
Citation: Zhang, J.; Wang, D.; Hu, B.;

Gong, X. An Automatic Velocity

Analysis Method for Seismic

Data-Containing Multiples. Remote

Sens. 2022, 14, 5428. https://doi.org/

10.3390/rs14215428

Academic Editors: Ru-Shan Wu,

Benfeng Wang and Jingrui Luo

Received: 22 September 2022

Accepted: 27 October 2022

Published: 28 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

An Automatic Velocity Analysis Method for Seismic
Data-Containing Multiples
Junming Zhang 1,2 , Deli Wang 1,2, Bin Hu 1,2,* and Xiangbo Gong 1,2

1 Key Laboratory of Geoghysical Exploration Equipment, Ministry of Education, Jilin University,
Changchun 130026, China

2 College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, China
* Correspondence: binhu@jlu.edu.cn

Abstract: Normal moveout (NMO)-based velocity analysis can provide macro velocity models for
prestack data processing and seismic attribute inversion. Datasets with an increasing size require
conventional velocity analysis to be transformed to a more automatic mode. The sensitivity to
multiple reflections limits the wide application of automatic velocity analysis. Thus, we propose an
automatic velocity analysis method for seismic data-containing multiples to overcome the limit of
multiple interference. The core idea of the proposed algorithm is to utilize a multi-attribute analysis
system to transform the multiple attenuation problem to a multiple identification problem. To solve
the identification problem, we introduce the local similarity to attribute the predicted multiples
and build a quantitative attribute called multiple similarity. Considering robustness and accuracy,
we select two supplementary attributes based on velocity and amplitude difference, i.e., velocity
variation with depth and amplitude level. Then we utilize the technique for order preference by
similarity to ideal solution (TOPSIS) to balance weights for different attributes in automatic velocity
analysis. An RGB system is adopted for multi-attributes fusion in velocity spectra for visualization
and quality control. Using both synthetic and field examples to evaluate the effectiveness of the
proposed method for data-containing multiples, the results demonstrate the excellent performance in
the accuracy of the extracted velocity model.

Keywords: automatic velocity analysis; multiple independent; local similarity; multi-attribute analysis

1. Introduction

Velocity is a critical parameter in both seismic data processing and imaging [1]. Meth-
ods have been proposed for velocity model-building such as full waveform inversion [2],
joint-migration inversion [3], travel-time tomography [4], normal moveout based velocity
analysis [5], and even machine learning [6]. Within these methods, normal moveout-based
velocity analyses (hereinafter referred to as velocity analysis) are widely used in industry [7]
due to their easy implementation, and no need for a prior velocity model. According to
Wilson [8], there are two kinds of velocity analysis: one is to build velocity models for
stacking the data for zero offset processing which can increase the signal-to-noise ratio of
the stacked dataset [9,10]. The other is to obtain the moveout parameter model that can
be used either to analyze the kinematic characteristics of the subsurface medium or as the
initial model contributor for subsequent processes, such as travel time tomography, full
waveform inversion [11], and time migration [12,13]. These applications make velocity
analysis an indispensable step in seismic data processing [14]. Traditional velocity analysis
requires processors to manually pick peaks in the velocity spectra. As shown in Figure 1a,b,
the peak in the velocity spectra corresponds to the events in the seismic data. The coor-
dinates of the peaks in the velocity spectra correspond to the kinematics (travel time and
curvature) of the seismic wavefield, which means that the subsurface information can be
obtained by picking manually the coordinate of the peaks in the velocity spectra. However,
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with the application of high-precision and even three-dimensional acquisition methods,
in the face of massive data, manual picking in the velocity analysis can become a huge
burden [15], which leads to that many automatic velocity analysis methods [16–18].
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Figure 1. Comparison between seismic data without and with multiples and their velocity spectra,
There is a corresponding relationship between event and peak marked with the same number in the
figure, where the number 1 is primary, number 2 is surface-related multiple, and number is internal
multiple: (a) seismic data containing only primaries. (b) Velocity spectra corresponding to data (a).
(c) Seismic data containing primaries and multiples. (d) Velocity spectra corresponding to data (c).

There are generally three ways of automatic velocity analysis. The first one is im-
proving the quality of velocity spectra, which modifies the conventional semblance cal-
culation [9] to increase the resolution of velocity spectra [19–21] and the adaptability of
complex conditions [5,18]. The second one is optimizing the automatic picking algorithm
and utilizing Monte Carlo [17], greedy algorithms [1], clustering analysis [22], simulated
annealing [23] and other optimization algorithms to obtain high-precision automatic pick-
ing results. The third one is differential semblance velocity analysis (DSVA) [24,25], whose
core conception is update migration velocity and flattening images automatically based
on the residual moveout of neighboring traces in the image domain [26,27]. Because the
accuracy of migration velocity depends on the approximation of the propagation theory to
the seismic wavefield propagated in the underground medium, wave equation migration
velocity analysis (WEMVA) has become popular [28,29].

Most automatic velocity analysis methods tend to chase higher peaks [30], which are
sensitive to coherent noise, especially multiples [5,23,26]. Because the sea surface and the
seabed are strong reflective interfaces, multiples cannot be avoided in marine seismic data.
The kinematic characteristics of multiples are similar to those of primaries, so they appear
as false peaks (Figure 1c,d) in the velocity spectra, which hinder the automatic velocity
analysis methods from picking the true velocities. Compared with primaries, multiples
reflect more than once between the sea surface and underground interface, and have more
complex propagation paths. In Figure 1, two types of multiples are marked. The number
two is marked as free surface multiples, and the number two is marked as an internal
multiple. The existence of multiples will cause problems in automatic velocity analysis;
for example, when using the automatic velocity analysis method to pick the false peaks
generated by multiples, the obtained velocity model may be significantly different from
the real formation velocity. Furthermore, when this unreliable model is used as the initial
model of subsequent inversion such as FWI, it will not meet the accuracy requirements of
the inversion [11], which will lead to inversion being trapped in a local non-informative
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minimum. So, the traditional seismic data processing requires multiple attenuations before
velocity analysis. However, with the development of cognition and technology, in some
industrial processes, multiples are regarded as effective signals to improve the imaging
accuracy of complex structures, for example, imaging with multiples to reduce the relative
amplitudes of the cross-talk noise [31] and enhance the amplitudes in the presence of strong
scattering layers [32]. This means that velocity analysis of data containing multiples may
become more common [33].

The existing automatic velocity analysis methods rely on two common strategies
for dealing with multiples [12,34]. The first category is adopting a muting function in
the velocity spectra based on the velocity difference, which assumes that multiples are
low-velocity noise [35]. The muting-based strategy can be easily implemented [36], but
not applicable to complex situations; for example, it can lead to small differences between
primaries and multiples by the occurrence of shallow, high-velocity layers [37], which
means the muting-based strategy is difficult to use to completely separate primaries and
multiples [38]. The other method is to attenuate multiples before velocity analysis, through
appropriate de-multiplying methods to obtain multiple-free input data. This approach
can handle complex geological conditions and, thus has wider applicability [35,38]. The
picking accuracy of the attenuation strategy depends on the success of multiple attenuation.
Wave-equation-based multiple elimination (WEBME) is the most mainstream multiple at-
tenuation method in the industry [39,40], which can be divided into two steps: multiple
prediction and matching subtraction. Multiple prediction approximates the travel time of the
different types of multiples, i.e., surface-related multiples [41], internal multiples [42], etc.
Matching subtraction attenuates the prediction difference in amplitude and phase [43–45].
This means that obtaining multiple-free data is not a simple process, requiring a lot of manual
intervention and computational costs [46]. Since currently published methods have some
limitations in picking accuracy and automation, and multiples are unavoidable in marine
exploration, studying an automatic velocity analysis method for seismic data containing
multiples is meaningful.

In order to get rid of the requirement of automatic velocity analysis in primary-only
input, we propose an automatic velocity analysis method for seismic data containing
multiples. Firstly, we introduce the theory of traditional automatic velocity analysis and
then describe how to reduce the sensitivity of automatic velocity analysis to multiples.
The multi-attribute analysis system we built consists of multiple similarity, and velocity
variation with depth and amplitude level to distinguish between primaries and multiples.
Then, we adopt synthetic and field data examples to verify and evaluate the proposed
method. Finally, we discuss the advantages and disadvantages of the proposed method,
application recommendations and potential research directions.

2. Materials and Methods
2.1. Common Automatic Velocity Analysis

During automatic velocity analysis, the data-set ordered in shot gathers should be
rearranged to common midpoint (CMP) gathers, and the velocity spectra corresponding to
the data can be obtained through [9]

S(v, t) =

twin

∑
j=−twin

(
N−1

∑
i=0

a[k + j, xi]

)2

N
twin

∑
j=−twin

N−1

∑
i=0

a[k(k + j, xi)]
2

(1)

where t and k is time index, k =

√
t2 +

x2
i

v2 ,v is the scanning velocity, xi is the offset of trace

i, a(k + j, xi) is the amplitude of the data, twin is the length of the time window, and N is
the number of traces.



Remote Sens. 2022, 14, 5428 4 of 19

Then, the velocity curve L1[v(t)] can be automatically obtained by picking up the
peaks in the velocity spectra s(t, v(t)), for example, picking the peaks corresponding to the
maximum of the variational integral [17]

L1[v(t)] =
∫ tmax

tmin

s(t, v(t))dt, (2)

where tmax, tmin are the upper and lower boundaries of the time window, v(t) is the velocity
corresponding to time sample t. As mentioned above, in the multiple attenuation process,
it is necessary to make the predicted multiples match the actual situation in amplitude
and phase to ensure that the multiple can be completely attenuated. Otherwise, we will
need strict requirements in the selection of parameters and bounds to avoid the multiples,
which is a non-adaptive and time-consuming task. Considering the calculation efficiency,
we propose a method that can adaptively use the rough predicted multiples, which are
obtained only by simple parameter adjustment and without matching subtraction, to
perform automatic velocity analysis on seismic data containing multiples. To sum up, the
key to this problem is how to eliminate the influence of multiple peaks on the automatic
method by using the differential predicted multiples.

2.2. Multiple Independent Automatic Velocity Analysis

In order to eliminate the influence of multiples, we propose a multiple independent
automatic velocity analysis method including the following steps:

2.2.1. Peak Picking

We first need to transform the data from shot gathers to velocity spectra. The original
data containing multiples and the predicted multiples generated by modularization can
be calculated by Equation (1) to obtain the corresponding velocity spectra. We denote
the original data velocity spectra as D and the predicted multiple velocity spectra as M.
As mentioned above, when the seismic data contain multiples, there will be many false
peaks in the velocity spectra. Thus, it is unreasonable to pick higher peaks at each time
step. In this paper, we choose the dichotomy method, pick all the peaks first, and then
distinguish the peaks of primaries and multiples. Therefore, in this method we use a robust
local maxima finder to find peaks of the velocity spectra [47]

ϕ = findpeaks(D), (3)

where ϕ = {(v, t)|(v1, t1), . . . , (vi, ti), . . . , (vz, tz)}, i = 1, 2, · · · , z and z is the number of
peaks. The coordinate of each peak in the velocity spectra corresponds to its time sample
indices and velocity, in which v, t expresses the velocity and time coordinates of peaks,
respectively. This process can be easily implemented with the help of the FastPeakFind
function in Matlab.

2.2.2. Attribution of Predicted Multiples

We found that, although the rough predicted multiple was obtained without fine
parameter adjustment, the actual multiples in the original data are still similar to the
predicted multiples, especially in the kinematic characteristics (travel time and curvature).
The similarity is much greater than the similarity between the primary and the predicted
multiples. In this case, the problem of how to distinguish primaries and multiples in the
original data can be solved by measuring the similarity with the predicted multiples. To
achieve this goal, this paper proposes a method based on local similarity to attribute the
predicted multiples. We assume that the original data velocity spectra is composed of
primaries, multiples and noise:

D=Dp + Dm + n1, (4)
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where Dp are primaries, Dm are multiples, and n1 is noise. Similarly, the predicted multiple
velocity spectra can be written as:

M=Mm + n2, (5)

where Mm are the rough predicted multiples, n2 is noise. Figure 2a,b show the velocity
spectra of original data and the velocity spectra of the predicted multiple, where the red
arrows indicate the primary locations and the purple arrows indicate the multiple location.
We can see intuitively that the predicted multiples and the actual multiples match in number
and locations, while the primaries do not. The reason for the above phenomenon is that the
kinematic characteristics of the predicted multiples are similar to the actual multiples and
orthogonal to the primaries. This difference is magnified in the velocity spectra.
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Figure 2. A demonstration of the similarity between the original data velocity spectra and the
predicted multiple velocity spectra: (a) the velocity spectra of original data. (b) The velocity spectra
of predicted multiples. (c) Local similarity spectra.

In order to further analyze the similarity between the original data velocity spectra
and predicted multiple velocity spectra, we introduce the local similarity for quantitative
measurement [48]. Seismic data evaluated by local similarity are neither instantaneous nor
global. Each datum has its corresponding local space; it can be summarized as a certain
range, including an element and its adjacent elements [49]. The local similarity is given by:

sj=
√

c1j ◦ c2j, (6)

c1j = δ[λ2
1I + δT

(
Aj

TAj − λ2
1I
)
δ]
−1

δTAj
Tbj, (7)

c2j = δ[λ2
2I + δT

(
Bj

TBj − λ2
2I
)
δ]
−1

δTBj
Taj, (8)

where vector sj is local similarity between vectors aj and bj.aj and bj are the elements of the
input data at trace index j respectively, j = 1, 2, · · · , N, and N is the number of trace. c1j ◦ c2j
denotes the Hadamard product between c1j and c2j. Aj and Bj are diagonal operators
composed from the elements of aj and bj, that is, Aj = diag(aj), and Bj = diag(bj), δ is a
triangle smoothing operator aiming to increase the smoothness in iterative optimization
schemes [50,51], I is the identity matrix. λ1 and λ2 are two parameters controlling the
physical dimensionality and enabling fast convergence when inversion is implemented
iteratively. For a 2D case, the local similarity is calculated trace by trace, and finally arranged
into a matrix S (Local similarity spectra), which has the same dimension as the input data,
that is S = [s1, s2, · · · , sN ].
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Figure 2c shows the local similarity spectra between the predicted multiple and the
original data. We can see that the local similarity highlights the similarity regions, in which
high amplitude zones indicate multiples (purple arrows) and low amplitude zones indicate
primaries (red arrows). In order to quantitatively show the similarity differences between
multiples and primaries, we extracted the local similarity calculation results of all peak
locations in Figure 2c, and the results are shown in Figure 3.
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In Figure 3, the peaks are sorted according to their travel time. Among them, the first,
second and fifth peaks are primaries, and the local similarities of these peaks are obviously
different from the other peaks. Intuitively, the fourth peak and the seventh peak seem to
have a low degree of similarity, but through the quantitative comparison, we can see that
there is still an order of magnitude difference between the two peaks and the corresponding
value of the primary peaks. In conclusion, even with the smallest multiple and largest
primary, there is a difference of more than two orders of magnitude between them.

We calculated the maximum, minimum, average and median of their similarity
(Table 1). They also prove that the primaries and multiples in the original data differ
greatly in their similarity with the predicted multiple:

Table 1. Local similarity statistics between primaries and multiples.

Maximum Minimum Average Median

Primary 6.0 × 10−6 1.6 × 10−11 2.1 × 10−6 3.0 × 10−7

Multiple 2.1 × 10−1 4.2 × 10−3 9.7 × 10−2 7.8 × 10−2

Note that, in principle, the predicted multiples do not include primaries, which means,
compared with the primaries, multiples in the original data are much more similar to the
predicted multiples. That is

L[Dm, Mm]� L
[
Dp, Mm

]
, (9)

where L[x, y] denotes the local similarity between data x and y. To remove the multiple
interference, we took this difference and introduced it into the automatic velocity analysis
method. According to Equations (4) and (5)

L[D, M] = L
[(

Dp + Dm + n1
)
, (Mm + n2)

]
. (10)
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We assume that the noise is distributed separately, then

L[D, M] = L
[(

Dp + Dm
)
, (Mm)

]
= L

[
Dp, Mm

]
+ L[Dm, Mm]. (11)

According to Equation (9), Equation (11) can be further expressed as

L[D, M] = L
[
Dp, Mm

]
+ L[Dm, Mm] ≈ L[Dm, Mm], (12)

which means that the local similarity between the original data and the predicted multiples
can be used as a reference to distinguish primaries without suppressing the multiples.
Therefore, for any original data velocity spectra and predicted multiple velocity spectra,
we can calculate their local similarity spectra to distinguish primaries and multiples; this
equation is expressed as

S = L[D, M] (13)

where S is the local similarity spectra between the predicted multiple and the original
data. Considering the difference between the values of the primary and multiple in local
similarity spectra is very large, we attribute them in the logarithmic form.

MSi = lg(S(ti, vi)), (14)

MSi is the multiple similarity (MS) attribute of the i th peak. lg(S(vi, ti)) = log10(S(vi, ti)).
Through Equation (12), we can quantitatively obtain the similarity between each peak and
the predicted multiple.

2.2.3. Peaks Identification of Primary Reflection Based on the Multi-Attribute Analysis

The proposed multiple similarity provides a theoretical basis to select the peaks
corresponding to the primary reflection from all the peaks. To improve the identification
accuracy and robustness of the primary reflection peaks, we propose two supplementary
attributes based on other multiple identification principles (velocity and amplitude), and
introduce the multi-attribute analysis system [52] as a comprehensive evaluation tool to
integrate different picking principles.

The multi-attribute analysis system can integrate and sort the criteria values of dif-
ferent strategies to achieve the selection of the suitable strategy under various qualita-
tive/quantitative criteria [53]. This system mainly includes three steps: attribute definition
and selection, determining attribute weights, and comprehensive evaluation [54]. To
optimize the multi-attribute structure and reduce information redundancy as well as in-
terference, it is necessary to ensure that all attributes have low correlation and relative
independence in the multi-attribute analysis [55].

In this paper, we regard peaks of reflection wavefield (both primary and multiple)
as different strategies of peaks, picking for the primary reflection and establishing a cor-
responding multi-attribute analysis system to decision-making in velocity analysis. The
attributes used to distinguish between primary and multiple reflections in the velocity
analysis mainly include velocity constraints [34], amplitude [56], bootstrapped differen-
tial semblance (BDS) [57] and detecting residual normal moveout [58]. Considering the
calculation cost and the difficulty of adaptation, we selected the velocity and amplitude
as supplementary attributes, and the three selected attributes are independent of each
other, which ensures the stability of the multi-attribute analysis structure. The acquisition
methods of the two supplementary attributes are as follows.

(1) Velocity variation with depth (VVD):
This attribute is mainly used to distinguish primaries and multiples through their

velocity difference. The principle is that in general, the formation velocity increases with
the increase in depth, while the propagation depth of multiples is less than that of primaries,
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which leads to the velocity of multiples being less than primaries. For any peak ϕi, the
velocity variation with depth, VVDi, can be expressed as

VVDi =
vi

Vre f (ti)
, (15)

where vi, ti express are the velocity and time coordinates of peaks respectively, and Vre f (ti)
represents the values corresponding to the velocity reference curve at the ti time sample
indices. Furthermore, the velocity reference curve takes the coordinates of the velocity
maximum peaks in different time windows as a reference and is obtained by interpolation
along the time direction.

(2) Amplitude level (AL):
Amplitude difference is a classic attribute that mainstream automatic velocity analysis

methods tend to use, as they pick the peaks with a higher amplitude [38]. Here, for peak
ϕi, its amplitude level attribute ALi is given by

ALi =
lgD(vi, ti)

lgmax(Wi)
, (16)

where lg(D(vi, ti)) = log10(D(vi, ti)), Wi = {D(v, t)|t ∈ [ti − twin, ti + twin]}, and twin rep-
resent the half width of the time window. Considering the thickness of the formation, the
time window is set at 100 ms [59].

Note that the above three attributes have different units of measurement, value lev-
els and physical meanings, which need to be regularized before determining attribute
weights [60]. In multi-attribute analysis, different attributes can be divided into several
categories, corresponding to different regularization equations. Among the three attributes
applied by this method, VVD and AL are considered benefit attributes and MS is considered
a cost attribute [61]. The regularization equations corresponding to the three attributes is
as follows:

ELi =
SMi−SMmin

SMmax−SMmin
, (17)

EVi =
VVDmax −VVDi

VVDmax −VVDmin
, (18)

EAi =
ALmax − ALi

ALmax − ALmin
, (19)

where the values in the subscript indicate the maximum and minimum attribute values
of all peaks, ELi indicates the value of the i th peak under the condition of MS evaluation.
Similarly, EVi and EAi indicate the value of the i th peak under the condition of VVD and
AL evaluation.

Through the above steps, we can regularize three different attributes. Then, this
paper applies the technique for order preference by similarity to ideal solution (TOPSIS)
method [62] to integrate the three attributes to automatically obtain the velocity curve.
TOPSIS is convenient for application and calculation, and can output a quantitative evalua-
tion [63]. The main steps are listed as follows [64]:

(1) Determine the optimal peak ϕo and the worst peak ϕw;
(2) Obtain the relative proximity f (i) between each peak and the optimal peak;
(3) Determine the dividing point of primary and multiple reflections through the inflec-

tion point of evaluation results [65].

In this method, there are z peaks to be evaluated and each peak has three evaluation
criteria, whereby the smaller the value of each attribute after regularization, the closer to
be primary the event is. Therefore, the optimal peaks ϕo and the worst peaks ϕw can be
defined as

ϕo = (min{EL1, EL2, . . . ELz}, min{EV1, EV2, · · ·EVz}, min{EA1, EA2, . . . EAz}), (20)
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ϕw = (max{EL1, EL2, . . . , ELz}, max{EV1, EV2, · · · , EVz}, max{EA1, EA2, · · · , EAz}). (21)

f (i) denotes the calculation of the relative proximity of the i th peak to the optimal
peak. It is calculated for each alternative and is defined as

f (i) =
βi

αi + βi
i = 1, 2, . . . , z (22)

where αi represents the distance from the i th peak to the optimal peak ϕo, and βi represents
the distance from the i th peak to the worst peak ϕw. We rank the peaks in descending
order according to their corresponding f (i). Through the equation, the primary peaks are
those which are closest to the optimal peak and furthest from the worst peak [66]. f (i) is
always between zero and one and one peak could be primary when it is closer to one [67].
αi and βi can be calculated by the following equations:

αi =

√
ωL(ELo − ELi)

2 + ωV(EVo − EVi)
2 + ωA(EAo − EAi)

2, (23)

βi =

√
ωL(ELw − ELi)

2 + ωV(EVw − EVi)
2 + ωA(EAw − EAi)

2, (24)

where ELo, EVo, EAo are the three attribute values of the optimal peak ϕo, ELw, EVw, EAw
are the three attribute values of the worst peak ϕw, ω is the weight of the attribute. In
this paper, we used the analytical hierarchy process (AHP) [68] method to determine the
weight of each attribute. The specific choice is ωL = 0.6, ωV = 0.2, ωA = 0.2, the detailed
calculation process is highlighted in the Appendix A.

In addition, for conventional velocity analysis, quality control is difficult; once an error
occurs, the processor needs to check all the peaks, which is a large burden. Therefore, this
method visualizes the automatic velocity analysis process by using an RGB system [69]
during processing. The three attributes of the peak are captured into a two-dimensional
chart by color. Different colors in the RGB spectra represent different attributes. In this
way, the difference between multiples and primaries can be directly displayed by color, so
that the processor can focus on key peaks, which reduces the cost and difficulty of manual
correction. The process of the proposed method shown in Algorithm 1.

Algorithm 1: Multiple Independent Automatic Velocity Analysis Algorithm

(1) Input: Original data containing multiples d, Predicted multiple generated by modularization m
(2) Calculate the velocity spectra for: D, M
(3) Peak picking in velocity spectra D: ϕ← findpeaks(D)
ϕ = {(v, t)|(v1, t1), . . . , (vi, ti), . . . , (vz, tz)}
(4) Attribute predicted multiples: S = L[D, M]
(5) i← 1
(6) Main cycle:
(9) Acquire MS attribute: MSi = lg(S(ti, vi))
(10) Acquire VVD attribute: VVDi =

vi
Vre f (ti)

(11) Acquire AL attribute: ALi =
lgsd(vi ,ti)

lgmax(Wi)

(12) i← i + 1
(13) Until i = z
(14) Regularization: ELi =

SMi−SMmin
SMmax−SMmin

, EVi =
VVDmax−VVDi

VVDmax−VVDmin
, EAi =

ALmax−ALi
ALmax−ALmin

(15) Determine primary based on Multi-attribute Analysis theory:
Calculate relative proximity: f (i) = βi

αi+βi
, i = 1, 2, . . . , z

Determine the dividing point between primaries and multiples (Inflection point): f ′′ (i) = 0
(16) RGB space mapping
(17) Output: Velocity curve, RGB velocity spectra
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3. Results

A synthetic example was first used to test the proposed method. In order to increase
the variety and complexity of multiples, we used a layered model containing a velocity
reversal layer as shown in Figure 4a. The CMP gather is shown in Figure 4b, and Figure 4c
is the corresponding velocity spectra. In the CMP gather, we can see that primaries
and multiples share the same kinematic characteristics and strong amplitudes, making it
difficult to distinguish primaries, especially for 2.5–4.5 s. In the velocity spectra shown
in Figure 4c, due to the influence of the low-velocity layer (1.5–2.25 km), the velocities of
multiples and primaries are close to each other. Thus, false peaks and primary peaks have
similar velocities in the range of 2.5–4.5 s. These false peaks will largely interfere with
automatic methods of picking velocities.

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 21 
 

 

3. Results 

A synthetic example was first used to test the proposed method. In order to increase 

the variety and complexity of multiples, we used a layered model containing a velocity 

reversal layer as shown in Figure 4a. The CMP gather is shown in Figure 4b, and Figure 

4c is the corresponding velocity spectra. In the CMP gather, we can see that primaries and 

multiples share the same kinematic characteristics and strong amplitudes, making it dif-

ficult to distinguish primaries, especially for 2.5–4.5 s. In the velocity spectra shown in 

Figure 4c, due to the influence of the low-velocity layer (1.5–2.25 km), the velocities of 

multiples and primaries are close to each other. Thus, false peaks and primary peaks have 

similar velocities in the range of 2.5–4.5 s. These false peaks will largely interfere with 

automatic methods of picking velocities. 

 

Figure 4. Display of synthetic data: (a)Velocity model containing a velocity reversal, (b) CMP record 

of original data, (c) velocity spectra of original data. 

We applied four different automatic velocity analysis strategies in the test of syn-

thetic data; the results are shown in Figure 5. Figure 5a is the result using muting-based 

strategies (we refer to it as MU), Figure 5b shows the result by radon transform [1] (we 

refer to it as RT), Figure 5c displays the result based on multiple attenuation strategies (we 

refer to it as MA), and Figure 5d is the result through the advanced multiple independent 

method (we refer to it as AD). By comparing the Figure 5 with Figure 4b, we can have a 

qualitative understanding of the multiple processing capabilities of various strategies. In 

Figure 5a, The white curve represents the muting range. It can be seen that in the shallow 

time zone (before 2.5 s), when multiples and primaries are scattered, the muting strategy 

can filter out the multiples, but in the range of 2.5–4.5 s, since multiple and primary are 

difficult to distinguish, most multiples are retained to avoid damaging the effective signal. 

For RT strategy in Figure 5b, the sparse hyperbolic Radon transform provides a sparse 

domain for velocity analysis; some multiples are attenuated in the transformation process, 

but there are still considerable residues (especially after 2.5 s). Comparing Figure 5c with 

Figure 4b, after multiple attenuation, most of the false peaks generated by multiples are 

attenuated, but there are still small amounts of multiple residuals. Figure 5d is the velocity 

spectra corresponding to proposed method, in which the peaks of primaries and multiples 

are displayed in color. In Figure 5, the red curves on each figure are the velocities obtained 

by the corresponding method. The greater the interference of multiples, the mor fluctua-

tion the velocity curve will have. In order to evaluate the effectiveness of the proposed 

methods, we have made a quantitative analysis of the four velocity curves. 
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of original data, (c) velocity spectra of original data.

We applied four different automatic velocity analysis strategies in the test of synthetic
data; the results are shown in Figure 5. Figure 5a is the result using muting-based strategies
(we refer to it as MU), Figure 5b shows the result by radon transform [1] (we refer to it as
RT), Figure 5c displays the result based on multiple attenuation strategies (we refer to it
as MA), and Figure 5d is the result through the advanced multiple independent method
(we refer to it as AD). By comparing the Figure 5 with Figure 4b, we can have a qualitative
understanding of the multiple processing capabilities of various strategies. In Figure 5a,
The white curve represents the muting range. It can be seen that in the shallow time zone
(before 2.5 s), when multiples and primaries are scattered, the muting strategy can filter
out the multiples, but in the range of 2.5–4.5 s, since multiple and primary are difficult to
distinguish, most multiples are retained to avoid damaging the effective signal. For RT
strategy in Figure 5b, the sparse hyperbolic Radon transform provides a sparse domain for
velocity analysis; some multiples are attenuated in the transformation process, but there
are still considerable residues (especially after 2.5 s). Comparing Figure 5c with Figure 4b,
after multiple attenuation, most of the false peaks generated by multiples are attenuated,
but there are still small amounts of multiple residuals. Figure 5d is the velocity spectra
corresponding to proposed method, in which the peaks of primaries and multiples are
displayed in color. In Figure 5, the red curves on each figure are the velocities obtained by
the corresponding method. The greater the interference of multiples, the mor fluctuation
the velocity curve will have. In order to evaluate the effectiveness of the proposed methods,
we have made a quantitative analysis of the four velocity curves.
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strategy (RT), (c) multiple attenuation strategy (MA), (d) proposed advanced method (AD).

We manually picked the peaks of primaries referring to the true velocity model, and
using the manual picking (refer to it as MP) result as the reference velocity. To test the
effectiveness of the proposed method, we compared the velocities obtained by various
strategies with the reference curve, and used σ to quantitatively measure the difference
between the reference and estimated velocities, The results are shown in Figure 6 and
Table 2; the equation of σ is as follows:

σ =
‖vr − ve‖2
‖vr‖2

, (25)

where vr is reference velocity and ve is estimated velocity. In Figure 6, the yellow, black,
brown, blue and red lines represent MP, MU, RT, MA and AD velocities, respectively.
Corresponding to the quantitative analysis results in Table 2, we can see that the estimated
velocity by AD is the closest one to reference and that the red and yellow curves are almost
overlapping each other. Correspondingly, Table 2 shows that between the AD velocity and
the reference velocity, the calculated metric is σ = 1.3% which is the smallest among the
four strategies. The estimated velocity using the MA strategy is suboptimal, for which
σ = 5.0%. The main reason for the impact on the estimation accuracy can be clearly found
in Figures 6 and 5c, That is, the residual multiples at 2.5 s makes the automatic method
pick a false peak. Additionally, more false picks are picked by the RT method and MU
method, which further reduces the accuracy of their estimated velocities, for which the σ
are 5.4% and 6.0% respectively. This comparison result shows the dependence of traditional
automatic velocity analysis algorithm on multiple attenuations. However, the method
proposed in this paper can measure the difference between the actual situation and the
predicted multiples through local similarity, effectively improving the tolerance.

In order to test the accuracy of the velocity obtained by proposed method, we re-
spectively used the reference velocity (MP), the velocity obtained by the proposed AD
method, and the velocity obtained by the MA strategy, which is suboptimal to perform
NMO correction on the original data. For a closeup look, we zoom the data in time regions
1.4–2.4 s and 3.2–4.2 s. The results are shown in Figure 7.
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Table 2. The difference between the reference and estimated velocities.

MB RT MS MI

σ 6.0% 5.4% 5.0% 1.3%
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Figure 7. NMO comparison results. 1.4–2.4 s: (a) NMO results of the MP velocity, (b) NMO results of
the AD velocity, (c) NMO results of the MA velocity. 3.2–4.2 s: (d) NMO results of the MP velocity,
(e) NMO results of the AD velocity, (f) NMO results of the MA velocity.

Within 3.2–4.2 s, the primary events were basically flattened (marked by yellow dotted
line). However, in the 1.4–2.4 s, due to the influence of the residue false peak, the velocities
obtained by MA strategy were lower than the real ones, which led to the overcorrection of
the multiple events (marked by red dotted line). So, the results of NMO correction proved
the effectiveness of the proposed method for data containing multiples.

In order to further verify the effectiveness of the proposed method, we applied it to
field marine data for testing. The proposed method first was applied to a single CMP
gather for quantitative analysis, and then we used the proposed method to process all CMP
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gathers to obtain the 2D velocity model of field data. For the data, the CMP interval is 25 m,
the sampling interval is 4 ms, and maximum time is 2.8 s. Further, in the test on field data,
because the real velocity model is unknown, we take the velocity curve picked manually
as reference. As the multiple attenuation strategy can achieve better results than the other
two strategies, we take the multiple attenuation strategy as the comparison object of the
proposed method in the test of field data.

By comparing Figure 8b,c, we can see that after the multiple attenuation processing, the
effective signals in the field data have been highlighted, which improved the data quality,
but multiple residues can still be observed. The false peaks generated by these multiples
will seriously interfere with the automatic velocity analysis. Comparing the velocity curves
in Figure 8c,d, we can see that the velocity obtained by the proposed method is closer to the
reference velocity. In order to further test the stability of the method, we applied it to the
entire data to obtain a velocity model. The velocity model is shown in Figure 9, (a) is the
reference model picked manually, (b) is the velocity model obtained by the control group,
and (c) is the velocity model obtained by the proposed method. There is an obvious gap in
the 1.2–1.6 s area (marked by red dotted line). The reason is that the model obtained by
the control group is affected by residual multiples in this area. Meanwhile, in Figure 9b,
there is a mixture of high-velocity and low-velocity formation (marked by red arrow), as a
consequence of the incorrect picking of low-velocity multiple peaks by the control method.
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Figure 8. Application on a single CMP gather from the field data: (a) CMP record of original data,
(b) velocity spectra of original data, (c) velocity spectra and velocity curve of the control group, in
which the red solid line is automatically obtained, and the yellow dotted line is the reference velocity,
(d) velocity spectra and velocity curve obtained by the method proposed in this paper, in which the
red solid line is automatically obtained, and the yellow dotted line is the reference velocity.

We respectively applied the three velocity models to the original data to calculate their
stacked sections. Figure 10a shows the stack section corrected with reference velocity, (b)
is stack section of the control groups and (c) is the stack section with velocity obtained by
the proposed method. In comparison, one event exists in Figure 9a,c near 1.6 s (marked
by yellow dotted line), but in the stacked section of the control group, this event cannot
be observed. The reason is that near 1.6 s, the control method is affected by the residual
multiple and obtained the wrong velocity, so that the primary event was covered. In the
comparison of three stacked sections, the stacking sections with velocities obtained by the
proposed method are basically consistent with the reference-stacked section, which proves
the effectiveness of the method for data-containing multiples.
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Figure 10. Comparison of stacked sections: (a) stack result of reference velocity, (b) stack result of the
velocity obtained by control group, (c) stack result of the velocity obtained by proposed method.

4. Discussion

NMO-based velocity analysis is an indispensable step for whole seismic exploration,
and can provide the initial velocity model for other velocity analysis methods based on
the inversion problem [11,13]. The traditional interactive picking method may not meet
the processing requirements of massive seismic data. However, the effectiveness of the
published automatic methods is degraded by multiple interference. This gap for automatic
velocity analysis makes the subject of the proposed method meaningful. Compared with
conventional automatic velocity analysis, the proposed method significantly eliminates the
influence of multiples and obtain an accurate velocity curve, which has been demonstrated
in the synthetic and field examples.

4.1. Sensitivity to Multiple

For multiple-free datasets, conventional automatic velocity analysis can obtain a
relatively accurate picked velocity in a fully automatic way. The coherent noise in CMPs
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greatly affects the peaks picking, leading to a lower picked velocity. To overcome this
limit, several methods (e.g., multiple attenuation before velocity analysis [35], muting
low-velocity zone in velocity spectra [38], interactive guidance [70], dip filter in CMPs [26])
are proposed, which make the current velocity analysis semi-automatic. In this paper,
as to achieve velocity analysis for data-containing multiples in a fully automatic way,
we attributed the predicted multiples and combined them with two additional auxiliary
attributes through multi-attribute analysis as the novel principle of picking peaks.

4.2. Processing Detail

For velocity picking, the accuracy of picked velocity depends on the resolution of the
velocity spectra. For improving the resolution, many researchers propose several modified
semblances by measuring the difference between the neighbor traces in some domains and
building the corresponding time-weighting function, such as AB semblance [18], offset-
dependent weighting semblance [5], similarity-weighted semblance [14] and so on. For
the proposed method, we adopt the traditional semblance proposed by Taner [9]. The
reason for choosing the traditional one is automation and computing efficiency. The
resolution of these modified semblance depends on the applicability of the weighting
function, which means parameter adjustment and additional calculation costs. However,
we still recommend utilizing an advanced semblance calculation in complex situations
to improve the stability of automatic velocity analysis, such as data with the amplitude
variation with offset (AVO) anomaly.

Among the attributes proposed in this paper, multiple similarity is the most critical. Its
basic assumption is that the existing methods can accurately predict the travel time of the
multiples. In order to meet the assumption as much as possible, we recommend predicting
different types of multiples (e.g., surface-related multiples, internal multiples, water-bottom
multiples) by traditional multiple prediction methods in the industry. In this paper, we
highlight using the surface-related multiple elimination (SRME) approach [41] to predict
surface-related multiples and common-focus-point (CFP) approach [71] to predict internal
multiples, etc. The above strategies are obtained by balancing prediction and computational
efficiency. In theory, the completeness of predicting multiples determines the accuracy of
identifying multiples. We adopted multiple prediction without adjusting parameters to
efficiently obtain different types of multiples. Then, we utilized local similarity to ensure
the accuracy of the pro-posed automatic velocity analysis under the condition of large
prediction error. It is true that when the formation conditions are complex, some special
multiples such as diffraction multiples cannot be predicted. At this time, the multiple
similarity attributes may not be applicable, but the other two auxiliary attributes can be
combined to achieve primary extraction.

4.3. Usage Recommendation

For the proposed method, we recommend two types of uses:

(1) Batch processing when the data size is too large. For instance, when processing three-
dimensional data, automatic velocity analysis can reduce a lot of burden in the face of
massive CMPs. The proposed method is fully automatic and multiple-independent,
which is more suitable for adaptive batch processing.

(2) Instead of the traditional semblance spectra, the RGB-based color spectra provide a
more intuitive distinction between primaries and multiples. The color of each peak
implies rich geophysical information, which can be used as a reference for manual
picking. The relationship between seismic wavefield and color is shown in Table 3:

The RGB display allows a more convenient interaction mode in peaks picking. The
processor can just focus on the suspicious peaks and obtain a more accurate velocity model
with the assistance of color.
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Table 3. Analysis for the color spectra.

Type Features Color

Primary low similarity, high velocity and
amplitude in common
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4.4. Potential Research Directions

Recently, deep learning has rapidly developed and even surpassed the human level
in dealing with some practical problems, such as real-time processing. Automatic seismic
inversion and processing with deep learning has gradually become a trend [6,72]. How-
ever, the training process requires large numbers of labeled samples [73]. For NMO-based
velocity analysis, a standardized processing flow is needed, such as pre-processing, mul-
tiple attenuation and manual picking, which are time-consuming and laborious. A large
number of high-quality training sample sets can be obtained through the proposed method
combined with manual inspection.

Multiples are considered a contribution to imaging, which increases demand for
velocity model building of dataset-containing multiples. The proposed method can match
this demand and provide a micro-velocity model for follow-up imaging application. In
this way, migration velocity analysis based on the wave equation can be extended to
data-containing multiples.

5. Conclusions

We propose a multiple independent automatic velocity analysis method to solve the
problem that automatic picking methods do not work with multiples. The main idea here
is the utilization of the concept of multiple similarity as a novel peak-picking principle to
break the primary dominant assumption. We combine multiple similarity with classical
attributes such as velocity and amplitude as a compound-picking principle and adopt
multi-attribute analysis theory to pick adaptively the peaks of the primaries. The proposed
method has been applied to synthetic and field data tests, and has achieved better results
than the control group, which verifies its effectiveness to data-containing multiples.

Another advantage of the proposed method is the visualization. Different from
the traditional semblance spectra, we connect the three proposed attributes to the RGB
system and display these peaks by color, leading to one peak that can demonstrate more
comprehensive and intuitive geophysical information for processers.

The proposed method has the advantages of automation, efficiency and is easy to
implement. Considering the future development trend of seismic exploration, the proposed
multiple independent automatic velocity analysis method has practical value and sufficient
development potential.
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Appendix A

Analytic hierarchy process (AHP) [74] is used as the common weight determination
method in multi-attribute Analysis to determine the weight of each evaluation attribute
and the determination process is as shown in the equation

O =


1 o1 o2
1
o1

1 o3

1
o2

1
o3

1

, (A1)

where O represents the decision matrix, o1 is the scale of the first attribute relative to the
second attribute, o2 is the scale of the first attribute relative to the third attribute, and o3 is
the scale of the second attribute relative to the third attribute.

The specific value of the decision matrix can be obtained by looking up the scale table
in the AHP method [74]. AHP method does not need to quantify the importance of each
attribute but it only needs to qualitatively determine the importance of each attribute to
obtain the scale of each attribute. The VVD and AL attributes are more likely to be affected
by complex terrain because they are based on the difference of velocity and amplitude.
Because the multiple prediction method is widely used, therefore, it is qualitatively believed
that the MS attribute is slightly more important than the others. Moreover, the decision
matrix can be converted according to the scale table of AHP method into the form shown
in (A2).

O =


1 3 3
1
3

1 1
1
3

1 1

. (A2)

After the establishment of the decision matrix, the weight of each attribute in the AHP
method can be obtain by normalizing the principal vector (eigen vector) of the matrix [73].
Through this way, it can be found that ωL = 0.6, ωV = 0.2, ωA = 0.2.
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