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Abstract: Sea surface salinity (SSS) observations from Aquarius, Soil Moisture and Ocean Salinity
(SMOS), and Soil Moisture Active Passive (SMAP) satellite missions are compared to characterize
the time and length scales of SSS variability globally. Overall, there is general agreement between
the global patterns of the time and length scales of SSS variability estimated from the three satellite
missions. The temporal scales of SSS variability vary from more than 90 days in the tropics to ~15 days
in the Southern Ocean. The very short temporal scales (close to the Nyquist period) in some parts of
the ocean are probably due to the high level of noise in the satellite data or the high noise-to-signal
ratio. The longest temporal scales are observed along the South Pacific Convergence Zone (SPCZ) and
in the central and western tropical Pacific. These areas are also related to the strongest ENSO-related
signal in SSS. The processes governing the SSS variability and distribution are also non-stationary,
such that the scales determined over different observation periods may differ. Dominant spatial scales
of SSS variability are generally the longest (up to 150 km) in the tropics and the shortest (<60 km) in
the subpolar regions. The distribution of the dominant spatial scales is not simply latitudinal but
exhibits a more complex spatial pattern. In the tropics, there is slight east-west and inter-hemispheric
asymmetry observed in the Pacific but absent in the other two oceans. The analysis also reveals
that the length scales of SSS variability are highly anisotropic in the tropics (the zonal scales are
generally shorter than the meridional ones) and become more isotropic towards higher latitudes.
Regional differences in the estimates of the scales from the three satellite SSS datasets may arise due
to differences in the observation duration, spatial resolution and/or different level of noise.

Keywords: sea surface salinity; decorrelation scale; Aquarius; SMAP; SMOS

1. Introduction

Sea surface salinity (SSS) is a key essential climate variable and reflects the intensity of
the marine hydrological cycle [1,2]. Variations in SSS affect seawater density, stratification
and mixing, significantly influencing the stability of the upper ocean [3]. In the tropics,
SSS variability may affect the air-sea exchange of heat and momentum by means of a
barrier-layer formation [4,5]. At high latitudes, sea water density is governed by salinity
and the variations in SSS can control the occurrence and depth of deep convection [6].
Through its effect on density, salinity influences ocean circulation, which, in turn, is a key
regulator of Earth’s climate. Therefore, monitoring, quantifying, and characterizing SSS
variability is essential for understanding the global water cycle, ocean circulation, and for
climate monitoring and prediction [7].
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SSS variability spans a broad range of time and length scales, from decadal (>10 years)
to intraseasonal (<90 days), and from basin scales (>1000 km) to submesoscales (<10 km).
One of the parameters characterizing SSS variability is the dominant scale of variability,
which can be a temporal scale, characterizing variability in time, or a spatial scale, char-
acterizing variability in space. The temporal scale is used to characterize and quantify
the persistence of SSS anomalies, known as “ocean memory” and is often measured by
autocovariance [8,9], while the spatial scale is a reflector of the physical processes behind
the observed features [10–12]. They are also the scales at which the dominant patterns
emerge, i.e., the scales with the climate leading mode and/or maximum spatial variance.
In practical applications, knowledge of the time and length scales of SSS variability is
necessary for the objective interpolation (OI) of irregularly spaced observations [13–15].
This is particularly important as this method is widely used to map satellite observations
of SSS and blend observations from multiple satellite platforms (e.g., [16,17]).

For those reasons, assessment of the spatiotemporal scales of SSS variability has
continued using various platforms and approaches, most of which are based on in situ
observations [18]. Until recently, knowledge of SSS variability was limited by lack of
observations and was obtained from a collection of sparse and irregular observations
mainly monitored by ships of opportunity and research vessels [19–21]. Delcroix et al. [22]
utilized ship-track observations collected over the period 1970–2003 to assess the time and
space scales of SSS variability in the tropics. The spatiotemporal scales of SSS variability
were found to vary geographically, reflecting the dominant physical processes controlling
the variability. Because of the sparse data coverage, the study was limited to the tropics
and a few repeat ship tracks. With the growth of the Argo program over the past two
decades, the situation has improved significantly. The Argo array, however, provides one
profile every 10 days over a 3◦ × 3◦ box [23]. Those profiles inadequately resolve important
SSS variability, including mesoscale and intra-seasonal variability, which may account
for a great proportion of SSS variance. Using Argo, mooring, and other in situ salinity
observations, Martins et al. [24] estimated spatiotemporal scales of SSS variability in the
Atlantic Ocean. They found that the scales vary geographically between 100–250 km and
between 30–70 days when the seasonal cycle is included. The study also pointed out the
importance of short-scale salinity features and fast variability, not resolved by conventional
Argo measurements.

The launch of three satellite missions, Aquarius, Soil Moisture and Ocean Salinity
(SMOS) and Soil Moisture Active Passive (SMAP), have initiated a new era of studying
salinity variability [25,26]. With their frequent revisit time and global coverage, satellite
missions have provided an unprecedented opportunity to systematically investigate SSS
variability from a global perspective. The first near-global estimate of the temporal and
spatial scales of SSS variability from early Aquarius data (3+ years) was provided by
Bingham and Lee [27]. They used gridded SSS fields to produce the estimates and found
that in over half of the global ocean the decorrelation time scales were shorter than 80 days
when the seasonal cycle was not removed. Removing the seasonal cycle resulted in even
shorter scales (<80 days), dominating the global ocean. Bingham and Lee [27] found the
spatial scales to be very short except in the tropical oceans influenced by the Intertropical
Convergence Zone (ITCZ) and the South Pacific Convergence Zone (SPCZ). There, the
spatial scales were found to be anisotropic with the zonal scales being slightly larger
than the meridional scales, probably modulated by the horizontal advection [27]. To our
knowledge, this is the only study that provides a global characterization of the dominant
scales of SSS variability, yet it is based on a relatively short period of Aquarius observations
(3+ years).

The accumulation of satellite SSS data over the past decade provides an opportunity
to revisit the subject with more accurate estimates based on much longer time series of SSS
measured by the three satellite missions. Here we present results from the analysis of 5 years
of Aquarius satellite SSS measurements, 6 years of SMAP satellite SSS measurements, and
over a decade of SMOS SSS measurements. There are two primary goals of this study.
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The first goal of this study is to estimate the time and length scales of SSS variability and
compare the three satellite missions to check for consistency. The data from different
satellite missions are often combined to create longer and more accurate SSS time series,
and continuity and consistency is one of the requirements [28,29]. The second goal of this
study is to provide a global map of the dominant scales of SSS variability and discuss the
physical processes which might be responsible for the observed regional differences.

2. Materials and Methods
2.1. Data
2.1.1. Satellite Sea Surface Salinity

The Aquarius satellite mission, launched on 10 June 2011, included three microwave
radiometers. These radiometers produced three beams at different angles. Their footprints
on the sea surface, about 100 km in size, aligned across a swath about 390 km wide.
Individual footprints had a sampling interval of about 10 km along the track. Aquarius’s
orbits had a repeat cycle of 7 days and equatorial crossings at 6 PM (ascending) and 6 AM
(descending). In this study we use the Aquarius Level-2 (L2) dataset from August 2011 to
June 2015, distributed by the Jet Propulsion Laboratory (JPL). Before the analysis, the L2
SSS quality status is checked following the conditions described in Melnichenko et al. [30].
In further analysis, ascending and descending tracks are processed together. The diurnal
signal in SSS is very small, smaller than 0.01 PSU [31], and thus is not expected to affect the
results. For a detailed description of Aquarius data, see the Aquarius User Guide.

The SMAP satellite, launched on 31 January 2015, provides near-global coverage in
3–4 days with an 8-day repeat cycle. The measuring instrument equipped with a large
rotating antenna provides a different measurement approach from that of Aquarius. The
SMAP radiometer provided Brightness Temperature (Tb) in a swath about 1000 km wide,
with a spatial resolution of about 40 km. In this study, we use the SMAP Level-3 (L3) data
from April 2015 to December 2020, provided by Remote Sensing Systems (RSS). The dataset
is on a regular 0.25◦ × 0.25◦ grid created by averaging all valid L2 (swath) observations
within each grid cell. The maps are produced daily by applying an 8-day running average.
The effective spatial (temporal) resolution of the product is 70 km (8 days). More details on
SMAP RSS V4 data can be found in Meissner et al. [32].

Launched on 2 November 2009, the SMOS satellite follows a sun-synchronous polar
orbit with a 3–5-day revisit time. The instrument is a two-dimensional L-band interfer-
ometric radiometer and provides a “visible” Tb image of the ground in a swath about
1000 km wide with a spatial resolution of ~43 km. In this study, we use the SMOS L3 SSS
fields from January 2010 to December 2020, generated by the Centre Aval de Traitement des
Données (CATDS) Expertise Center—Ocean Salinity (CEC-OS) [33]. The debiased 9-day
product temporally averaged with a half-width 9-day filter is provided every 4 days on a
25 km × 25 km grid. The effective spatial (temporal) resolution of the product is ~50 km
(9 days) [33].

In the case of the Aquarius data, we take advantage of the unique Aquarius mea-
surement geometry and analyze L2 along-track data. While gridded data may provide a
convenient tool to study variability in all three dimensions [27], the mapping procedure
can alter the shape of the underlying correlations and thus the inferred scales; therefore, we
will use the along-track data. The results will be compared to those obtained from SMAP
and SMOS satellite data which have been used in the form of gridded SSS fields. The
SMAP and SMOS L2 (swath) data are much nosier and may have large gaps (particularly
SMOS) [32,33]; therefore, we use L3 SSS fields which have the same grid resolution.

2.1.2. Other Data

Other observations are used to link the hydrological cycle to the dominant SSS scales.
The monthly evaporation (E) data are from the Objectively Analyzed Air–sea Fluxes project
(OAFlux) [34], and precipitation (P) data are from the Global Precipitation Climatology
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Project (GPCP) [35]. We also use the standard Niño 3.4 index to understand the ENSO
contribution to the SSS variability.

2.2. Methods

Following Delcroix et al. [22], the temporal and spatial scales of SSS variability are
measured by the corresponding autocovariance function and defined as the e-folding time
and length scales, respectively. The e-folding scale indicates a time interval or distance over
which SSS variations become decorrelated and characterizes the persistence or coherence
of SSS anomalies.

2.2.1. Estimation of the Time Scales

Time series of SSS from Aquarius observations are constructed at crossover points
(Figure 1). At each crossover point, the time interval between two successive measurements
(one ascending and one descending) is ~3.5 days, which technically allows resolving shorter
time scales. The density of crossover points from all orbits (shown as black dots) is quite
high, allowing for characterizing temporal scales of SSS variability globally with quite high
spatial resolution. (The density of crossover points is slightly higher in high latitudes and
lower in the tropics; the mean distance between the crossovers is ~150 km.) To suppress
the instrument noise, measurements of SSS in the radius of 0.25◦ from each crossover point
are averaged together. The resulting time series, after removing linear trends, are used to
estimate the lagged autocovariances of SSS.

Examples of the SSS autocovariance function are shown in Figure 1. At each crossover
point, the empirical autocovariance is approximated by a Gaussian function given in
Equation (1):

C(δt) = a2 exp
(
−δt2/R2

)
, (1)

where a2 is the covariance at zero lag, δt is the time lag, and R is the e-folding scale. The
Gaussian function has been found to best represent the lagged autocovariance in the initial
segment before zero-crossing. We fit the Gaussian function to the initial segment of the
empirical covariance starting from the first lag (δt = 4 days) and to the first zero-crossing.
The first point (δt = 0 days), that is, the variance at zero lag C(0), including both the
signal and noise variance, is excluded before fitting. Our fitting procedure thus allows
estimating simultaneously the unbiased signal variance, a2, the e-folding scale, R, and
the error variance, e2. There, the difference between the zero-lag variance and the signal
variance (e2 = C(0)− a2) is the error variance. It includes both the measurement error and
the sampling error, which occur as a result of unresolved high-frequency variability [36].
The error variance and its geographic distribution are discussed in the Appendix A.

Similar approaches are applied to the SMAP and SMOS SSS data except that instead
of crossover points, the time series of SSS are constructed at grid points from the gridded
SSS fields. The resulting time series are used to estimate the lagged autocovariances of
SSS, which, in turn, are used to estimate the dominant time scales. For consistency with
the Aquarius and SMAP time series, when analyzing SMOS SSS time series of 10 years or
more, a quadratic trend is removed to decrease the influence of decadal variability. Thus,
our analysis of the temporal scales is restricted to scales shorter than one decade.

2.2.2. Estimation of the Length Scales

To assess length scales of SSS variability from Aquarius data, we consider spatial
variations of SSS in a 10◦ by 10◦ (~1200 km) bin, which we move over the global ocean
with steps of 5◦ in both the meridional and zonal directions. The size of the bin is chosen
as a trade-off between the necessity to resolve the spatial scales associated with the SSS
variability and the requirement of spatial homogeneity. Autocovariances are computed
from the ground-track segments of the Aquarius ascending and descending passes that fit
entirely into a bin (128 points with ~10 km spacing). Prior to the analysis, the multiyear
mean fields (from the Aquarius L3 SSS averaged over the observation period) and linear
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trends are removed from the ground-track segments. In each spatial bin, individual auto-
covariances are averaged together (at least 400 in each spatial bin) to produce statistically
reliable estimates. Similar to the estimation of the time scales, a Gaussian function is fitted
to the empirical autocovariance to assess the dominant length scale of SSS variability, the
signal variance, and the error variance. One needs to emphasize though that the geometry
of the Aquarius sampling and the use of L2 data allows for estimating only the meridional
length scales.
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Figure 1. Background: Sample pattern of Aquarius ground tracks over a 7-day repeat cycle. The
three beams are displayed in different colors. The combination of ascending and descending satellite
passes forms crossover points shown by black dots. A zoom over the area in the subtropical North
Atlantic (black rectangle) is provided in panel (a). Panel (b) shows locations of SSS measurements
around one crossover point (red asterisk). To reduce the instrument noise, measurements of SSS
in the radius of 0.25◦ from a crossover point (red circle) are averaged together. Panels (c,d) show
examples of SSS autocovariance functions estimated in two regions located at the subtropical North
Atlantic (left) and the tropical Pacific (right). The black curve shows the SSS autocovariance and
the red curve is the Gaussian function fitted to the initial segment of the empirical autocovariance
starting from the first lag (time lag = 4 days) and to the first zero-crossing.

The approach to estimate the length scales of SSS variability from SMAP and SMOS
data is similar except for the use of gridded SSS fields. The spatial bins in this case are
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1200 km × 1200 km in the zonal and meridional directions, which allows for estimating both
the zonal and meridional scales of variability. It follows that our analysis of the length scales
is restricted to scales shorter than 1200 km (scales at or longer than the measurement box
cannot be resolved [37]); that is, they are in the mesoscale range and should be understood
as such. Similarly, the multiyear mean SSS fields are subtracted from the weekly SSS fields
to produce SSS anomalies.

3. Results
3.1. Temporal Scales of SSS Variability
3.1.1. Agreement on the Global Pattern

Temporal scales of SSS variability evaluated from the three different satellite products
are presented in Figure 2. The global patterns are consistent among the three satellite
products, although significant quantitative differences are observed regionally. The most
consistent features are observed in the relatively long SSS time scales of more than 90 days
(Figure 2a,c,i, thin contours). The longest time scales, up to 160 days (bold contours),
indicate that the variability in these regions is dominated by the inter-annual signal. They
are observed in the ENSO-related regions of the central and western tropical Pacific (WTP)
and along the SPCZ [38–45]. The shortest scales of SSS variability, shorter than 60 days,
are likely controlled by fast-moving features such as eddies. They are found mostly in the
Southern Ocean between approximately 30◦S and 50◦S, the North Indian Ocean, and in
some regions of the western subtropical Pacific and Atlantic (Figure 2a,c,i). Remarkably,
the eastern part of the equatorial Pacific and equatorial Atlantic have relatively short time
scales, emphasizing the importance of short-term variability in the region, likely associated
with Tropical Instability Waves (TIW, [24,46]).

Overall, the global distribution of SSS temporal scales spans from ~15 days in the
Southern Ocean to more than 90 days in the tropics, generally consistent with the analysis
of the first three years of Aquarius observations by Bingham and Lee [27]. Our results
also highlight that one prominent area of enhanced inter-annual variability lies in the
Northeastern Pacific. It occurs mostly in SMAP observations (Figure 2c) and to a lesser
extent in SMOS observations over the same period (Figure 2g).

Earlier studies have emphasized the importance of the seasonal cycle in SSS variabil-
ity [48]. In regions where the seasonal cycle is not dominant, other variabilities may take
the lead, either short-term variability or inter-annual variability. We remove the seasonal
cycle to confirm the variation in temporal scales associated with the dominant variability.
The seasonal cycle explains more than 25% of the SSS variance and plays an important role
in the tropical belt (Figure 2, area marked with black dots). The seasonal cycle’s removal
from the time series has two interesting consequences. In the areas dominated by the
inter-annual variability (scales longer than 90 days), once the seasonal cycle is removed, the
temporal scales become longer, such as in the WTP, over the SPCZ, and in the Northeastern
Pacific (compare left and right panels of Figure 2). On the contrary, areas with relatively
short temporal scales (<60 days) expand, while their temporal scales decrease. This effect
was also observed in previous studies using Aquarius data (e.g., [27]) and is widely found
in the three satellite products. However, the very short time scales (~15 days) observed in
some parts of the ocean when the seasonal cycle is removed, particularly in the Southern
Ocean, may indicate a high level of uncorrelated noise and may also include unresolved
temporal variability (as discussed in the Appendix A).
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observation period (2011–2015), (g,h) SMAP observation period (2015–2021), and (i,j) the whole
SMOS observation period from 2010 to 2021. Left (right) panels show the scales estimated before
(after) the annual cycle is removed from the SSS time series. Contours are 60, 90, and 150 days. Black
dots mark regions where the annual cycle contributes more than 25% to the total SSS variance. Yellow
dots mark regions where ENSO-related SSS variability contributes more than 15% to the raw SSS
variance. We define the ENSO-related part as the SSS variability regressed to the Niño 3.4 index. The
key region in Figure 2d,h,j is defined as (5◦S–5◦N, 160◦E–170◦W). Gaps in coverage, particularly in
the Aquarius data in the eastern North Atlantic, are due to the data corrupted by radio frequency
interference (RFI) contamination [47].

3.1.2. Regional Differences and Possible Reasons

It is interesting to note that despite visual similarity in the spatial patterns of the
SSS temporal scales evaluated from Aquarius and SMAP data (Figure 2a–d), there are
quite large quantitative differences, particularly in the Northeastern Pacific, where we can
observe long time scales in SMAP data but not in Aquarius data. In many places the SMAP
scales are longer than 150 days, notably in the WTP, over the SPCZ, in the northeast and
southeast Pacific, indicating strong inter-annual variability.

The differences between the Aquarius and SMAP estimates can be related to two
factors. First, they cover different observation periods while the processes governing SSS
variability are non-stationary. Second, there are differences in data sampling, temporal
resolution and/or degree of smoothing. As the SMOS satellite mission provides a continu-
ous data record from 2010 to present, covering both the Aquarius and SMAP observation
periods, it is possible to verify the estimates with a quasi-independent data source. For
this, we split SMOS data into two segments covering, respectively, the Aquarius and SMAP
observation periods, and repeat the analysis. The results are shown in Figure 2e–h. The esti-
mates achieve a remarkable degree of agreement between the Aquarius and SMOS over the
period 2011–2015, as well as between SMAP and SMOS over the period 2015–2021, respec-
tively, indicating that the processes governing SSS variability are indeed non-stationary and
a transition to a stronger inter-annual variability occurred during 2015 (compare Figure 2a,b
to Figure 2e,f; Figure 2c,d to Figure 2g,h). This is likely related to the 2015/2016 super El
Niño event (the warm phase of ENSO) which reached remarkable magnitudes [49,50]. It
was captured by SMAP and SMOS; however, it was missed in Aquarius because the latter
ended operations in June 2015. This strong inter-annual signal in the tropics presumably
dominated the temporal scales of SSS variability during the SMAP observation period
(2015–2021). Computed over the whole duration of SMOS observations from 2010 to 2021,
the area of long temporal scales in the tropics expands greatly (Figure 2i,j), indicating
the significance of the inter-annual and longer-period variability. This dominance of the
low-frequency signal is consistent with the redness of the SSS spectrum [51].

One key region of the tropical Pacific is of particular interest since it achieves excellent
agreement on time scales of SSS variability in all three satellite datasets. This area, located
within the Niño 4 region in the central tropical Pacific, has the strongest signal in the
inter-annual SSS variability, and has been connected to the zonal shift of the SSS front in
ENSO evolution (e.g., [52]). Our estimates show that the ENSO-related SSS variability can
contribute more than 15% to the total SSS variance in that area, although some discrepancy
exists between the two satellites (Figure 2d,h,j; yellow dots mark regions). Next, we
specifically consider the ENSO-affected SSS persistence there (see Figure 2d,h,j, yellow box).

We focus on the 2015/2016 super El Niño event and attempt to quantify the persis-
tence of SSS during its two-year evolution (ENSO-involved year, Figure 3, red lines). For
comparison, time scales in years without ENSO events (called the non-ENSO-involved
year) are also estimated using the other two-year SSS anomaly segments from 2010 to
2021 (e.g., 2013–2014, Figure 3, gray lines). Here we only use SMOS data due to their long
observation period. Figure 3a shows SSS covariance functions in different situations. In the
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ENSO-involved year we observe longer SSS persistence in the order of 90 days. While in the
non-ENSO-involved year, SSS persistence falls below the temporal scale of about 43 days
(Figure 3a, black line). Removing the seasonal cycle has a generally similar effect on the
persistence of SSS anomalies (Figure 3b). These results are consistent with our expectation
that persistence influenced by the ENSO causes differences in the temporal scales observed
by satellites (e.g., Aquarius and SMAP).
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Figure 3. (a) Temporal autocovariance functions of SSS variability in the Niño 4 region. The red curve
corresponds to the SSS time series from January 2015 to December 2016. The gray curves indicate
the time series over 2011–2012, 2013–2014, 2017–2018, 2019–2020, and the black curve represents
their ensemble-mean. As mentioned in Section 2.2.1, the temporal scale is defined as the e-folding
decorrelation scale of the Gaussian function (not shown) fitted to the autocovariances. The region
where the autocovariances are computed is indicated by the yellow rectangle in Figure 2. (b) as in (a)
but with the annual cycle removed.

3.2. Spatial Scales of SSS Variability
3.2.1. Agreement on the Global Pattern

The spatial scales of SSS variability show how the SSS fluctuations are coherent as
a function of distance. The meridional scales are obtained from the three datasets, while
the zonal scales are available only from SMAP and SMOS data. They are displayed in
Figure 4. Qualitatively, the distributions of the zonal and meridional scales are very similar
in the three satellite datasets. In the three datasets, the meridional length scales of SSS
variability are generally longer (up to 150 km) in the tropics and shorter (<60 km) in the
subpolar regions (Figure 4a,c,e). However, the global distribution of the spatial scales is
not simply latitudinal but exhibits a more complex spatial pattern. In the topical Pacific,
the quasi-zonal band of relatively long meridional scales stretches from the eastern basin
to the western fresh pool following the mean position of the ITCZ (along ~3◦N–5◦N, thin
dash contours), emphasizing the role of external forces in setting the scales. This pattern
is particularly visible in the SMOS data, while Aquarius and SMAP show a secondary
maximum south of the Equator along ~5◦S. Two findings should be noted. One of the
interesting results is that the meridional scales tend to be a little longer (by about 20%) in
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the eastern tropical Pacific (ETP) but relatively shorter in the western basin, contrary to
the distribution of temporal scales. This indicates that the ETP has both short-term SSS
persistence (<60 days) and long-distance SSS coherency (up to 150 km) occurring in the
same region. These features are possibly characterized by the TIW-induced SSS anomalies
(high-frequency) and the ENSO-induced SSS signature (large-scale). Another interesting
result is that we observe relatively long meridional scales in the SPCZ region, characterized
by a large-scale SSS front and strong inter-annual variability [27,52,53].
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Figure 4. Spatial scales of SSS variability derived from (a) Aquarius, (c,d) SMAP, and (e,f) SMOS
satellite missions. For the latter two, spatial scales are calculated in the zonal and meridional
directions. Bold contours circle local SSS maxima with isohalines in the North Pacific (35.2 PSU),
South Pacific (36.0 PSU), South Indian Ocean (35.6 PSU) and Atlantic Ocean (37 PSU). Thin contours
in (a) show the climatological mean evaporation minus precipitation (E − P). Solid (dashed) contours
indicate positive (negative) E − P; zero contour is omitted. C. I. is 2.5 mm day−1. Zonally averaged
length scales are displayed in (b).

Similar behavior is observed for the zonal scales (Figure 4d,f). Relatively long zonal
scales (~150 km) are observed in the ETP, in contrast to the WTP, where the zonal scales are
much shorter (90–100 km). Relatively long zonal scales are also observed in the tropical
Atlantic, particularly in its western part, and in the eastern and northern tropical Indian
Ocean. In the interiors of the subtropical gyres (bold contours) the spatial scales are
relatively short and generally isotropic; there is no significant difference between the zonal
and meridional scales.
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The distribution of the spatial scales is slightly asymmetric about the equator with
the longest spatial scales observed in the Northern Hemisphere around 5◦N–10◦N. The
meridional variations in the distribution of the spatial scales are clearly apparent in the zonal
averages shown in Figure 4b. The zonal averages also illustrate the excellent agreement
between SMOS and SMAP in the estimates of the meridional scales (the estimates start
to diverge in high latitudes, poleward of about 50◦), and quantitative differences in the
estimates of the zonal scales. The zonal scales estimated from the SMAP data are a little
longer (by about 20%) than those estimated from the SMOS data. The possible reason for
this discrepancy is not clear but can be related to the differences in the design and sampling
strategy between the two satellites.

Our analysis of the SMAP and SMOS satellite data also reveals that the spatial scales
of SSS variability are highly anisotropic. The meridional scales in the tropical belt are
typically longer than the zonal ones and become more isotropic towards higher latitudes
(Figure 4b). The exceptions are in the ETP and western tropical Atlantic (WTA), where
the zonal scales are slightly longer (by about 20%) than the meridional ones (Figure 4d,f).
Given the predominantly zonal distribution of the large-scale SSS, the zonal scales of SSS
variability reflect presumably the eddy length scales, which drop monotonically from
the equator toward the high latitudes [54]. This would be generally consistent with our
estimates of the SSS zonal scales in Figure 4b. Likewise, a broad similarity exists between
the estimates from the three satellite missions, showing the anisotropic pattern of the SSS
spatial scales.

Removing the seasonal cycle has generally little effect on the estimated spatial scales
(Figure 5). The largest differences are in the tropical belt where the annual cycle is the
dominant component of SSS variability. There, the variability becomes more isotropic when
the annual cycle is not included although this effect is observed primarily in SMAP data.

3.2.2. Regional Differences and Possible Reasons

Although the spatial distributions of the dominant length scales estimated from the
three data sets are very similar qualitatively, there are noticeable quantitative differences.
The meridional scales estimated from Aquarius data tend to be longer in the tropical region
compared to those estimated from SMAP and SMOS (Figure 4a vs. Figure 4c,e). At the
same time, Aquarius measurements tend to overestimate the meridional scales in the
subpolar regions. The reason for these discrepancies is likely because of the different spatial
resolution of the satellite datasets and/or the different level of noise. For example, the
Aquarius footprint is ~100 km compared to ~40 km of SMAP and SMOS. This relation is
not obvious or straightforward, however, as the meridional scales estimated from SMAP
and SMOS data demonstrate remarkable similarity while the zonal scales are systematically
smaller in SMOS data. The differences in design and sampling strategy between the
different satellite platforms may also play a role.

One also needs to emphasize that the effective spatial resolution (feature resolution)
of the gridded SMAP and SMOS SSS fields used to estimate the spatial scales is around
60 km. Therefore, scales shorter than 60 km estimated from the maps in some areas indicate
the dominance of noise or, in other words, a large noise-to-signal ratio. Such areas are
observed mostly in the subpolar regions, particularly in the Southern Ocean poleward of
~50◦S, where errors in SSS maps are indeed large (Figure A1).
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4. Discussion

This study aims to evaluate and compare the time and length scales of global SSS
variability using satellite SSS observations, including SMOS, Aquarius, and SMAP satellite
missions. These characteristic scales are defined as the e-folding time and length scale,
respectively, of the corresponding autocovariance functions. Overall, there is general
agreement between the three datasets showing the same global patterns of the time and
length scales of SSS variability, although noticeable quantitative differences exist.

The dominant temporal scales of SSS variability vary between more than 90 days in
the tropics and ~15 days in the high latitudes (e.g., in the Southern Ocean). The very short
temporal scales (close to the Nyquist period) in some parts of the ocean are probably due
to the high level of noise in the satellite data or the high noise-to-signal ratio. The longest
temporal scales (up to 160 days) are observed in the central and western tropical Pacific, as
well as along the SPCZ. These areas are also related to the strongest ENSO-related signal
in SSS and achieve good agreement in the three satellite missions. These SSS anomalies
sustain from season to season and may be useful for regional climate predictions, e.g., as a
precursor for predicting rainfall in the Australian and East Asian regions [55,56].

The results of nonseasonal SSS variability support the dominance of the inter-annual
variability in these regions. With the removal of the seasonal cycle, time scales of more
than 90 days become prominent over the tropical belt up to 30◦ of latitude. The relative
importance of decadal- and longer-period variability is not addressed in this study because
the satellite data records are not long enough to resolve these signals. In this regard,
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the estimated temporal scales are thought to characterize the so-called short-term SSS
persistence [57]. We can also see that the processes governing the SSS distribution and
variability are non-stationary, as evidenced by the differences in the dominant temporal
scales of SSS variability estimated over different periods, 2011–2015 and 2015–2021, ENSO-
involved and non-ENSO involved years. Overall, the global distribution of the SSS temporal
scales is consistent between the three satellite SSS datasets and in agreement with that
inferred from the first three years of Aquarius observations by Bingham and Lee [27].
Our analysis of SMAP and SMOS observations also highlights another prominent area of
enhanced inter-annual variability lying in the Northeastern Pacific. The available data are
somewhat limited and no previous study has focused on this large area of long temporal
scales. However, the understanding of inter-annual and/or longer-timescale SSS variability
in mid-latitudes is not complete and needs further assessment.

The geographical distribution of the spatial scales of SSS variability estimated from
the three satellite SSS datasets is very similar qualitatively, although there are noticeable
quantitative differences. The dominant spatial scales of SSS variability are generally the
longest (up to 150 km) in the tropics and the shortest (<60 km) in the subpolar regions.
However, the distribution of the dominant spatial scales is not simply latitudinal but
exhibits a more complex spatial pattern. In the tropics, there is slight east-west and inter-
hemispheric asymmetry in the spatial scales, which is observed in the Pacific but is absent in
the other two oceans. In particular, the spatial scales tend to be a little longer, by about 20%,
in the ETP but relatively shorter in the WTP, contrary to the distribution of the temporal
scales. In addition, relatively long spatial scales (up to 120 km in the meridional direction)
are observed along the SPCZ, where a large-scale SSS front and strong inter-annual signals
in SSS are also observed (e.g., [27]).

Our analysis of SMOS and SMAP SSS data reveals that the spatial scales of SSS variabil-
ity are highly anisotropic. The zonal components are typically shorter than the meridional
ones in the tropical belt (except for the ETP and WTA) and become more isotropic towards
higher latitudes. This is in contrast to earlier studies (e.g., [38,58,59]) which describe the
zonal scales as being generally longer than the meridional ones, particularly in the tropics.
The explanation is in the definition of the spatial scales (see Section 2.2.2). First, our analysis
of the SSS spatial scales is, by design, restricted to scales shorter than 1200 km (the size of
the moving window); that is, they are largely in the mesoscale range. Second, the spatial
scales here are estimated as the spatial autocovariance (using instant SSS maps) and not as
correlations between the time series at two distant locations (e.g., [58]). The two approaches
are not the same (think of it as a wavenumber and wavenumber-frequency spectra), which
may explain the discrepancy. Yet, this kind of information on the spatial scales is what is
typically needed in many practical applications, particularly for objective interpolation of
irregularly spaced satellite and in situ measurements and for blending observations from
different satellite platforms (e.g., Aquarius and SMOS).

Regional differences in the estimates of the scales from the three satellite SSS datasets
may arise as a result of discrepancies in the spatial resolution and/or different noise levels.
Perhaps just as important, the satellite data are subject to biases, including large-scale and
time-varying biases [60], which may affect the estimates of the scales. The duration of time
series is another limitation in the scale estimates (as discussed in Section 3.1).

There are many unanswered questions about how the interplay between the various
ocean processes controlling the SSS distribution and variability result in the observed
spatial and temporal scales. This might be an important issue for future research.

5. Conclusions

Time and length scales of SSS variability are characterized globally from the data of
three satellite SSS missions, SMOS, Aquarius and SMAP. Our results show that:

• The geographic patterns of the time and length scales of SSS variability are generally
consistent between the three satellite missions, although there are noticeable quan-
titative differences. The differences are likely due to differences in the design and
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sampling strategy between the satellite missions and/or different level of noise in
the data.

• The temporal scales of SSS variability vary from more than 90 days. The longest time
scales (up to 160 days) are observed in the western tropical Pacific and are related
to the ENSO variability. The very short time scales (close to the Nyquist period) in
some parts of the ocean are likely due to high levels of noise in the data (high noise-to
signal ratio).

• The longest-length scales are in the tropics (with slight asymmetry around the Equator
such as the longest scales are observed in the North Hemisphere around 5◦N–10◦N)
and decrease towards higher latitudes.

• The length scales are anisotropic in the tropics (the zonal scales are generally shorter
than the meridional ones) and become isotropic towards higher latitudes.

• The processes governing the SSS distribution and variability are non-stationary. The
complex spatial patterns of the time and length scales of SSS variability seem to reflect
the underlying physical process governing the variability.
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Appendix A Error Variance of Satellite SSS Dataset

The error variance, e2, is calculated from empirical covariances of the SSS anomalies as
the difference of the data variance at zero lag, C(0), and the signal variance, a2, estimated
by the y-intercept of the functional fit to the empirical covariance: e2 = C(0)− a2. Two
examples are presented in Figure 1. The error variance includes both the measurement error
(assumed to be random) and the sampling error, which occurs as a result of unresolved
high-frequency variability [36].

Maps of the estimated root mean square (r.m.s.) of the uncorrelated error in the SSS
time series for the three satellite datasets are presented in Figure A1. All three satellites
show consistent patterns. The r.m.s. error is typically smaller in the tropical regions (warm
water) and larger, up to 0.5 PSU, in high latitudes (cold water). Larger errors are also
observed in the coastal areas, particularly along the Eurasian continent, possibly owing to
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radio frequency interference (RFI) contamination [47,60]. Overall, in the mid-latitudes and
the tropics (40◦S–40◦N), the Aquarius satellite performed better (Figure A1a), followed by
SMAP (Figure A1b) and SMOS (Figure A1c). In high-latitude oceans, particularly near the
Antarctic, the time series from SMOS showed considerably smaller r.m.s. errors, compared
to Aquarius and SMAP. This result is a bit surprising but can be related to additional
spatial/temporal smoothing in SMOS SSS maps. Another prominent feature observed
in all three error maps is a quasi-zonal band of high error variance coinciding with the
mean locations of the North Atlantic, Pacific ITCZ and the SPCZ. These bands of elevated
error variance, given their locations, are likely due to unresolved high-frequency variability
rather than instrument error. Taking the surrounding areas as the background, we can
estimate that the r.m.s. of unresolved high-frequency variability (periods shorter than
~15 days) is around 0.1 PSU.
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