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Abstract: In recent years, the analysis of abrupt and non-abrupt changes in precipitation has re-

ceived much attention due to the importance of climate change-related issues (e.g., extreme climate 

events). In this study, we used a novel segmentation algorithm, DBEST (Detecting Breakpoints and 

Estimating Segments in Trend), to analyze the greatest changes in precipitation using a monthly 

pixel-based satellite precipitation dataset (TRMM 3B43) at three different scales: (i) global, (ii) con-

tinental, and (iii) climate zone, during the 1998–2019 period. We found significant breakpoints, 

14.1%, both in the form of abrupt and non-abrupt changes, in the global scale precipitation at the 

0.05 significance level. Most of the abrupt changes were observed near the Equator in the Pacific 

Ocean and Asian continent, relative to the rest of the globe. Most detected breakpoints occurred 

during the 1998–1999 and 2009–2011 periods on the global scale. The average precipitation change 

for the detected breakpoint was ±100 mm, with some regions reaching ±3000 mm. For instance, most 

portions of northern Africa and Asia experienced major changes of approximately +100 mm. In con-

trast, most of the South Pacific and South Atlantic Ocean experienced changes of −100 mm during 

the studied period. Our findings indicated that the larger areas of Africa (23.9%), Asia (22.9%), and 

Australia (15.4%) experienced significant precipitation breakpoints compared to North America 

(11.6%), South America (9.3%), Europe (8.3%), and Oceania (9.6%). Furthermore, we found that the 

majority of detected significant breakpoints occurred in the arid (31.6%) and polar (24.1%) climate 

zones, while the least significant breakpoints were found for snow-covered (11.5%), equatorial 

(7.5%), and warm temperate (7.7%) climate zones. Positive breakpoints’ temporal coverage in the 

arid (54.0%) and equatorial (51.9%) climates were more than those in other climates zones. Here, 

the findings indicated that large areas of Africa and Asia experienced significant changes in precip-

itation (−250 to +250 mm). Compared to the average state (trend during a specific period), the great-

est changes in precipitation were more abrupt and unpredictable, which might impose a severe 

threat to the ecology, environment, and natural resources. 
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1. Introduction 

Precipitation change analysis is of great importance on different temporal and spatial 

scales, given the global climate change [1]. Precipitation directly affects society and the 

environment and varies spatiotemporally from region to region, year to year, and over 

decades in frequency, amount, intensity, and type, i.e., rain vs. snow [2]. Global assess-

ment of precipitation changes provides insight into Earth’s climatology over land areas, 
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especially populated regions, as well as over water bodies [3]. On regional and global 

scales, changes in precipitation characteristics are the most relevant aspects of climate 

change in a warming world. However, there is little consensus on the expected and ob-

served changes in spatiotemporal precipitation patterns [4]. While no significant change 

in total precipitation has been detected globally [2], a notable increase in precipitation ex-

tremes, wet and drought periods, has been observed (e.g., [5,6]), with projected increases 

in future extremes (e.g., [7,8]). 

The spatial pattern of precipitation changes is heterogeneous, with different regions 

depicting opposing trends at the global scale [4,9]. Changes in precipitation at different 

temporal and spatial scales include not only continuous or gradual changes, which can be 

investigated by conventional trend analysis methods (e.g., ordinary linear regression, 

Mann–Kendall, and Mann–Whitney), but also discontinuous or abrupt changes in precip-

itation amount [10]. Further, a practical problem in analyzing precipitation time series is 

that such data are not always homogeneous and include abrupt changes in the mean [11]. 

Abrupt changes, referred to as breakpoints or inhomogeneities, are periods of discontinu-

ity in the time series caused by sudden changes in the climate, environment, measurement 

techniques, observation locations, or equipment. It is noteworthy that many breakpoints 

occur without documentation, while a breakpoint-free precipitation record is less likely 

to occur. Therefore, before investigating the precipitation variation and trends, the relative 

homogeneity in abrupt changes in the time series should be assessed [12]. 

Effective identification of breakpoints in precipitation records is crucial for under-

standing the changes over a short period as well as detecting the causal relationships be-

tween climate and environment [13]. Breakpoint detection can be conducted using online 

(or sequential) or offline (or retrospective) approaches. A sequential approach is used 

when it is necessary to detect the changes in real time. The retrospective breakpoint de-

tection approach is commonly used in meteorology and hydrological applications using 

a classical statistical test to detect slope changes in the precipitation time series [14–16]. 

Several techniques have been used for testing homogeneity concerning breakpoints 

in precipitation data [11]. The Worsley’s likelihood ratio test [17], cumulative deviations 

[18], Von Neumann ratio test [18], Pettitt test [19], standard normal homogeneity test, 

SNHT [20], and clustering approach [21] are the commonly applied techniques in precip-

itation breakpoint detection studies. Moreover, Vincent [22] introduced a method based 

on the classical F and Durbin–Watson tests to detect a breakpoint in time series. Seidou 

and Ouarda [15] proposed a Bayesian change point method to evaluate abrupt changes in 

hydro-climatic variables. 

Due to the large number of available statistical breakpoint detection tests, under-

standing the sensitivities to changes (e.g., changes in mean, median, or standard deviation 

of time series) and characteristics of alternative tests is crucial to arrive at a valid interpre-

tation of the precipitation time series analysis. The classical statistical abrupt change de-

tection tests are sensitive to specific features such as time series mean and deviation. Thus, 

a statistical test that is only sensitive to a particular type of homogeneity or abrupt change 

might not provide a comprehensive detection of abrupt changes [23,24]. For instance, the 

SNHT usually has higher sensitivity to breaks near the start and end portions of the time 

series, while the Pettitt test is suitable for detecting breaks near the middle part of the time 

series [19,20,23]. Recently, Jamali et al. [25] developed a user-friendly algorithm for time 

series analysis, with two main application domains: (i) detecting and characterizing trend 

changes and (ii) generalizing trends for main features. The method in the present study, 

Detecting Breakpoints and Estimating Segments in Trend (DBEST), uses a novel segmen-

tation algorithm that simplifies the trend into linear segments with one of three user-de-

fined parameters: the m largest changes, a generalization-threshold parameter, δ, or a 

threshold, β, for the magnitude of changes of interest for detection. DBEST is based on 

Bayesian Information Criterion (BIM) [26] and statistical tests [27] to detect statistically 

significant breakpoints. DBEST outputs are change type (non-abrupt or abrupt), simpli-

fied trend, and estimates for the change characteristics (magnitude and timing). DBEST is 
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a flexible, fast, and accurate tool that is applicable to global change studies using the time 

series of remotely sensed datasets [25]. 

While there are numerous studies on breakpoint detection using standard statistical 

tests (e.g., Von Neumann ratio test, SNHT, and Pettitt test) in precipitation data at local 

and regional scales [4,28,29], there is no comprehensive study, to the best of our 

knowledge, on the detection of both abrupt and non-abrupt changes at the global scale. 

This study focused on analyzing abrupt and non-abrupt changes at a quasi-global scale, 

representing different climatological characteristics of precipitation of the world’s wet and 

dry regions [4]. We applied the DBEST algorithm to detect significant breakpoints (statis-

tically), investigate their type (non-abrupt or abrupt), and estimate their characteristics 

(timing and magnitude) in a quasi-global monthly satellite-based precipitation dataset 

over the 1998–2019 period. While evaluating abrupt and non-abrupt precipitation changes 

at a quasi-global scale, we investigated continental changes and their associations depend-

ing on climate zones. 

2. Materials and Methods 

2.1. Data Sources 

We used the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipita-

tion Analysis (TMPA) product, in which the National Aeronautics and Space Administra-

tion (NASA) estimates quasi-global precipitation. TRMM TMPA data are produced based 

on the constellation of passive microwave and infrared sensors onboard multiple part-

ners’ satellites [30,31]. The core observatory, TRMM, was a collaboration between the Ja-

pan Aerospace Exploration Agency (JAXA) and NASA; it was launched in November 

1997 and ended its mission in April 2015. However, the TMPA algorithm continued pro-

ducing precipitation data using partner satellites through to the end of 2019. TMPA Ver-

sion 7 provides products at 3-hourly (3B42), daily (3B42-derived), and monthly (3B43) 

temporal resolutions, in the latitude band 50°N-S at 0.25° × 0.25° spatial resolution [30,32] 

for the period 1998–2019. Monthly TMPA-3B43 v7.0 is one of the most widely used prod-

ucts for climate and research purposes [30,33]. It is noteworthy that the transition from 

TMPA to Integrated Multi-satellite Retrievals for the Global Precipitation Measurement 

(GPM) mission (IMERG) began in 2015, and the IMERG data are now available for the 

2000–present period. While IMERG provides a more detailed precipitation dataset (tem-

porally and spatially), a thorough validation of its products continues to be conducted for 

use in global-scale analyses. A detailed description of the TMPA and IMERG algorithms 

and input data can be found in Huffman et al. [34], as well as Huffman et al. [30], Huffman 

and Bolvin [35], and Huffman [36]. 

The TRMM products have been used extensively in many regions around the world. 

Their spatiotemporal performance has been thoroughly validated by ground-based meas-

urements all over the globe [37], such as in the United States [38–42], India [43–45], China 

[46,47], Iran [48–50], the Philippines [51], Eastern Africa [52], and Malaysia [53], to men-

tion a few. In this study, we used the TMPA 3B43 research product at a monthly time scale 

from January 1998 to December 2019. The TMPA 3B43 product used in this study incor-

porates bias-corrected surface precipitation gauge analyses. Thus, it takes advantage of 

gauge information, where available, and the multi-satellite scheme everywhere. 

2.2. Methods 

2.2.1. Breakpoint Detection 

The DBEST algorithm has two main application domains: trend generalization and 

change detection. We used the change detection method, which a novel segmentation al-

gorithm that simplifies the trend into linear segments using the m largest changes or a 

threshold, β, for detection’s magnitude of change of interest (Table 1). 
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Table 1. User-defined thresholds in the DBEST’s change detection algorithm [Adapted from [25]]. 

Threshold Description 

First level-shift-threshold (θ1) 

The lowest absolute difference in input data (pre-

cipitation) between the level-shift point and next 

datapoint 

Duration-threshold (ϕ) 

The lowest period (time steps) within which the 

shift in the mean of the data level, before and after 

the level-shift point, persists, and the lowest spac-

ing (time steps) between successive level-shift 

points. 

Second level-shift-threshold (θ2) 

The lowest absolute difference in the means of the 

data calculated over period ϕ before and after the 

level-shift point 

Change number (m) 
Number of greatest breakpoints of interest for de-

tection  

Statistical significance level (α) 
The statistical significance level used for testing the 

significance of detected changes 

Here, we briefly describe the DBEST’s change detection workflow along with the 

threshold values used in this study. DBEST starts with testing the existence of significant 

discontinuities (or level-shift) in the precipitation input time-series. To do so, the absolute 

difference in precipitation between each pair of consecutive datapoints is compared with 

a user-defined first level-shift-threshold (θ1 = 10 mm in this study). If the absolute difference 

is greater than the threshold value, θ1, a second criterion tests whether the change led to 

a considerable shift in the precipitation mean level and persisted throughout the user-

defined period, the duration-threshold (ϕ = 1 year). If the absolute difference in the mean of 

the precipitation data, computed over a period, ϕ, before and after the current datapoint, 

is greater than a user-defined second level-shift-threshold (θ2 = 40 mm), the second criterion 

is valid. The current datapoint is defined as a candidate level-shift point if both tests are 

valid. This repeats for every datapoint in the precipitation time series until all candidate 

points are identified. The identified points are then sorted into descending order accord-

ing to the absolute value of the shift in the precipitation mean. The first point in the sorted 

list is listed as the most critical level-shift point. In addition to the two criteria mentioned, 

a third criterion should be fulfilled for the second and subsequent candidate points to be 

detected as the next critical level-shift point. The third criterion test is performed if the 

spacing between the candidate point and each previously detected level-shift point is at 

least the duration-threshold, ϕ. 

After examining the existence of the level-shift points, DBEST proceeds with detect-

ing major breakpoints. To do so, for the precipitation input time series (P) with several 

observations N (N > 2), single time-step differences in the forward and backward direc-

tions are computed at every time-point i (2 ≤ I ≤ N − 1) as: 

P(i−1,i)=P(i) − P(i−1) (1)

∆P(i,i+1)=P(i+1) − P(i) (2)

For each point i, the peak/valley detector function, f, is then calculated based on the 

continuity of the sign of two differences: 

�(�) = �
1,             if sign (∆P(�−1,i)) =  −sign  (∆P(�,   i+1))  

0,             otherwise
 (3)

The trend direction changes for time points at which the valley/peak detector func-

tion equals one. These are called valley and peak points. For all datapoints, a second turning 

point detector function (g) is calculated based on the valley/peak detector function and an 

iterative criterion (refer to Jamali et al. [25]). Using this function, all potential turning 

points are identified (Figure 1). The identified level-shift points are added to the turning 
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point set. For valid turning points, a subset of turning points that significantly reduces the 

residual sum of squares of a least-square fits the precipitation time series and does not 

result in overfitting, are then determined using an iterative piecewise fitting method based 

on Bayesian Information Criterion (BIC) [26]. The significance of the valid turning points 

is tested using statistical tests (� = 0.05) for the corresponding segments in the obtained 

optimal model fit to the precipitation trend that minimizes the BIC [25]. The significant 

turning points are called breakpoints (Figure 1). Note that a breakpoint can be abrupt or 

non-abrupt depending on whether it is a level-shift point or not, respectively. Finally, the 

magnitude and timing characteristics for the detected breakpoints are computed and re-

ported as output for several of the greatest breakpoints of interest for detection set by the 

user (m = 1). For any detected change, the corresponding breakpoint (break date) is the 

start time, and the next turning point is the end time. The change duration is the time between 

the start time and the end time. The change magnitude is calculated by subtracting the fitted 

precipitation value at the start time from the fitted value at the end time (Figure 1). The 

sign of the obtained change value represents the change direction (whether the slope is de-

creasing or increasing); for more details, see Jamali et al. [25]. 

 

Figure 1. Flowchart of DBEST algorithm for detecting and characterizing changes in pixel-based 

precipitation datasets (after Jamali et al. [25]). 

 

 

 

 

 

 

  

 

 

Input precipitation time series (length N) 

Detect level-shifts (using θ1, θ2 and Ф) 

Find peak/valley points (using f function) 

Estimate the distance-threshold (ε) 

Find turning points (u points at which g=1) 

Compute the trend local change function (h) 

Sort the turning points into descending order according to their trend local change  

 Detect breakpoints: valid turning points (s) using BIC method (s ≤ u)  

Change detection algorithm = select all breakpoints (s) 

Compute a Least-Squares fit to the trend, either a straight-line or a composite 
line, considering corresponding breakpoints and the turning points immediately 

after them as the data points that adjoining linear segments share.  

Outputs: change characteristics 

- Type: abrupt or non-abrupt  

- Start time: time of the selected breakpoints 

- End time: time of the turning point immediately after the selected 

breakpoint  

- Duration: time between the start and end times 

- Change value: fit value at the end time minus fit value at the start time  

-  Direction: sign of the change value (increasing or decreasing) 

- Significance: statistical significance 

DBEST workflow 

Change detection algorithm outputs 



Remote Sens. 2022, 14, 5433 6 of 22 
 

 

We used the DBEST algorithm for detecting and characterizing the greatest break-

points in the TRMM TMPA 3B43 version 7 precipitation product, called the “TRMM and 

Other Data Precipitation Dataset’’ at a monthly time scale during the 1998–2019 period. 

2.2.2. Data Preprocessing 

Due to the large spatiotemporal variation in the global precipitation data (month-to-

month and region-to-region), it is necessary to provide a meaningful measure of the in-

terannual precipitation changes globally while preserving the relative difference of the 

observed precipitation at the pixel level. To remove the erroneous effects of scale differ-

ences on the change detection computation, we applied a pixel-based precipitation time 

series filter that accounts for two conditions. These conditions disregard precipitation 

changes of less than 1 mm and 0.05 median value over the study period. For example, the 

precipitation changes of 10 to 20% for the recorded event of below 1 mm may mathemat-

ically be considered significant, while in the conceptual interpretation this change does 

not represent a significant abrupt change or a breakpoint in the precipitation time series. 

Accordingly, the first filter (Equation (4)), detects pixels for which the precipitation 

range over the studied 22-year period is less than 1 mm. Using this filter, the detected 

pixels are automatically discarded from DBEST analysis using the formula below: 

Ri = Pi max − Pi min Ri < 1 mm at each pixel (4)

where P is precipitation (mm), R is the precipitation range during the 22 years (1998–2019), 

and i is the pixel number. 

The second filter (Equation (5)) discards the pixels with a precipitation range lower 

than 0.05 of their median value during the period using the formula below: 

Ri = Pi max − Pi min Ri < 0.05 × Pi median (5)

The 0.05 median value was selected based on the Intergovernmental Panel on Cli-

mate Change report [54], which suggests a precipitation change from −5 to +5% between 

successive years can be classified as ‘No change’. In addition, we used the median value 

instead of the average, as the median is less influenced by precipitation extremes. 

2.2.3. Precipitation Changes at Global, Continental, and Climate Zone Scales 

We investigated the precipitation breakpoints and compared their characteristics at 

a quasi-global scale, i.e., start year, duration, magnitude, abrupt and gradual change type. 

We conducted breakpoint analysis at the continental vs. global scales to obtain insight 

regarding the change characteristics on land vs. ocean areas. As precipitation changes 

based on climate zone rather than depending on continental boundaries, we also evalu-

ated our results associated with different climate zones. Here, we used the world map of 

Köppen–Geiger climate classification to explore the relationship between precipitation 

breakpoint features and different climate zones. The Köppen–Geiger climate classification 

was published in 1900 by Wladimir Köppen and was updated by Rudolf Geiger in 1961. 

In the last version of this classification, five main climate zones at the global scale have 

been recognized, encompassing (i) warm temperate, (ii) equatorial, (iii) arid, (iv) snow, 

and (v) polar [55,56]. To find a likely relationship between precipitation variation and ab-

rupt and non-abrupt changes, we also applied the coefficient of variation (CV) for each 

pixel during the 1998–2019 period. The CV is defined as the ratio of standard deviation 

and mean. 

Note that the greatest change is considered (both decreasing and increasing) in pre-

cipitation during the selected period (22 years). Although a longer-period dataset may 

provide more insight concerning historical changes, we think it is interesting to focus on 

the recent greatest changes in precipitation over this period. 
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3. Results 

3.1. Global Scale 

Figure 2 shows the annual 3B43 mean precipitation (mm) and coefficient of variation 

(CV%) in precipitation over the period studied. Precipitation at the global scale ranged 

from ~1 to more than 5000 mm in a year. While some portions of North Africa, Central 

Asia, North and South Pacific Oceans, and the South Atlantic Ocean received less than 

100 mm over a year (Figure 2a), these regions exhibited the highest CV (>25%), indicating 

a high rate of variability in the annual precipitation (Figure 2b). 

 

Figure 2. (a) Mean annual precipitation and (b) coefficient of variation (CV) between 1998 and 2019 

in 3B43. 

Figure 3 depicts the greatest breakpoints detected over the studied period. We found 

that 14.8% (85,217 pixels) of the entire study area experienced significant changes (abrupt 

and non-abrupt) in the recorded precipitation (0.05 significance level). An example of a 

typical abrupt and non-abrupt change in the global precipitation time series is depicted in 

Figure 4. In detail, we detected 9.4% non-abrupt changes, of which 6.3% occurred over the 

ocean, 3.1% over land, and 5.4% abrupt changes of which 3.6% occurred over the ocean 

and 1.8% over land. 

(a) 

(b) 
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Figure 3. Abrupt and non-abrupt changes in the global precipitation time series, 1998–2019. 

 

Figure 4. An example of a typical (a) non-abrupt breakpoint with a three-year change duration and 

−180 mm change magnitude and (b) abrupt breakpoint with a one-year change duration and +247 

mm change magnitude in the global precipitation time series. 

The spatial coverage of non-abrupt changes for both ocean and land was considera-

bly higher than abrupt changes (Figure 3). Most abrupt changes were found near the equa-

tor in the Pacific Ocean and Asia, relative to other ocean and land regions. Asia, North 

Africa, South Atlantic, and South Pacific Oceans experienced the highest frequency of 
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breakpoints (abrupt and non-abrupt) in precipitation during the study period compared 

to the detected breakpoints over Australia, North Pacific, and Atlantic Oceans. Most 

breakpoints occurred in areas showing high CV (>25%) (Figures 2b and 3). In contrast, we 

did not detect many breakpoints in regions with low CV, including regions with high 

precipitation amounts. 

The majority of detected breakpoints, at a global scale, started during 1998, 1999, 

2009, 2010, and 2011. Breakpoints in the South Pacific were mainly detected for 1998 and 

1999 and in the South Atlantic for 2010 and 2011 (Figure 5). In overland areas, the break-

points varied from 1998 to 2017. 

 

Figure 5. Start time of the breakpoints in the pixel-based global precipitation time series (1998–2019). 

Figure 6 shows the change duration results (year) at the global scale. Most of the de-

tected breakpoints, 73%, occurred during a relatively short (one-year) period. Approxi-

mately 16.8 and 7% of breakpoints occurred during a two- and three-year period, respec-

tively. The remaining percentage, 3.2%, varied between four to nine years. 

 

Figure 6. Duration (year) of the abrupt and non-abrupt changes in the global precipitation time 

series (1998–2019). 
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The magnitude of precipitation changes varied from −3000 to +3000 mm across the 

globe (Figure 7). The largest magnitudes were more related to ocean climate, especially 

near the equator of the Pacific Ocean (±2000 to ±3000 mm). Although the precipitation in 

some regions changed by ±3000 mm, most changes were approximately ±100 mm for the 

detected breakpoint duration. For instance, precipitation in most portions of Africa and 

Asia changed with a magnitude of +100 mm, including both abrupt and non-abrupt 

changes. In contrast, most changes over the South Pacific and South Atlantic Oceans oc-

curred with a magnitude of −100 mm (Figure 7). 

 

Figure 7. The magnitude of abrupt and non-abrupt changes in the global precipitation time series 

(1998–2019). 

3.2. Continental Scale 

Significant abrupt and non-abrupt changes over the continents are depicted in Figure 

8a. More significant breakpoints occurred over Africa (23.9%), Asia (22.9%), and Australia 

(15.4%) as compared to North America (11.6%), South America (9.3%), Europe (8.3%), and 

Oceania (9.6%). Further, there were more non-abrupt changes in Asia (13.7%) and Africa 

(18.3%) than there were abrupt changes (Asia: 9.1% and Africa: 5.6%) (Figure 3). Con-

versely, the percentage of abrupt changes occurring in Australia (10.4%) was more than 

that of non-abrupt changes (4.9%). In Africa, a majority of significant breakpoints occurred 

over the northern region of the continent, while in Asia it occurred in the western and 

central regions of the continent. In North and South America, significant breakpoints 

mainly extended over western regions of the continent (Figure 3). 

Figure 8b shows the distribution of detected breakpoint occurrences for all continents 

over the study period. The results indicate that all detected breakpoints extended from 

1998 through 2017. This means that we observed no breakpoints for 2018 and 2019. The 

detected breakpoints only extended during less than 25% of each year, except in Australia 

and Europe, where the breakpoints extended to 37.4 (during 2009) and 30.3% (during 

2010), respectively. During 2009 and 2010, South America and Oceania also showed a high 

percentage of breakpoints relative to other continents. In the first year (1998), North Amer-

ica and Oceania had the highest proportion of breakpoints relative to other continents, 

extending over 23.1 and 20.7% of the year, respectively. 
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Figure 8. (a) Distribution of all significant breakpoints (column) and abrupt and non-abrupt changes 

(lines) over different continents and (b) distribution of all significant breakpoints over the 1998–2019 

period. 

Results for significant positive and negative breakpoints over different continents are 

given in Table 2. The highest percentage of negative changes (abrupt and non-abrupt) was 

detected in Oceania (73.8%), Europe (61.8%), North America (56.2%), and South America 

(55.5%), while the lowest percentage was detected in Asia (41.7%) and Australia (46.9%). 

Asia, North Africa, and North and South America varied from −100 to +100 mm regarding 

the magnitude of change. The change value in Australia ranged from −1000 to +500 mm 

over the study period (Figure 7). 
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Table 2. Percentage of significant positive (Pos.) and negative (Neg.) breakpoints of precipitation 

on different continents. 

Continent Asia Africa Europe N. America S. America Australia Oceania 

Year Neg. Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg. Pos. 

1998 7.1 0.8 3.5 2.5 0.0 1.1 20.5 0.2 6.0 5.1 0.1 2.0 13.8 9.2 

1999 1.3 1.1 6.2 1.7 1.6 0.4 0.6 0.2 2.4 1.5 1.8 2.3 4.6 3.1 

2000 0.9 3.4 1.8 1.1 0.4 2.6 0.9 1.6 4.0 1.3 8.9 0.0 13.8 0.0 

2001 0.4 5.3 1.3 3.3 8.1 3.2 2.6 2.5 2.7 0.8 18.5 0.0 0.0 0.0 

2002 1.3 5.3 1.2 2.8 9.8 0.7 0.6 3.5 4.8 1.7 0.0 0.3 0.0 0.0 

2003 4.2 0.3 1.6 5.2 0.0 5.1 0.1 7.1 0.4 1.9 0.0 0.1 0.0 1.5 

2004 1.7 2.7 2.3 4.5 3.0 0.0 2.9 2.6 0.4 0.4 0.4 0.0 6.2 0.0 

2005 2.8 1.3 2.1 3.2 1.2 6.0 7.4 2.0 0.2 3.5 1.3 3.6 0.0 1.5 

2006 0.9 1.7 4.3 0.8 0.7 0.0 1.8 5.1 2.2 0.4 1.3 1.3 1.5 0.0 

2007 2.3 1.0 3.3 3.9 0.0 0.2 1.2 1.8 1.7 1.8 0.1 1.2 0.0 0.0 

2008 1.4 4.1 3.4 2.4 0.0 1.8 1.9 0.4 5.6 1.2 0.0 0.5 3.1 0.0 

2009 1.2 4.5 2.8 1.6 0.5 0.9 1.9 3.1 8.1 8.4 0.1 37.4 0.0 1.5 

2010 2.5 1.5 3.2 2.4 30.4 0.0 3.2 1.9 0.4 2.5 1.6 2.9 9.2 1.5 

2011 0.8 3.0 1.1 4.7 0.4 3.3 5.8 1.0 4.6 1.6 11.1 0.0 15.4 0.0 

2012 2.4 3.4 3.8 0.7 1.8 1.6 1.3 5.0 3.0 1.3 0.6 0.1 1.5 0.0 

2013 2.7 3.2 1.3 2.6 0.2 0.2 0.1 2.3 1.9 2.3 0.0 1.3 1.5 0.0 

2014 0.9 3.5 4.4 3.0 1.6 0.2 0.2 2.2 4.1 1.4 0.0 0.0 3.1 1.5 

2015 1.8 2.9 1.7 0.7 0.0 4.2 0.8 0.7 1.3 3.1 0.0 0.0 0.0 0.0 

2016 5.1 0.6 0.5 1.3 2.3 0.0 1.9 0.3 0.4 3.3 0.7 0.1 0.0 3.1 

2017 0.3 8.8 0.2 1.7 0.0 7.0 0.4 0.3 1.2 0.8 0.4 0.0 0.0 3.1 

Total 41.7 58.3 50.0 50.0 61.8 38.2 56.2 43.8 55.5 44.5 46.9 53.1 73.8 26.2 

Average 2.1 2.9 2.5 2.5 3.1 1.9 2.8 2.2 2.8 2.2 2.3 2.7 3.7 1.3 

3.3. Climate Zone Scale 

We observed that the most significant breakpoints occurred in arid (31.6%) and polar 

(24.1%) climates, while we found fewer breakpoint events in snow-covered areas (11.5%), 

equatorial (7.5%), and warm temperate (7.7%) climate zones (Figure 9a). The results of the 

change type indicated that the non-abrupt changes in arid (abrupt: 9.8%; non-abrupt: 

21.7%) and polar (abrupt: 10.2%; non-abrupt: 13.9%) climates extended over a larger area 

compared to snow-covered regions (abrupt: 5.1%; non-abrupt: 6.4%), equatorial (abrupt: 

4.4%; non-abrupt: 3.1%), and warm temperate (abrupt: 4.5%; non-abrupt: 3.2%) climate 

zones (Figure 9a). Figure 9b shows the breakpoint year for different climate zones. In prin-

ciple, the results obtained for the start time indicated that breakpoints only occurred from 

1998 to 2017 in different climate zones (Figure 9b) with approximately 10% for each year 

in all climate zones except equatorial and snow climates, which indicated a higher per-

centage (~17.5%) in 1998 and 2009 (Figure 10a,b). The results of durations revealed that 

most of the detected breakpoints (>85%) occurred over a one- to two-year period in dif-

ferent climate zones. 
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Figure 9. (a) Distribution of all significant breakpoints (column) and abrupt and non-abrupt changes 

(lines) in different climate zones and (b) distribution of all significant breakpoints over the 1988–

2019 period. 
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Figure 10. (a) Abrupt and non-abrupt changes at 0.05% significance level and (b) their start time, in 

different climate zones over the 1998–2019 period. 

We detected higher percentages of positive breakpoints in arid (54%) and equatorial 

(51.9%) climates relative to those in other climate zones. Further, the highest percentage 

of negative breakpoints was found over the polar, snow-covered, and warm temperate 

climates, with approximately 55% each relative to other climate zones (Table 3). 

Table 3. Percentage of significant positive (Pos.) and negative (Neg.) breakpoints in precipitation 

for different climate zones. 

Climate Arid (%) Equatorial (%) Polar (%) Snow (%) Warm Temperate (%) 

Year Neg. Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg. Pos. 

1998 5.9 1.5 1.6 6.0 3.6 1.8 18.1 0.5 7.8 0.8 

1999 3.5 1.5 2.5 1.4 2.1 0.6 1.7 0.2 2.4 1.0 

2000 1.6 1.9 4.7 0.9 2.3 0.9 2.2 2.2 2.4 3.8 

2001 2.1 3.6 3.0 1.4 0.9 2.2 4.3 5.6 2.2 3.8 

2002 1.0 3.5 2.0 2.7 3.5 4.8 1.4 3.2 5.5 3.7 

2003 2.8 3.3 0.5 1.2 0.8 0.4 1.3 2.0 0.9 2.6 

2004 1.9 3.5 1.0 1.9 0.3 2.4 1.7 2.8 3.3 0.2 
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2005 2.7 1.9 0.8 6.5 7.7 1.0 2.2 1.0 2.8 2.7 

2006 2.7 1.1 1.1 0.9 0.8 4.3 1.0 3.6 1.7 2.5 

2007 2.4 2.4 4.4 1.6 2.1 2.9 0.6 1.8 1.0 1.1 

2008 2.0 2.7 3.9 0.8 3.9 3.1 0.7 3.6 4.7 3.8 

2009 1.9 5.5 6.4 10.5 1.6 5.4 1.3 1.2 1.2 4.6 

2010 2.6 1.8 1.9 2.9 4.2 2.4 3.3 2.3 8.4 2.3 

2011 1.9 3.4 4.4 1.8 2.8 1.1 3.9 2.3 1.9 2.2 

2012 2.7 2.4 1.8 0.7 2.4 0.9 1.7 4.8 3.5 0.7 

2013 1.6 3.0 2.8 0.6 4.3 2.6 2.0 2.3 0.7 1.5 

2014 2.4 3.5 3.2 1.1 5.3 1.8 0.3 0.8 0.7 0.6 

2015 1.6 1.7 1.3 5.4 3.8 4.3 0.4 1.3 1.1 1.5 

2016 2.4 0.7 0.2 2.8 1.5 1.5 7.5 0.5 2.2 1.4 

2017 0.3 5.1 0.6 0.9 1.0 0.6 0.3 3.2 0.5 4.4 

Total 46.0 54.0 48.1 51.9 54.9 45.1 55.4 44.7 55.0 45.1 

Average 2.3 2.7 2.4 2.6 2.7 2.3 2.8 2.2 2.7 2.3 

According to Table 4, positive changes ranged from 3 to 2720 mm per year (on aver-

age, 164 mm), while negative changes varied from −2114 to −3 mm per year (on average, 

−174 mm) in the arid climate. The mean of positive and negative changes specified that 

most changes were lower than ±180 mm per year in the arid climate zone over the study 

period. Similarly, the average detected precipitation changes in the polar climate were 194 

mm and −159 mm per year for the positive and negative changes, respectively. We found 

the greatest change in the equatorial climate zone, with a mean of 874 mm and −847 mm 

per year (variation from 3000 to −2998 mm) for positive and negative changes, respec-

tively. The mean change for the snowy climate zone was +326 mm and −324 mm for the 

positive and negative changes, respectively. We found 574 mm and −634 mm of positive 

and negative precipitation changes per year in the warm temperate climate zone, respec-

tively (Table 4). 

Table 4. Statistical description of precipitation changes in different climate zones. 

Climate Arid Equatorial Polar Snow Warm Temperate 

Change (mm) Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg. 

Mean 164.0 −174.3 874.4 −846.8 194.2 −159.5 326.4 −323.7 574.5 −634.3 

Max 2719.6 −2.9 3122.1 −223.0 1074.2 −57.4 981.9 −98.6 4967.6 −126.9 

Min 3.2 −2113.6 198.0 −2998.4 57.7 −1348.0 88.9 −1547.0 116.5 −2801.8 

4. Discussion 

4.1. Precipitation Changes at Global Scale 

Due to the great loss of human lives and exponentially increasing damage costs as-

sociated with extreme precipitation events, studying abrupt and non-abrupt changes in 

precipitation has received much attention in recent years [57] because it provides insight 

as to how climate extremes influence the ecosystem and society [57]. In addition, as the 

spatial distribution of precipitation is not limited to a particular region with a defined 

geopolitical boundary, such as cities, countries, and continents, it is necessary to conduct 

research considering spatial aggregation representing different climatological character-

istics. 

The CV is robust in detecting precipitation variability and changes [58]. In addition, 

significant deviations from mean annual precipitation (i.e., high CV) can cause significant 

stress to ecological and human systems [59]. Generally, high temporal variability in pre-

cipitation (month to month and year to year) is the leading cause of the detected changes. 

For instance, some portions of North Africa, Central Asia, the North and South Pacific 

Oceans, and the South Atlantic Ocean receive precipitation lower than 100 mm/year. At 
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the same time, these regions have the highest CV (more than 25%). In addition, precipita-

tion variability can increase over time. Dore [60] reported increased precipitation variance 

globally, with higher variability over the equatorial region. 

On the global scale, the detected breakpoints in precipitation can be derived from 

significant shift changes with decreasing light precipitation and increasing heavy precip-

itation over time. Recently, researchers have reported that light precipitation events sig-

nificantly decreased during the past decades on regional and global scales (e.g., [61–64]). 

For instance, Ma et al. [62] reported that very heavy precipitation (P ≥ 50 mm day−1) events 

have increased significantly from 1960 to 2013, while light (0.1 ≤ P < 10 mm day−1) and 

moderate (10 ≤ P < 25 mm day−1) events have decreased significantly in China. This indi-

cates a shift from light to intense precipitation, implying increased risks of drought and 

floods [62]. Additionally, increasing heavy precipitation events can cause significant ab-

rupt and non-abrupt changes in precipitation. It is noteworthy to clarify that the abrupt 

and non-abrupt changes in precipitation can also be due to various local and regional nat-

ural and human impacts, including changes in the environment, measurement tech-

niques, observation locations, and equipment [12]. 

Our findings indicated that most of the detected breakpoints, abrupt and non-abrupt 

changes, occurred over the land area in the Northern Hemisphere. In contrast, in the 

Southern Hemisphere, they occurred over the oceans. The most significant breakpoints in 

the Northern Hemisphere were found over Asia and North Africa (dry regions). In con-

trast, the highest percentage of breakpoints in the Southern Hemisphere was detected near 

the Equator in the South Pacific and South Atlantic, wet regions. Most breakpoints oc-

curred in areas with low precipitation and high CV, which could be due to internal and 

external environmental factors. Conversely, we found no significant breakpoints in re-

gions with low CV (including regions with high precipitation). This means that some dry 

regions (i.e., North Africa and Asia) and wet regions (i.e., South Pacific and South Atlan-

tic) with high CV showed significant breakpoints in precipitation and can be expected to 

experience more extreme events due to climate change, and this intensification can lead 

to increased risk of floods, soil erosion, and droughts [64]. 

Although there is considerable variability in spatial trend patterns, observations sug-

gest that the number of extreme precipitation events has increased globally (e.g., 

[4,6,9,65]), hence generating the greatest changes in precipitation. We found a high num-

ber of breakpoints during the 1998–1999 and 2009–2011 periods across the globe. Over the 

South Pacific Ocean, we detected more breakpoints in 1998 and 1999, while in the South 

Atlantic a similar number of breakpoints was found in 2010 and 2011. A warmer tropical 

Pacific in 1998 was caused by a positive El Niño Southern Oscillation (ENSO) event [60]. 

ENSO influences precipitation changes at the global scale [66–70] and is related to the 

variations of temperature and precipitation over much of the sub-tropics and tropics, as 

well as some mid-latitude regions [60]. In line with the detected breakpoint years related 

to ENSO, a global increase in surface temperature for El Niños (1998 and 2010) and nega-

tive global anomalies during La Niñas (1999–2001) have been reported. The maximum 

amplitude of surface temperature occurred during the 1998 El Nino (~+0.15 °C), with a 

lower amplitude (negative) during La Nina, 1999–2001. Moreover, during the cold (warm) 

phase of ENSO, La Niña (El Niño), most of the tropical ocean surfaces are cooler (warmer) 

than normal, and the atmosphere is charged with less (more) moisture, resulting in less 

(more) extreme precipitation events over the (combined ocean and land) tropical region 

[66,69]. Higher surface temperature leads to a greater evaporation rate (especially over the 

ocean and overtime) and a greater instability, hence impacting the variation of large-scale 

precipitation [3]. Lausier and Jain [59] reported that sea surface temperature variability 

patterns were strongly correlated with global precipitation patterns during the period 

1951–2011, helping to drive variability in annual precipitation. Adler et al. [3] stated that 

the ocean shows the opposite anomaly compared to the land areas for ENSO. 

Regarding the large El Niño during 1998, positive and negative anomalies occurred 

over the ocean and land areas, respectively. This is due to the pattern of positive rainfall 
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anomalies over the tropics, particularly the central and eastern Pacific Oceans, which 

could be a reason for the detected breakpoints in the land regions versus ocean areas in 

our study. These reported results, along with our findings, have already been addressed 

in both climate simulations and satellite observations [66,69], indicating that ENSO is a 

dominant driver of precipitation extremes in the tropics [69]. 

Our findings indicate that the change in magnitude of precipitation notably occurred 

over the oceans, especially near the Equator in the Pacific Ocean. Analyses of the Climate 

Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) product [71] and the 

National Centers for Environmental Prediction (NCEP) reanalysis project [72] show that 

there have been substantial increases in average precipitation over the tropical oceans, 

related to the increased intensity and frequency of ENSO during the period 1979–1998 [2]. 

Similarly, we found a substantial spatial coverage of breakpoints, abrupt and non-abrupt, 

occurring over Asia, North Africa, South Atlantic, and South Pacific Oceans. Moreover, 

the detected breakpoints revealed that a decreasing precipitation trend impacted some 

parts of the subtropics and tropics compared to other regions. Likewise, Trenberth et al. 

[73] reported a noticeable change in precipitation pattern in recent years, suggesting a 

wetter condition for the high latitudes and a drier condition for the subtropics and tropics, 

which is associated with the large-scale precipitation change influenced by ENSO [74]. 

Further, our findings indicated that the Indian and North Atlantic Oceans experienced the 

lowest number of breakpoint occurrences in precipitation over the study period. This is 

contrary to findings by Pokhrel et al. [75], who used Objectively Analyzed air-sea Fluxes 

(OAFlux) and the latest version of National Centers for Environment Prediction (NCEP) 

Climate Forecast System (CFS) version-2 products. They reported significant precipitation 

variability and changes over the Indian Ocean affected by El Niño and La Niña signals 

during the earlier period, 1979–2010, which partially overlaps the period of the current 

study. This contradiction could be due to the usage of several variables such as evapora-

tion-precipitation (E-P), wind speed, air-sea humidity, and sea surface temperature (SST), 

which was different from the only precipitation variable used in this study. The past time 

series (<1998) were not available, but the changes in precipitation between 1998 and 1999 

and subsequent years (>1999) were abrupt, which were considered breakpoints in our 

study. More importantly, the detected that breakpoints during the 1998–1999 period were 

more reasonable than other years’ changes due to the reported substantial increases in 

average precipitation over the tropical oceans, related to the increased intensity and fre-

quency of ENSO during the period 1979–1998 [2]. 

4.2. Precipitation Changes at the Continental and Climate Scales 

We detected a higher frequency of breakpoints over Africa, Asia, and Australia rela-

tive to other continents. Not only the spatial coverage of non-abrupt changes for both 

ocean and land was considerably higher than abrupt changes but also the detected non-

abrupt changes in Asia and Africa were more than that of abrupt changes. This means 

that the magnitude of precipitation changes in these regions was low. Although we found 

a large number of breakpoints over some regions of Asia and Africa, we detected the low-

est changes in the magnitude of precipitation (±100 mm), which is due to the high CV in 

these regions (i.e., low precipitation amount but high precipitation variability). These 

breakpoints could be related to the observed extreme rainfall events, especially over north 

tropical Asia, around 10–20°N, [76]. 

Major precipitation and severe drought occurrences can be related to positive and 

negative breakpoints, respectively. Frequent severe drought and flood events, especially 

in the central region of Asia, during the past decades have been reported [64,67], which 

agrees with the spatial distribution of the detected breakpoints over Asia in this study. 

Moreover, an increase of 1.3 °C in average temperature over Asia, particularly China, with 

increased evaporation has led to extreme regional precipitation and observed breakpoints 

(e.g., [77–80]). In North and South America, we found significant breakpoints extending 

over western regions of the continents. The changes in extreme precipitation and duration 
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are likely to result from the combined effects of large-scale circulation changes and climate 

change. Climate change may affect the probability and intensity of extreme weather 

events [66,78], as it can be the main reason for breakpoints in precipitation. 

Regarding climate zones, we found that the majority of significant breakpoints oc-

curred over the arid and polar climates, relative to other climate zones. Our findings in-

dicate that detected breakpoints in precipitation over the arid climate were mainly posi-

tive (upward) compared to other climate zones (i.e., Asia and Africa). To address this ob-

servation, it is noted that the arid climate is characterized by limited precipitation with a 

high spatial and temporal variation that explains the higher density of the detected break-

points over this zone [81–83]. The change in the average precipitation in arid climates 

specified that the majority of breakpoints were detected in the range between −180 and 

+180 mm over the studied period. Conversely, we found minor breakpoints in the equa-

torial and warm temperate (<8%) climate zones. Based on the climate classification 

scheme, the equatorial climate mainly covers central Africa, northern regions of South 

America, southern India, Sri Lanka, northern Australia, Indonesia, Thailand, Vietnam, 

Malaysia, Laos, Philippines, Myanmar, and most Pacific Island nations. It seems that the 

equatorial climate, with a high humidity regime, provides a low variability, which can be 

the main reason for detecting fewer breakpoints. For example, the equatorial climate of 

Central Africa sustains tropical rainforests throughout the region and provides the excel-

lent growing conditions needed for high-value crops [84]. 

Our findings indicate that high precipitation variability is the leading cause of signif-

icant breakpoints. Precipitation variability is a crucial climatic factor for the environment, 

agriculture, and society. Increased precipitation variability can reduce agricultural yield 

[85] and affect development [86,87]. This connects extreme dry and wet events, droughts, 

and floods, posing threats to society and the environment [86,88]. Much more attention 

needs to be given to regions with many abrupt changes to mitigate the impact of extreme 

natural events such as droughts and floods derived from climate extremes. Therefore, this 

study provides essential information to pinpoint the areas under frequent precipitation 

changes at the quasi-global and continental scales and their associations with the climate 

zones. Finally, theoretical and practical research is required to connect the understanding 

of changes in precipitation, and the threats they pose to the environment and society. 

5. Conclusions 

To decrease the impacts of floods and droughts, there is a vital need to study histor-

ical events, i.e., breakpoints in precipitation, at the global scale. Although there are several 

studies concerning precipitation changes, breakpoints, and trends, on a regional scale us-

ing common statistical tests, conducting a comprehensive global investigation on the 

greatest changes in precipitation is of great importance. We used the DBEST algorithm for 

analyzing precipitation change and its characteristics in a monthly satellite-based precip-

itation dataset (TRMM 3B43) at three different scales: (i) global, (ii) continental, and (iii) 

climate zone over the 1998–2019 period. Unlike previous studies on precipitation changes 

at the local and regional scales, this study focused on quasi-global scale precipitation to 

detect general patterns of both abrupt and non-abrupt changes. This helps better under-

stand the changes in overall precipitation patterns and adequately develop a mitigation 

strategy for future likely extreme event impacts. 

The output of the DBEST algorithm captured the type (non-abrupt or abrupt) and 

characteristics (magnitude and time) of the significant breakpoints observed in satellite-

based precipitation time series. We found 14.1% abrupt and non-abrupt significant break-

points in the quasi-global precipitation dataset (0.05 significance level). The highest per-

centage of abrupt changes was found near the equator in the Pacific Ocean and Asia, rel-

ative to other oceans and land regions. On the continental scale, the detected breakpoints 

in Africa (23.9%), Asia (22.9%), and Australia (15.4%) were more than those in North 

America (11.6%), South America (9.3%), Europe (8.3%), and Oceania (9.6%). The findings 

indicate that the most significant breakpoints were found in the arid (31.6%) and polar 
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(24.1%) climates on the climate zone scale. The detected breakpoints in precipitation are 

more likely to be related to the extreme wet and dry events associated with ENSO and 

high precipitation variability. However, these results indicate that abrupt changes in pre-

cipitation differ not only between regions but also in different aspects of precipitation, i.e., 

total and extreme. 

The consequences of precipitation variability and change, substantial changes, affect 

water resources at the local to regional scale where crops are grown, people live, and in-

dustrial and agricultural water requirements for production purposes exist. Our findings 

indicate that larger parts of Africa and Asia experienced a significant number of the most 

extensive changes in precipitation. Compared to the average state (trend during a specific 

period), the greatest changes in precipitation in these regions were more abrupt, which 

may pose a severe threat to the ecology, environment, and natural resources, causing a 

substantial loss in urban and rural areas. 

In conclusion, this study provides a large-scale comprehensive perspective of abrupt 

and non-abrupt precipitation changes over the global, continental, and climate zone dur-

ing the 1998–2019 period. The monthly satellite pixel-based precipitation dataset (TRMM 

3B43) provided valuable information to address the precipitation change characteristics 

during the last two decades. The DBEST algorithm detected and quantified the major 

changes in precipitation over large areas at continental and global scales. While applying 

this algorithm in the precipitation studies, it is suggested that this algorithm be imple-

mented using other climate variables. It is a flexible, accurate, and fast tool for change 

detection, and is applicable to global change studies using time series of satellite-based 

datasets. 
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