
programming technique, a closed form was derived to model the color correction prob-
lem by considering the visual quality of Is and It as well as the global color consistency.
To enhance the accuracy of the extracted color correspondence, the gradient and color
features in the possible alteration objects in Os,t were utilized. However, the single-channel
optimization strategy used in the GP-based method was unable to solve the white balance
problem. Later, based on a spline curve remapping function and the structure from motion
technique, Yang et al. [22] proposed a global color correction method for large-scale image
sets in three-dimensional reconstruction applications.

Fang et al. [23] found that in the stitched image, the stitching pixel set information
on the stitching line is useful for color blending, but this information is ignored in the
above-mentioned related color blending methods. Utilizing all color difference values on
the stitching line globally for each target pixel, Fang et al. proposed a global joint bilateral
interpolation-based (GJBI-based) color blending method. Based on several testing stitched
images, each one with well aligned stitching pixels, their experimental results demonstrated
the visual quality superiority of their method over the MBB method, the HM-based method,
Xiong and Pulli’s method, and the GP-based method.

Parallel to the above introduction on color correction for stitched images, for multiple
images, some color correction methods have been developed and they include the joint
global and local color consistency approach [24], the combined model color correction
approach [25], and the contrast-aware color consistency approach [26].

1.2. Motivation

The GJBI-based method [23] achieved good visual quality performance for well
stitched images, in which one stitched image almost contains aligned stitching pixels
without parallax distortion. In practical situations, one stitched image often has not only
aligned stitching pixels but also has misaligned stitching pixels. From the experimental
data, we found that the GJBI-based method tends to suffer from a perceptual artifact near
the misaligned stitching pixel set, in which each stitching color difference between the
source pixel and the target pixel becomes conspicuous due to parallax distortion.
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The above perceptual artifact occurring in the GJBI-based method motivated us to pro-
pose a new adaptive joint bilateral interpolation-based (AJBI-based) color blending method,
such that instead of referring to all stitching color difference values on the stitching line
globally, each target pixel only adaptively refers to an adequate interval of stitching color
difference values locally, achieving a better subjective quality effect near the misaligned
stitching pixels and a higher objective quality benefit.

1.3. Contributions

In this paper, we propose an AJBI-based color blending method to correct the color for
the stitched UAV images. The contributions of the proposed method are clarified below.

1. We first propose a split-and-merge approach to classify all stitching color difference
values into one aligned class or two classes, namely the aligned class Ca corresponding
to aligned stitching pixels and the misaligned class Cm corresponding to misaligned
stitching pixels. Next, we propose a wavefront approach to determine the adequate
reference interval of the stitching color difference values, which will be used for
correcting the color of each target pixel in Ωt;

2. To remedy the perceptual artifact near the misaligned stitching pixels, instead of using
all stitching color difference values globally, we propose an AJBI-based method to
correct color for each target pixel in Ωt by using the determined reference stitching
color difference values locally. It is notable that in the Gaussian function used in our
method for correcting color for each target pixel, the color variance parameter setting
(see Equation (6)) is adaptively dependent on the ratio of the number of all reference
misaligned stitching color differences over the number of all reference stitching color
difference values;

3. Based on several tests of UAV stitched images under different misalignment and
brightness situations, the comprehensive experimental results justify that in terms of
the three objective quality metrics, namely PSNR (peak signal-to-noise ratio), SSIM
(structural similarity index) [27], and FSIM (feature similarity index) [28], the proposed
AJBI-based color blending method achieves higher objective quality effects when
compared with the state-of-the-art methods [18,19,21,23]. In addition, relative to
these comparative methods, the proposed color blending method also achieves better
perceptual effects, particularly near the misaligned stitching pixels.

The rest of this paper is organized as follows. In Section 2, the proposed split-and-
merge approach to classify all stitching color difference values into one aligned class or
two different classes is presented. In Section 3, the proposed AJBI-based color blending
method is presented. In Section 4, thorough experiments are carried out to justify the better
color consistency correction merit of the proposed method. In Section 5, the conclusions
and future work are addressed.

2. The Classification of Stitching Color Difference Values

In this section, we first take one real stitched image example to define the stitching color
difference values on the stitching line, and then the proposed split-and-merge approach
is presented to partition all stitching color difference values into one aligned class or two
classes, namely the aligned class and the misaligned class. Based on the same stitched
image example, the partition result using the proposed split-and-merge approach is also
provided. To help clarify the visual understanding of the proposed approach, a flowchart
is also provided.

Given Is and It in Figure 1a, after performing Yuan et al.’s superpixel- and graph
cut-based method [10] on Figure 1a, Figure 1b shows the resultant stitched image, where
the stitching line is marked in red and the overlapping area between Is and It is shown
by an area surrounded by a green quadrilateral. On the stitching line with n pixel-pairs,
namely (ps(i), pt(i)) for 1 <= i <= n, ps(i) and pt(i) denote the ith stitching source pixel
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and target pixel, respectively. The stitching color difference value between ps(i) and pt(i)
is defined by

D(ps−>t(i)) = C(ps(i))− C(pt(i)) (1)

where C(ps(i)) and C(pt(i)) denote the color values of ps(i) and pt(i), respectively.
On the stitching line, let Da,c(ps−>t(i)) denote the absolute stitching c-color difference

value between ps(i) and pt(i); it is defined by

Da,c(ps−>t(i)) = |Cc(ps(i))− Cc(pt(i))| (2)

where Cc(ps(i)) and Cc(pt(i)) denote the c-color, c ∈ {R, G, B}, values of ps(i) and pt(i),
respectively. For the stitching line in Figure 1b, the three distributions of DR(ps−>t),
DG(ps−>t), and DB(ps−>t) are shown in Figure 2a, Figure 2b, and Figure 2c, respectively.
From Figure 2a–c, we can observe that the three distributions of all absolute stitching c-color
difference values tend to be two classes, namely the aligned class and the misaligned class.

We propose a split-and-merge approach to partition all stitching c-color, c ∈ {R, G,
B}, difference values into two classes, Ca and Cm, or one aligned class. In most cases,
all stitching color difference values on the stitching line tend to be partitioned into two
classes, namely Ca and Cm. However, for the rare example, the distribution of all absolute
stitching c-color difference values tends to be one aligned class. As depicted in Figure 3,
a flowchart is provided to help clarify the visual understanding of the proposed split-and
merge approach.

Figure 1. One stitching line example obtained by the method of Yuan et al. [10]. (a) The input source
image Is and the target image It. (b) The stitching line is marked in red and the overlapping area of Is

and It is surrounded by a green quadrilateral.

Figure 2. The distributions of the absolute stitching c-color, c ∈ {R, G, B}, difference values of Figure 1b.
(a) For R-color. (b) For G-color. (c) For B-color.

When setting K = 2, we first adopt Lloyd’s K-means clustering process [29] to split all
absolute stitching color difference values, which constitute the feature space used in the
clustering process, into two tentative classes, Ca and Cm. Initially, two randomly selected
absolute stitching color difference values form the centers of the two tentative classes. Next,
based on the minimal 2-norm distance criterion, every absolute color difference value is
assigned to one class center. Then, the center of each class is updated by the mean value of
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all absolute color difference values in the same class. The above procedure is repeated until
two stable classes are found. Then, we propose a merging cost-based process to examine
whether the two tentative classes can be merged into one aligned class C′a or not. If the two
tentative classes cannot be merged into one class, we report the two tentative classes as the
partition result; otherwise, we report the aligned class C′a as the partition result. It can be
said that our split-and-merge approach consists of one two-means splitting process and
one merging process.

Let the variances of Ca, Cm, and C′a be denoted by σ2
Ca

, σ2
Cm

, and σ2
C′a

, respectively;
let n be the number of all stitching color difference values, and let µCa and µCm be the
mean values of the absolute color difference values in Ca and Cm, respectively. The three
variances, σ2

Ca
, σ2

Cm
, and σ2

C′a
, have the relation in Theorem 1, and the merging cost term

“ |Ca ||Cm |
n2 (µCa − µCm)

2” in Theorem 1 is used to determine whether the two different classes,
Ca and Cm, can be merged into one aligned class C′a or not.

Theorem 1. σ2
C′a

= waσ2
Ca

+ wmσ2
Cm

+ |Ca ||Cm |
n2 (µCa − µCm)

2 where wa = Ca
n , wm = Cm

n , and
1 = wa + wm.

The above theorem is proved in the Appendix A.
In Theorem 1, if the merging cost term “ |Ca ||Cm |

n2 (µCa − µCm)
2” is larger than or equal

to the specified threshold Tcost, it indicates that the split two classes, Ca and Cm, cannot
be merged into one aligned class C′a; otherwise, the class Ca and the class Cm should be
merged into one class C′a. In our experience, after trying the interval [100, 1000], the best
choice of Tcost is recommended to be set to 500.

Figure 3. The flowchart of the proposed split-and-merge approach.

After performing our split-and-merge approach on the three distributions in Figure 2a–c,
Figure 4a–c illustrate the corresponding classification results, where the aligned absolute
c-color difference class Ca, c ∈ {R, G, B}, is depicted in c-color, and the misaligned absolute
c-color difference class Cm is depicted in black. Figure 5 depicts the partition result of
Figure 1b, where on the stitching line, the aligned color difference pixels are marked in
green color and the misaligned color difference pixels are marked in red color.
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Figure 4. Partitioning each distribution of the absolute stitching c-color, c ∈ {R, G, B}, difference
values in Figure 2 into two classes. (a) For R-color. (b) For G-color. (c) For B-color.

Figure 5. The partition result of Figure 1b, where the aligned color difference pixels are marked in
green color and the misaligned color difference pixels are marked in red color.

3. The Proposed Adaptive Color Blending Method

Based on the two partitioned classes of the stitching color difference values using the
proposed split-and-merge approach, we first propose a wavefront approach to determine
the adequate reference interval of stitching c-color difference values, and then we propose
an adaptive joint bilateral interpolation-based (AJBI-based) color blending method to im-
prove the color correction effect, particularly achieving a better perceptual color consistency
effect near the misaligned stitching pixels.
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3.1. The Proposed Wavefront Approach

For easy exposition, we take an example to explain the proposed wavefront approach.
As depicted in Figure 6, the stitching target pixels on the stitching line are labeled as brown,
and they constitute the initial wavefront W(0).

Next, the target pixels (⊂ Ωt) neighboring W(0) constitute the first wavefront W(1),
and these target pixels in W(1) are labeled as red. We continue the wavefront marching-
based labelling operations until all wavefronts are constructed. As depicted in Figure 6,
there are 12 constructed wavefronts for the target pixels in Ωt. It can be easily verified that
the proposed wavefront approach takes O(|Ωt|) time, where the big-O notation denotes
an upper bound complexity [30], to construct all wavefronts for all target pixels in Ωt. Let
the resultant wavefronts be denoted by W(0), W(1), . . . , and W(m) with |Ωt| = ∑m

i=1 |W(i)|,
where the wavefront number m depends on the stitching line configuration and |Ωt|.

Let the jth target pixel in the kth wavefront W(k) be denoted by pt(j), 1<= j <= |W(k)|
and 1 <= k. For the target pixel pt(j) in W(k), let N(pt(j)) denote the neighboring target
pixel set in the wavefront W(k−1), where the cardinality of N(pt(j)) may be 1, 2, 3, 4,
or 5. For example, in Figure 6, for the three target pixels, namely B, C, and E, in W(1),
the cardinalities of their neighboring target pixel sets in W(0) are 2, 3, and 4, respectively.
For the target pixel A in W(3), the cardinality of its neighboring target pixel set in W(2) is 1.
For the target pixel D in W(10), the cardinality of its neighboring target pixel set in W(9) is 4.

For each stitching target pixel pt(i) in the initial wavefront W(0), 1 <= i <= |W(0)|, pt(i)
only refers to its own stitching color difference value at the same position to correct the
color. For each target pixel pt(j) in W(1), pt(j) mainly refers to the stitching color difference
values in N(pt(j)) in W(0), and it also can refer to some extra left q stitching color difference
values of Nle f t(pt(j)) and the extra right q stitching color difference values of Nright(pt(j)),
where Nle f t(pt(j)) and Nright(pt(j)) denote the leftmost and rightmost target pixels in
N(pt(j)), respectively. Empirically, the specified value q could be selected from the interval
[2, 20]. Generally, for each target pixel pt(j) in W(k), 1<= k <= m, its reference interval of the
stitching color difference values in W(0), denoted by R(pt(j)), can be determined iteratively.

Figure 6. Constructing all wavefronts for target pixels in Ωt.

3.2. The Proposed AJBI-Based Color Blending Method

By utilizing the reference stitching color difference values of each target pixel in Ωt,
we propose an AJBI-based color blending method. Initially, for each stitching target pixel
pt(i), 1 <= i <= |W(0)|, we correct its color by summing up its own color value C(pt(i)) and
the stitching color difference value D(ps−>t(i)) (see Equation (1)) by

C(pt(i)) := C(pt(i)) + D(ps−>t(i)) (3)
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After correcting the color for all stitching target pixels in W(0) by Equation (3), for each
target pixel pt in Ωt, based on the reference stitching color difference values of pt, namely
R(pt), and the original color of pt, we correct the color of pt by using the following joint
bilateral interpolation:

C(pt) := C(pt) + ∑
p′∈R(pt)

ωp′ [D(p′)] (4)

with

ωp′ =
exp(− ||C(pt)−C(p′)||2

σ2
color

) ∗ exp(− ||P(pt)−P(p′)||2
σ2

distance
)

∑
p̂∈R(pt)

exp(− ||C(pt)−C( p̂)||2
σ2

color
) ∗ exp(− ||P(pt)−P( p̂)||2

σ2
distance

)
(5)

where P(pt), P(p′), and P( p̂) denote the x-y coordinates of the target pixel pt, the stitch-
ing target pixel p′, and the stitching target pixel p̂, respectively. The deviation σcolor in
Equation (5) is defined as follows:

σcolor = max(c ∗
|R(pt)misaligned|
|R(pt)|

, cmin) (6)

where R(pt)misaligned denotes the misaligned stitching target pixel set corresponding to the
reference stitching color difference values in R(pt). c and cmin are user defined parameters,
and they are set to c = 3 and cmin = 0.1 in our experiment. In Equation (6), the higher the

value of
|R(pt)misaligned |
|R(pt)| , the higher the value setting for σcolor.

Since every target pixel in Ωt performing color correction only refers to its own
reference interval of the stitching color difference values in W(0), by Equation (4), the color
correction of each target pixel can be done in parallel to accelerate the color correction process.

4. Experimental Results

Based on the eight original testing UAV image-pairs, which are selected from the
website: https://www.sensefly.com/education/datasets (accessed on 2 September 2018)
provided by the company “senseFly”, the corresponding eight stitched images are produced
by using Yuan et al.’s graph cut-based method [10]. The eight testing stitched images can
be accessed from the website in Supplementary Material. For convenience, let the resultant
eight stitched images under different misalignment situations be denoted by the set symbol
S0 with |S0| = 8. For each stitched image in S0, the misalignment ratio of the stitching
color difference values is within the interval [0%, 15%].

Based on the testing set S0 under different misalignment situations, to produce more
stitched images under different brightness situations, for each testing stitched image in S0,
the brightness of every pixel in the target image is updated by four different brightness
percentages, namely −15%, 15%, −25%, and 25%, of its own brightness. Here, if the
updated brightness of one target pixel is over the range [0, 255], it is forced to be 0 or 255.
Figure 7a illustrates one stitched image taken from S0, where the stitching line is depicted
by a green line. Figure 7b illustrates the updated stitched image of Figure 7a, where the
brightness of the target image in Figure 7b is obtained by increasing the 15% brightness
percentage of that in Figure 7a. In Figure 7b, we can observe that the target image, which
is below the stitching line, is brighter than the corresponding target image in Figure 7a.
Therefore, for each original testing stitched image, four updated stitched images are pro-
duced. Overall, 32 (4 × 8) newly generated stitched images are produced. Among the 32
generated stitched images that can be accessed from the website in Supplementary Material,
the 16 newly generated stitched images under ±15% brightness update are denoted by
the set symbol S1 with |S1| = 16, and the 16 newly generated stitched images under ±25%
brightness update are denoted by the set symbol S2 with |S2| = 16. Here, for each stitched
image in S1, the misalignment ratio of the stitching color difference values is within the

https://www.sensefly.com/education/datasets
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interval [0%, 37%]; for each stitched image in S2, the misalignment ratio of the stitching
color difference values is within the interval [0%, 32%].

Figure 7. One updated stitched image and the partitioned stitching color difference values. (a) The
original stitched image. (b) The updated stitched image by increasing 15% of the brightness of every
target pixel in (a). (c) The partitioned stitching color difference values.

Next, the proposed split-and-merge approach is applied to partition the color differ-
ence values of the stitching line of each testing stitched image in S0, S1, and S2, into two
classes. After performing the proposed split-and-merge approach on the stitching color dif-
ference values of Figure 7b, the misaligned part of the stitching line in Figure 7c is marked
in red color and the aligned part is marked in green color. Based on the 40 testing stitched
images in S0, S1, and S2, comprehensive experimental results demonstrate the objective
and subjective quality merits of the proposed AJBI-based color correction method relative
to the 4 comparative methods, namely the MBB method [18], the HM-based method [19],
the GP-based method [21], and the GBJI-based method [23]. Here, the three objective
quality metrics, namely PSNR, SSIM, and FSIM, are used to justify the objective quality
merit of the proposed color blending method. In addition, the visual demonstration is
provided to justify the subjective quality merit of the proposed method. The execution time
comparison is also reported.

Among the four comparative methods, the execution code of the MBB method [18] can
be accessed from the website: http://matthewalunbrown.com/autostitch/autostitch.html
(accessed on 23 October 2021). The C++ source code of the GP-based method [21] can be
accessed from the website: https://github.com/MenghanXia/ColorConsistency (accessed
on 29 August 2021). We have tried our best to implement the HM-based method [19] and
the GJBI-based method [23] in C++ language. The blending parameters of the GJBI-based

http://matthewalunbrown.com/autostitch/autostitch.html
https://github.com/MenghanXia/ColorConsistency
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method are fine tuned to have the perceptually best color corrected results. The C++
source code of the proposed AJBI-based method can be accessed from the website in
Supplementary Material. The program development environment is Visual Studio 2019.
The Platform Toolset is set to LLVM (clang-cl), which is used to compile the C++ source
code of each considered method into the execution code. The C++ language standard is set
to ISO C++ 17.

For comparison fairness, the execution codes of all considered methods are run on
the same computer with an Intel Core i7-10700 CPU 2.9 GHz and 32 GB RAM. The oper-
ating system is the Microsoft Windows 10 64- bit operating system. Since the GJBI-based
method [23] and the proposed AJBI-based method can be done in parallel, we deploy the
parallel processing functionality of the multi-core processor for accelerating the two methods.

4.1. Objective and Subjective Quality Merits of Our Method

This subsection demonstrates the objective and subjective quality merits of the pro-
posed AJBI-based color correction method relative to the comparative methods.

4.1.1. Objective Quality Merit

As mentioned before, the three quality metrics, PSNR, SSIM, and FSIM, are used to
report the objective quality merit of our method. Let Ioverlap

s denote the source subimage
overlapping with the target image It and let Ioverlap,corrected

t denote the color corrected target
subimage overlapping with the source image Is, where |Ioverlap

s | = |Ioverlap,corrected
t |. PSNR

is used to evaluate the average quality of Ioverlap,corrected
t and it is defined by

PSNRi =
1
|Si|

|Si |

∑
i=1

10 log10
2552

MSE
(7)

where the set symbol Si, 0 ≤ i ≤ 2, has been defined before; MSE (mean square error)
denotes the mean square error between |Ioverlap

s | and |Ioverlap,corrected
t |. Overall, the values

of PSNRi for 0 ≤ i ≤ 2 are reported for the three sets: S0, S1, and S2.
Because the formulas of SSIM and FSIM are somewhat complicated, we just outline

their physical meaning. Interested readers please refer to the papers [27,28]. The quality
metric SSIM is expressed as the product of the luminance mean similarity, the contrast
similarity, and the structure similarity between the source subimage Ioverlap

s and the color
corrected target subimage Ioverlap,corrected

t . The quality metric FSIM utilizes the phase consis-
tency and gradient magnitude to weight the local quality maps, obtaining a feature quality
score of the color corrected target subimage Ioverlap,corrected

t .
Because only the execution code of the MBB method [18] is available and as an output,

the stitched image has been warped, the original overlapping area of Is and It cannot be
exactly extracted. Therefore, Table 1 only tabulates the PSNR, SSIM, and FSIM performance
of the three comparative methods, namely the HM-based method [19], the GP-based
method [21], and the GBJI-based method [23], and the proposed method. From Table 1, we
observe that based on the three testing sets, S0, S1, and S2, under different misalignment
and brightness situations, the proposed ABJI-based method, abbreviated as “Ours”, always
has the highest PSNR and FSIM, shown in boldface, among the considered methods. It is
noticeable that the FSIM performance of the GBJI method [23] is ranked second. Table 1
also indicates that for S0 and S1, the SSIM performance of our method is the best; for S2,
the HM method [19] is the best, but our method is ranked second.

In summary, Table 1 indicates that the overall quality performance of our method
is the best among the considered methods. In the next subsection, the subjective quality
superiority of our method is demonstrated.
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Table 1. The objective quality comparison.

Method Testing Set PSNR (dB) SSIM FSIM Time (sec)

MBB [18] S0 - - - 2.0804
HM [19] S0 22.72 0.858 0.705 0.1821
GP [21] S0 22.54 0.857 0.713 0.5533
GBJI [23] S0 22.70 0.859 0.724 3.5485
Ours S0 23.01 0.860 0.727 3.0975

MBB [18] S1 - - - 2.0891
HM [19] S1 22.70 0.857 0.704 0.1801
GP [21] S1 22.45 0.855 0.712 0.5465
GBJI [23] S1 22.58 0.856 0.725 3.5683
Ours S1 22.91 0.859 0.728 3.0881

MBB [18] S2 - - - 2.119
HM [19] S2 22.65 0.856 0.703 0.1826
GP [21] S2 22.21 0.851 0.712 0.545
GBJI [23] S2 22.36 0.852 0.725 3.600
Ours S2 22.71 0.855 0.728 3.0823

4.1.2. Subjective Quality Merit

Five testing UAV stitched images under different misalignment and brightness situ-
ations are used to demonstrate the perceptual merit of the proposed ABJI-based method
relative to the four comparative methods. For one testing stitched image, some amplified
sub-images near the stitching line are adopted to justify the perceptual merit of our method.

The first testing UAV stitched image, which is taken from the set S0, is illustrated in
Figure 8a. After performing the five considered methods on Figure 8a, Figure 8b–f shows
the color correction results by using the MBB method, the HM-based method, the GP-based
method, the GBJI-based method, and our method, respectively. It is notable that for the
MBB method, the experimental demonstration is based on the tool that is downloaded
from http://www.autostitch.net/ (accessed on 23 October 2021), so it is different from the
other color correction methods. From Figure 8b–f, we observe that our method achieves the
best perceptual gradation effect near the misaligned stitching target pixels, but for the four
comparative methods, there are unsmooth artifacts. Our method also preserves a good
color correction effect in the other areas.

The second, third, fourth, and fifth testing stitched UAV images are illustrated in
Figure 9a, Figure 10a, Figure 11a, and Figure 12a, respectively, which are taken from
S1 under −15% brightness update, S1 under +15% brightness update, S2 under −25%
brightness update, and S2 under +25% brightness update. After performing the five
considered methods on the four testing stitched images, Figures 9b–f, 10b–f, 11b–f and 12b–f
demonstrate the corresponding color correction results for Figure 9a, Figure 10a, Figure 11a,
Figure 12a, respectively.

http://www.autostitch.net/
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Figure 8. The perceptual quality merit of our method for the first testing stitched image taken from
S0. (a) The testing stitched image and the amplified sub-images near the stitching line. (b) The MBB
method [18]. (c) The HM-based method [19]. (d) The GP-based method [21]. (e) The GBJI-based
method [23]. (f) Our method.
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Figure 9. The perceptual quality merit of our method for the second testing stitched image taken
from S1 under −15% brightness update. (a) The testing stitched image and the amplified sub-images
near the stitching line. (b) The MBB method [18]. (c) The HM-based method [19]. (d) The GP-based
method [21]. (e) The GBJI-based method [23]. (f) Our method.
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Figure 10. The perceptual quality merit of our method for the third testing stitched image taken
from S1 under +15% brightness update. (a) The testing stitched image and the amplified sub-images
near the stitching line. (b) The MBB method [18]. (c) The HM-based method [19]. (d) The GP-based
method [21]. (e) The GBJI-based method [23]. (f) Our method.
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Figure 11. The perceptual quality merit of our method for the fourth testing stitched image taken
from S2 under −25% brightness update. (a) The testing stitched image and the amplified sub-images
near the stitching line. (b) The MBB method [18]. (c) The HM-based method [19]. (d) The GP-based
method [21]. (e) The GBJI-based method [23]. (f) Our method.
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Figure 12. The perceptual quality merit of our method for the fifth testing stitched image taken
from S2 under +25% brightness update. (a) The testing stitched image and the amplified sub-images
near the stitching line. (b) The MBB method [18]. (c) The HM-based method [19]. (d) The GP-based
method [21]. (e) The GBJI-based method [23]. (f) Our method.
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Figure 9b–f indicate that inside the three amplified sub-images, our method still
achieves the best perceptual gradation effect near the misaligned stitching target pixels,
but for the four comparative methods, there are some unsmooth artifacts. In Figure 10b–f,
we observe that inside the two amplified grassland sub-images, our method achieves a
more natural effect. For Figures 11b–f and 12b–f, we have the same conclusion that, inside
the amplified sub-images, our method achieves a more smooth effect near the misaligned
stitching target pixels relative to the four comparative methods.

The main reasons for the quality superiority of the proposed color correction method
are summarized as follows. Based on the two partitioned classes of the stitching color dif-
ference values, which are determined by the proposed split-and-merge approach, for each
target pixel in Ωt, the suitable reference interval of the stitching color difference values
is determined by the proposed wavefront approach. Finally, using this useful reference
interval information, the proposed AJBI-based color blending method can achieve more
natural and smooth color blending effects near the misaligned stitching target pixels. Af-
ter running the five considered methods on the 40 testing stitched images, the 200 (5 × 40)
color corrected stitched images can be accessed from the website in Supplementary Material.
Interested readers can refer to these color correction results for more detailed perceptual
quality comparison.

4.2. Computation of Time Cost

Based on the above-mentioned three testing sets, S0, S1, and S2, under different
alignment and brightness situations, the last column of Table 1 tabulates the average
execution time required by each considered color blending method for one testing stitched
image in each testing set. We have the following two observations: (1) Among the five
considered methods, the HM-based method [19] and the GP-based method [21] are the two
fastest methods and (2) the execution time improvement ratio of the proposed ABJI-based
method over the GBJI-based method [23] equals 13.52% ( 1

3 ((3.5485− 3.0975) + (3.5683−
3.0881) + (3.6− 3.0823)).

Although our method is not the fastest, it achieves the best perceptual quality perfor-
mance, particularly near the misaligned stitching target pixels, and has the best objective
quality performance among all considered methods.

5. Conclusions and Future Work

We have presented the proposed AJBI-based color blending method for stitched
UAV images. First, the proposed split-and-merge approach partitions all stitching color
difference values on the stitching line into two classes, namely the aligned class and
the misaligned class. Next, based on the two partitioned classes of the stitching color
difference values, a wavefront approach is proposed to determine a suitable reference
interval of the stitching color difference values for each target pixel. Finally, using the useful
reference information, the proposed AJBI-based color blending method can achieve better
objective and subjective color blending effects. Based on 40 testing stitched UAV images
under different misalignment and brightness situations, in terms of PSNR, SSIM, FSIM,
and perceptual effects, the comprehensive experimental results have justified the robust
objective and subjective quality benefits of our color blending method when compared
with the four comparative methods [18,19,21,23].

Our future work will apply a window-based Gabor filter approach, to extract the
textural feature of each stitching pixel on the stitching line, and then improve the current
split-and-merge approach to better partition the stitching color difference values. Besides,
it is a challenging problem to improve the proposed color blending method for each
target pixel by fusing the corrected color, which is obtained by utilizing the determined
reference interval of the stitching color difference values and the corrected color, which
is obtained by using the state-of-the-art method, such as the HM-based method [19]. It is
another challenging problem to develop methods to automatically determine the concerned
thresholds, such as Tcost, c, and cmin, used in the proposed color blending method.
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Appendix A. The Proof of Theorem 1

Theorem 1 is proved by the following derivation:

Proof.
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We complete the proof.
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