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Abstract: Aflaj (plural of falaj) are tunnels or trenches built to deliver groundwater from its source
to the point of consumption. Support vector machine (SVM) and extreme gradient boosting (XGB)
machine learning models were used to predict groundwater aflaj potential in the Nizwa watershed
in the Sultanate of Oman (Oman). Nizwa city is a focal point of aflaj that underlies the historical
relationship between ecology, economic dynamics, agricultural systems, and human settlements.
Three hyperparameter algorithms, grid search (GS), random search (RS), and Bayesian optimisation,
were used to optimise the parameters of the XGB model. Sentinel-2 and light detection and ranging
(LiDAR) data via geographical information systems (GIS) were employed to derive variables of
land use/land cover, and hydrological, topographical, and geological factors. The groundwater aflaj
potential maps were categorised into five classes: deficient, low, moderate, high, and very high. Based
on the evaluation of accuracy in the training stage, the following models showed a high level of
accuracy based on the area under the curve: Bayesian-XGB (0.99), GS-XGB (0.97), RS-XGB (0.96), SVM
(0.96), and XGB (0.93). The validation results showed that the Bayesian hyperparameter algorithm
significantly increased XGB model efficiency in modelling groundwater aflaj potential. The highest
percentages of groundwater potential in the very high class were the XGB (10%), SVM (8%), GS-XGB
(6%), RS-XGB (6%), and Bayesian-XGB (6%) models. Most of these areas were located in the central
and northeast parts of the case study area. The study concluded that evaluating existing groundwater
datasets, facilities, current, and future spatial datasets is critical in order to design systems capable of
mapping groundwater aflaj based on geospatial and ML techniques. In turn, groundwater protection
service projects and integrated water source management (IWSM) programs will be able to protect
the aflaj irrigation system from threats by implementing timely preventative measures.

Keywords: machine learning; groundwater; hyperparameter; algorithms; aflaj; Oman

1. Introduction

Groundwater is critical to many countries’ livelihoods and economic survival. How-
ever, this hidden resource suffers from a lack of adequate management [1,2]. Groundwater
levels have been reported to be exhausted, and groundwater quality negatively impacts
both developed and underdeveloped countries [3]. In addition to exhaustion in some areas,
rising groundwater levels in other arid and semi-arid zones represent a significant risk
to ecological systems. To safeguard the long-term resilience of this subsurface resource, a
complex problem under an expanding population and climate change, there is an immedi-
ate need for efficient and effective management. Nevertheless, people in the Sultanate of
Oman (Oman), a developing nation, have historically adapted to arid conditions with little
or no surface water. Aflaj (plural for falaj) are trenches or tunnels built to transport ground-
water from their source to the point of consumption in the country. Omanis developed a
means to reach groundwater by digging horizontal underground channels, known as aflaj.
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Aflaj became the typical approach to groundwater abstraction, consisting of channels and
hydraulic structures for intercepting and distributing water for irrigation and residential
use [4]. These gravity-powered water networks, which transport water from sources to
areas of demand [5], have been in use for thousands of years and currently represent more
than one-third of the water consumed by agriculture. Aflaj irrigation systems are used
in more than 34 nations worldwide [6]. The system of aflaj is often likened to the qanat
irrigation system used in Iran in the Persian era about 3000 years ago. The aflaj irrigation
systems included in this inventory were divided into three categories recognised in Oman:
Iddi (Dawoodi), Ayni, and Ghaili [7]. The most sophisticated form is Daudi falaj, which
taps groundwater from 10–30 m below ground to use at the surface without pumping
(https://www.maf.gov.om/, accessed on 30 May 2022). The falaj channel begins in the
continuously saturated zone and continues underground in a down-gradient direction
until it reaches the earth’s surface. The ability to carry out hydraulic leveling and excavate
the falaj tunnels beneath the earth on rocky terrain with crude instruments exemplified
aflaj building genius. The two varieties, Ainiy and Ghaily aflaj are simple canalisations of
groundwater flowing on the surface naturally or coming out of a spring and running it till
it finds a suitable area for cultivation. Through these systems water flowing from the falaj
is managed wisely by a committee representing the owners of that particular falaj. A total
of 23% were Iddi, 28% were Ayni and 49% were Ghaili.

Notably, the aflaj irrigation systems in Oman have been under threat due to ground-
water pumping and economic development since 1970 [8,9]. Thus, groundwater levels,
including those for aflaj systems, have plummeted in recent decades around the world,
including Oman, due to excessive water extraction rates and ineffective management [6].
Therefore, Oman has limited annual rainfall, and the effects of climate change are likely
to worsen the situation. As a result, over 1000 aflaj are deemed dry or dead. Maintaining
active aflaj is a huge task that is nearly impossible for one party to accomplish alone. In
Oman, the main source of water is rain, which recharges ground aquifers; there is no
surface water in the country, and rain in most arid regions is highly variable in terms of
time, duration, quality, and space.

Groundwater, which flows through the soil and protects the water level in rivers, lakes,
and wetlands, is especially important during dry seasons when direct rainwater recharge
is low. This helps to preserve wildlife and plants, and its role in keeping water levels stable
during dry seasons helps to keep marine travel moving along inland waters and rivers.
Water is stored in deeper layers beneath the earth’s surface, which preserves its quality and
protects it from pollution, making it suitable for direct consumption without high extraction
or treatment costs, but it is critical to preserve this vital importance due to depletion or
pollution [10]. Therefore, assessing groundwater aflaj potential is critical for maintaining
groundwater resources, especially in data-scarce areas. To conduct an assessment, machine
learning techniques are needed to analyze the critical groundwater conditioning factors for
groundwater aflaj potential mapping.

The commonly used methods for detecting groundwater resources, including aflaj,
are flawed because they are complex, uneconomical, time-consuming, expensive, and occa-
sionally unreliable. Given these flaws, groundwater resources must be re-evaluated using
innovative technologies, such as artificial intelligence (AI), machine learning (ML), global
positioning systems (GPS), remote sensing, and geographic information systems (GIS).
While satellite and airborne sensors have limited applications in groundwater surveys, they
provide valuable insights into specific hydrogeological processes and variables, especially
when combined with other datasets. Remote sensing data are instrumental in developing
countries, where hydrogeological monitoring is rarely structured, and the potential for
groundwater resources is mainly unknown [11]. Remote sensing has recently emerged as a
critical tool in environmental management. Visual images can be examined and interpreted
to monitor the quality and quantity of water resources and their geographic distribution.
In conjunction with selected field observations, visual picture interpretation is an effective
method for mapping groundwater potential. In addition, high-resolution satellite-mounted

https://www.maf.gov.om/
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infrared sensors can provide data analysis of water stored in small reservoirs in arid and
semi-arid regions. These technologies have made groundwater assessment and determin-
ing groundwater potential more cost-effective [12,13]. Thus, managers may be assisted in
developing optimum water resource management scenarios through groundwater assess-
ments. The presence of groundwater in any location on Earth results from a combination of
climatic, geological, hydrological, physiographic, and ecological factors [14]. Additional
influencing factors include terrain, lithology, geological formations, and slope [15]. By
studying these parameters, groundwater aflaj potential maps for a basin can be developed
using several spatial approaches.

GIS provides numerous options for hydrological modelling, including spatially dis-
tributed models of watersheds. It can also identify a hydrologic basin containing all the data
required for parameter estimation and prototype implementation [16]. The land use and
land cover (LULC) of watersheds or river basins can directly affect the quality and quantity
of groundwater [17,18]. For example, agriculture is the most dominant land use in Oman.
Agricultural inputs, such as fertilisers, pesticides, and soil sediments, are transported
through runoff or infiltration [19]. Conservation tillage, vegetation buffer strips, contour
cultivation, cross-slope tillage, strip cropping, proper fertiliser application methods, tile
drainage, and livestock manure management are just a few of the methods used worldwide
to limit contaminated runoff.

The literature suggests a variety of efficient models for mapping groundwater potential
around the world. If good quality data about the aquifer are available, the best option
is to use physically based models, where the groundwater flow equation is obtained by
combining the Darcy law and the balance equation. On the contrary, in the absence of the
necessary information, the data-driven models are a valuable alternative for investigating
groundwater resources. Available techniques include logistic regression [20], frequency
ratio [21], evidential belief function [22], the weight of evidence [23], and the index of
entropy [20]. Furthermore, there are several ML algorithms, such as the support vector
machine (SVM), generalised linear model, random forest, boosted regression tree, general
linear model, classification, and regression tree [24–26]. However, applying ML methods to
groundwater aflaj mapping is still in its initial stages.

Several spatial studies have evaluated groundwater aflaj potential in Oman [27,28].
For example, GIS and remote sensing were used to map groundwater potential in Wadi
Al-Jizi in northern Oman [29]. However, that study used slope, soil, geomorphology, LULC,
and geology. At the same time, many critical factors, such as distance to drainage, elevation,
topographic wetness index (TWI), drainage density, distance to faults, stream length, rain-
fall, and fault density, were not included. Despite extensive studies on the threats to aflaj
irrigation systems [30,31], little has been done to identify the current distribution of aflaj
potential groundwater, and there have been no concentrated efforts on mapping groundwa-
ter aflaj potential in the country. Periodic studies to monitor changes in groundwater levels
have been conducted in a few locations in Oman. However, the data were not current, the
studies were small in scale, and the results did not represent an accurate picture of the
current conditions of groundwater aquifers.

Thus, in this study, five robust ML methods and hyperparameter algorithms, in-
cluding SVM, extreme gradient boosting (XGB), extreme gradient boosting using random
search (RS-XGB), extreme gradient boosting using grid search (GS-XGB), and extreme
gradient boosting using Bayesian optimisation (XGBO), were applied to model and map
groundwater aflaj potential in the Nizwa watersheds. Although the Bayesian optimisation
methodology has been extensively applied to modelling flooding, this is the first study to
use it to assess groundwater potential.

2. Materials and Methods
2.1. Study Area

The city of Nizwa is the regional centre of the Dakhiliyah governorate in the Sultanate
of Oman. The city is a focal point of aflaj that underlies the historical relationship between
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ecology, economic dynamics, agricultural systems, and human settlements (Figure 1). It is
located between 57◦20′16E, 23◦2′22N, and 57◦48′21E, 23◦5′22N. The study area’s elevation
ranges from 388 to 2491 m above sea level. Nizwa is located at the foot of Al Jabal Al
Akhdar to the south, surrounded by mountains, dry rivers (wadis), and orchards. Palm
trees tower over the city. Nizwa has an arid climate, mild weather from November to
March, and temperatures as low as 12 ◦C in January. The summers are hot and dry, with
temperatures reaching up to 45 ◦C in July. In the city, there are 134 falajs and three types of
aflaj systems.

Figure 1. (a) Location of the study area, (b) Aflaj locations with elevation 5 × 5 m obtained from
National Survey Authority, Oman, (c) Training and validation data of the aflaj systems.

2.2. Dataset Preparation for Spatial Modelling
2.2.1. Aflaj Data

To model the aflaj groundwater potential, aflaj and non-aflaj points were generated in
ArcGIS 10.8 using random point extensions. Of the 336 points, 168 were aflaj points, and 168
were non-aflaj points. The datasets were divided into training (135 or 70%) and validation
(101 or 30%) randomly. The groundwater observation aflaj data were obtained from the
MAFWR, Oman (https://www.maf.gov.om, accessed on 1 March 2022 ). The aflaj location
map for the study area in 2021 was prepared based on a 1:10,000 scale topographical map
to create maps of potential aflaj for the study area. An extensive field survey confirmed.

2.2.2. Groundwater Condition Variables

DEM: A DEM with a 5-metre two-dimensional resolution acquired from the National
Survey Authority in Oman (http://nasom.org.om, accessed on 22 September 2020) was
produced from light detection and ranging (LiDAR) data to derive thematic maps of
groundwater condition variables. The main variables considered in this study, as well as

https://www.maf.gov.om
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those influencing the occurrence of aflaj, are discussed further below. This study evaluated
thirteen significant aflaj variables: elevation, slope, slope aspect, TWI, geology, soil, plan
curvature, profile curvature, drainage density, lineament density, LULC, distance to fault,
and rainfall (Figure 2).

Topography: Topography is a geomorphologic factor used as a surface indicator to
investigate groundwater potential. The elevation of the study area was calculated using a
DEM with a resolution of 5 m and divided into five classes (Figure 2a). Changes in altitude
can affect climate conditions, leading to changes in vegetation type, soil conditions, land
use, and precipitation [32].

TWI: In the hydrogeological system, the TWI is critical (Figure 2b). It is widely used to
describe how topographic impediments influence the location and size of saturated sources
that generate surface runoff [33–35].

Slope: The slope of a physical characteristic is the degree of inclination of that surface to
the horizontal and is a vital parameter for determining groundwater conditions. Zones with
steep elevation angles have high runoff volumes and low infiltration rates. A watershed’s
slope is one measure of the amount of water available for groundwater recharge and the
terrain’s ruggedness. Slope influences runoff and infiltration rates. In this study, slope was
determined in ArcGIS Desktop 10.8 using a DEM with a resolution of 5 m (Figure 2c). The
study zone’s slope degree map was created and classified into five classes based on an
equal interval scheme: 0–8, 8–21, 21–34, 34–51, and 51–88.

Drainage density: Drainage density indicates the closeness of the spacing of stream
channels and can be calculated as the total length of all streams and rivers in the watersheds
divided by the area of the drainage watershed. The drainage density has an inverse
relationship with groundwater prospects. A zone with low-drainage- density causes more
infiltration and decreased surface runoff and is suitable for groundwater development.
Based on the surface-drainage density, the study area is grouped into five classes: 0.60–3.31,
0.31–4.42, 4.42–5.49, 5.49–6.79, and 6.79–9.14 km/km2. Drainage density indirectly affects
the groundwater potential of the study area; its values were calculated using the line
density function in ArcGIS Pro 2.9 (Figure 2d).

Geological map: The geological map of the study area was classified into alluvial and
self-facies, alluvial deposits, basin facies, basin slope and shelf facies, cumulate, and high-
level gabbro, intrusive-peridotite and gabbro, khabra deposits, shelf facies, and volcanic
rocks, slope colluvium and scree, tectonised harzburgite, volcanic rocks, basin facies, and
slope (Figure 2e).

Lineament: The lineament viscosity map of the Nizwa watershed was assembled using
line attributes obtained from the Geological Survey of Oman (http//www.pdo.co.om/,
accessed on 1 July 2021) (Figure 2f).

Soil: The soil types in the study area play a critical role in aflaj groundwater po-
tential and water-holding capacity; they are essential in delineating aflaj groundwater
potential areas (Figure 2g). The soil groups found in the study area included rock outcrop,
torriorthents, calciorthids-torrioifluvents-torriorthents, torrioifluvents-torriorthents, gyp-
siorthids (loamy), and torriorthents-gypsiorthids. The soil type was obtained from the
MAFWR (https://www.maf.gov.om/, accessed on 22 July 2021).

Curvature: The curvature of a curve or the curvature of a surface deviates from that of
a straight line or plane. Curvature is a topographical factor that depicts directional flow
and specifies the rate at which the maximum slope direction changes. Positive curvature
represents a convex area, zero curvature shows a flat area and negative curvature represents
a concave area. The plan curvature map was created from the DEM using the surface analyst
tool in ArcGIS Pro software (Figure 2h). Based on the standard classification, the profile
curvature was determined and categorised into three groups, including <(−0.001), (−0.001;
0.001) and >(0.001) (Figure 2i).

http//www.pdo.co.om/
https://www.maf.gov.om/
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Figure 2. Illustrate different thematic maps (a) elevation, (b) TWI, (c) slope, (d) drainage density (e)
geology map, (f) lineament density (g) soil types (h) plan curvature, (i) profile curvature (j) LULC,
(k) rainfall, (l) slope aspect, and (m) distance to faults.

Land-use/land cover: A supervised classification technique produced the land use
map from the Sentinel-2 data. Sentinel is an earth satellite program designed, managed,
and launched by the European Space Agency (ESA). Sentinel-2A and B are multispectral,
high-resolution land observation satellites that capture images in thirteen bands and at
multiple geometrical resolutions. This study used a free-cloud image and classified it
into four major land use classes: vegetation, bare land, developed land, and water bodies.
The accuracy of the land use classification was calculated as 94% using the Kappa index.
Figure 2j presents the LULC map.

Rainfall: Rainfall data from 1975–2021 at two stations in the city were obtained from
the Civil Aviation Authority, Oman (http://met.gov.om, accessed on 30 December 2021).
The data were used to create a thematic map using geostatistical inverse distance weighted
(IDW) interpolation in ArcGIS Pro 2.9. According to the IDW results, the annual precip-
itation ranged from 68 mm–190 mm in the study area. Rainfall is a critical parameter in
determining aflaj groundwater potential and significant hydrologic sources of groundwater
storage. Rainfall is typically heavier in the upper part of the study area, decreasing in the
south (Figure 2k). Based on standard classifications, slope/aspect was divided into nine
groups, indicating eight directions and flat zones (Figure 2l). The SVM, XGB, RS-XGB,
GS-XGB, and XGBO models were applied to all aflaj factors using a raster grid. Finally,
all leading aflaj factors were converted to a raster grid with 5 × 5 m cells. The flowchart
illustrates the steps of data analyses in the study area. The materials and methods are given
in the flowchart of Figure 3.

http://met.gov.om
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Figure 3. The flowchart illustrates the steps of data analyses in the study area.

2.3. Multicollinearity Analysis

Correlation analysis of multicollinearity variance inflation factors (VIF) was used to
evaluate the impact of each variable on the accuracy of the final aflaj maps. VIF determines
whether two or more variables tell the same story [36]. According to the theory, any variable
with a value greater than 7.5 should be eliminated from consideration. Multicollinearity
testing using VIF was performed on a pool of 13 conditioning factors chosen to match the
conceptual model as the first step in the ML analysis. The VIF values should all be less than
the ESRI-defined threshold of 7.5, indicating that these variables are not redundant.

2.4. Machine Learning Methods
2.4.1. Support Vector Machine (SVM)

The SVM method is a well-known ML algorithm based on the Vapnik concept (1995).
This technique is applied to study and control complex engineering systems. In terms of
the structural risk minimisation norm, it can detect any interconnection between input and
output variables. Based on the training dataset, this method determines the most practical
combination of conditioning factors and applies these criteria to the entire dataset to predict
possible groundwater locations [37]. As a result, SVM is more advanced and has a more
complex structure than other statistical methods. Furthermore, even with a small training
dataset, SVM is efficient.

The classification hyperplane was constructed at the centre of the maximum separation
between the two classes by the SVM. If the point is above the hyperplane, it is assigned a
value of +1; otherwise, it is assigned a value of −1 [38]. Support vectors are the training
points closest to the optimal hyperplane [39]. This process begins with the training data
of instance-label pairs (xi, yi) with xi εRn, yiε(1, −1) and i = 1, . . . , m. x is a vector of input
space that comprises the slope, elevation, slope aspect, TWI, rainfall, geology, soil types,
fault density, drainage density, plain curvature, profile curvature, distance to faults, and
LULC. The two values’ classes (1,−1) donate aflaj pixels and non-aflaj pixels. SVM proposes
optimal hyperplane separation from the training set into aflaj and non-aflaj 1, −1 data.

2.4.2. Extreme Gradient Boosting (XGB)

XGB is an ML algorithm that uses a gradient-boosting structure, but with the added
benefit of parallel tree boosting. It employs a more regularised algorithm than gradient
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boosting to combat overfitting, resulting in improved performance. To predict the output,
XGB uses a boosting method that combines many weak learners [40] and parallel processes
to reduce the total calculation time. The linear booster is useful in situations in which
relationships are complex. Step-by-step information about XGB can be found in [41].

2.5. Hyperparameters Algorithm
2.5.1. Grid Search

Hyperparameter algorithms are configuration points that allow an ML model to be
tailored to a specific task or dataset. Grid search (GS) experiments are commonly employed
to optimise the hyperparameter of learning algorithms in empirical ML approaches [42].
Multistage, multi-resolution grid experiments that are more or less automated are com-
monly used because a grid experiment with a fine enough resolution for optimisation
would be prohibitively expensive [43]. Aflaj potential was modelled using a GS with a set
of fixed parameter values essential for optimal accuracy based on n-fold cross-validation.
The optimal parameters, such as the number of characteristics to examine at each split,
the maximum tree depth, the number of trees in the forest, and the minimum number of
samples required to be split at the leaf node, were determined using the GS algorithm [44].
We used GS to investigate and model potential aflaj groundwater in the Nizwa watersheds.

2.5.2. Random Search

According to the literature, random search (RS) is more efficient than GS for hyper-
parameter optimisation in several ML algorithms on various datasets. In most cases, the
RS found better models and required less computational time than the GS experiments of
Larochelle, et al. [45]. For practical reasons related to the statistical independence of each
trial, random experiments are easier to conduct than grid experiments. To obtain more
accurate results in investigating, modelling, and mapping, RS was used to model the aflaj
potential groundwater in the study area.

2.5.3. Bayesian Optimization (BO)

Bayesian optimisation (BO) is useful for finding the extrema of computationally ex-
pensive functions to solve. It can be used to solve tasks that lack a closed-form expression
and functions that are difficult to calculate, have complex derivatives, or are non-convex.
The theory of BO combines the prior distribution of the function f (x) with the sample
evidence (information) to gain the posterior of the function, which is then used to identify
where the function f (x) is maximised according to a characteristic. Although the Bayesian
algorithm has been broadly used to prototype landslides [46,47], this study is the first
to use the Bayesian algorithm to investigate and map aflaj groundwater potential in the
Nizwa watershed. The BO method is derived from Bayes’ theorem, and proper step-by-step
instructions can be found in [48].

2.6. Validation of Delineated Aflaj Groundwater Potential Zones

A common summary statistic to describe the receiver operating characteristics (ROC)
curve is to calculate the area under the RCO carve. A measure with perfect predictive
power would yield a value of 1.0, while one with no power would yield one of 0.5. Values
less than 0.5 indicate a measure that is systematically incorrect. The maps of the aflaj
groundwater potential zone were validated using data from existing aflaj systems. The
aflaj data was prepared and overlaid on the study areas’ aflaj potential groundwater maps.
ROC was used to determine the accuracy of aflaj potential groundwater zone maps. Python
software was used to plot the validation results.

3. Results
3.1. Model Input Variables

A multicollinearity investigation was employed to determine suitable independent
factors for modelling groundwater potential and included two criteria: VIF and tolerance.
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The results of the multicollinearity analysis of thirteen independent variables affecting
groundwater potential are shown in Table 1. The highest collinearity was related to the ele-
vation variable, with a VIF of 4.08 and a tolerance of 0.25. All variables had a VIF of less than
five, so no high collinearity was observed. Therefore, these thirteen independent variables
were considered suitable for modelling groundwater potential in the Nizwa watershed.

Table 1. The multicollinearity evaluation of thirteen independent variables.

Variables VIF Tolerance

Slope Aspect 1.19 0.84
Elevation 4.08 0.25
Drainage Density 2.59 0.39
Distance from fault 2.08 0.48
Geology 1.63 0.61
Lineament density 3.74 0.27
LULC 1.21 0.82
Plan curvature 1.34 0.74
Profile curvature 1.48 0.68
Annual rainfall 4.80 0.21
Slope 1.62 0.62
Soil 2.32 0.43
TWI 1.64 0.61

3.2. Hyperparametres of XGB Model Parameters

It is vital to calculate optimisation parameters for better modelling and efficient
prediction. This study applied three hyperparameter algorithms—GS, RS, and BO—to
optimise four XGB model parameters (nround, eta, lambda, and alpha) in aflaj groundwater
potential. The optimisation results of the XGB model parameters based on GS, RS, and BO
are shown in Figures 4–6, respectively. Table 2 shows the optimal parameters for the XGB
model, as determined by the GS, RS, and BO hyperparameter algorithms.

Figure 4. Interactions between hyperparameter values based on the grid search algorithm in the
extreme gradient-boosting model.
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Figure 5. Interactions between hyperparameter values based on the random search algorithm in the
extreme gradient-boosting model.

Figure 6. Optimisation of the extreme gradient-boosting model parameters based on Bayesian
hyperparameter optimisation results.

Table 2. Optimised parameters based on three hyperparameter algorithms.

nround lamba alpha eta Error

XGB 30 0.5 1 0.1 0.345

GSXGB 50 0.3 1 0.1 0.3392
RSXGB 10 0.05472368 0.9992012 2.6803 0.3416736
BXGB 988 0.03476 1.060648 0.0001133161 0.322051

3.3. Model Validation

Validation of the ML models is a significant step in modelling groundwater potential.
This investigation used five receivers operating characteristic (ROC) criteria to evaluate
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ML models in the training and validation stages. The results of the evaluation of five ML
algorithms in modelling groundwater aflaj potential are shown in Table 3. A high level of
accuracy was recorded for the Bayesian-XGB (0.99), GS-XGB (0.97), RS-XGB (0.96), SVM
(0.96), and XGB (0.93) based on the AUC criteria (Figure 6). As shown in Figure 7 and
Table 3, the three applied hyperparameter algorithms increased the efficiency of the XGB
model in the training and validation stages. The validation showed that the Bayesian
hyperparameter algorithm increased the XGB’s efficiency in modelling groundwater aflaj
potential. The evaluation of efficiency for the five ML algorithms based on AUC criteria in
the validation stage showed high efficiency for the Bayesian-XGB (90.48%), SVM (87.85%),
GS-XGB (86.97%), RS-XGB (86.72%), and XGB (83.90%).

Figure 7. Cont.
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Figure 7. Evaluation models in the testing stage for mapping groundwater potential based on AUC:
(a) SVM, (b) XGB, (c) GS-XGB, (d) RS-XGB, and (e) B-XGB.

Table 3. Model evaluation during the training and testing phases.

Models Stage
Criteria

Sensitivity Specificity PPV NPV AUC

Train 0.87 0.86 0.88 0.85 0.96
SVM Test 0.88 0.78 0.74 0.90 0.88

Train 0.89 0.88 0.89 0.91 0.93
XGB Test 0.76 0.75 0.68 0.81 0.84

Train 0.89 0.91 0.91 0.93 0.97
GS-XGB Test 0.86 0.88 0.83 0.89 0.87

Train 0.89 0.88 0.89 0.91 0.96
RS-XGB Test 0.88 0.88 0.84 0.91 0.87

Train 0.96 0.97 0.97 0.98 0.99
Bayesian-XGB Test 0.88 0.86 0.82 0.91 0.90

3.4. Groundwater Potential Mapping

Groundwater aflaj potential maps were predicted based on five ML algorithms: SVM,
XGB, GS-XGB, RS-XGB, and Bayesian-XGB. The groundwater potential was envisioned as a
probability between 0 and 1. This probability was reclassified to represent the groundwater
potential classes into very low, low, moderate, high, and very high, based on the natural break
method in ArcGIS 10.7. The maps of groundwater potential and the percentage of each
class are shown in Figure 8. The highest rate of groundwater potential was very high in the
XGB (10%), SVM (8%), GS-XGB (6%), RS-XGB (6%), and Bayesian-XGB (6%) models. Most
of these areas were located in the central and northeastern portions of the study area.
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Figure 8. Cont.
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Figure 8. Map of groundwater potential in the Nizwa watersheds based on five machine learning
algroithms: (a) SVM, (b) Xgboost, (c) Rs-Xgboost, (d) GR-Xgbosst and (e) Bayesian-Xgboost.

3.5. Importance Value

The results of the variables’ importance in aflaj groundwater potential modelling
based on the five ML algorithms are shown in Table 4. The thirteen variables that affected
aflaj groundwater potential had different effects on groundwater potential modelling in
the case study. In the SVM model, lineament density, elevation, annual rainfall, and
distance from the fault had the highest importance, while LULC, soil, and geology had
the lowest importance. In the XGB, GS-XGB, RS-XGB, and B-XGB models, annual rainfall,
elevation, and distance from fault variables, respectively, made substantial contributions to
groundwater potential modelling. At the same time, soil, LULC, and geology, respectively,
made weak contributions.

Table 4. Importance value.

Variables SVM XGB GS-XGB RS-XGB B-XGB

Annual rainfall 84.75 100.00 100.00 100.00 100.00

Slope Aspect 9.54 21.82 9.86 9.57 9.30
Distance from fault 76.15 29.44 26.81 26.68 25.05
Drainage density 45.87 18.74 8.37 8.10 8.38
Elevation 97.31 48.97 40.02 39.38 40.41
Geology 5.19 2.03 10.23 10.17 8.03
Lineament density 100.00 4.69 9.45 9.25 10.64
LULC 0.43 0.09 3.13 3.10 0.46
Plan curvature 10.36 14.38 8.17 7.00 4.65
Profile curvature 26.45 8.92 6.34 5.43 3.04
Slope 23.11 33.57 20.90 20.64 23.79
Soil 2.42 0.02 0.03 0.01 0.02
TWI 14.89 5.99 5.05 4.07 2.19
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4. Discussion

In recent years, climate change and improper groundwater use have led to the spatial
modelling of groundwater potential. Researchers have emphasised the importance of
understanding the factors that better forecast groundwater resources in arid and semi-arid
regions, where groundwater plays a vital role in the water supply for various services.
Generally, spatial modelling of natural phenomena is complex, and no algorithm can make
perfect or complete predictions [49]. Therefore, researchers use contradictory algorithms
and methods to predict and model with appropriate accuracy. This study used SVM and
XGB ML models to predict groundwater potential in the Nizwa watershed. The study
used three hyperparameter algorithms (GS, RS, and BO) to optimise the parameters of the
XGB model.

The variables of slope, slope aspect, attitude, profile curvature, plan curvature, TWI,
drainage density, lineament density, and LULC were used to map the aflaj groundwater
potential in the study area. The multicollinearity evaluation of thirteen independent
variables showed that all variables had a VIF of less than five, so no high collinearity was
observed. Therefore, these thirteen independent variables were considered suitable for
modelling groundwater potential in the Nizwa watershed (Table 1).

The study results revealed that the three algorithms used in optimising the parameters
of the XGB model enhanced the productivity of the XGB model in modelling the aflaj
groundwater potential in the study area (Figures 4–7). Tuning the ML parameters based on
hyperparameter algorithms increased the model’s efficiency [50,51]. Various scholars [52,53]
in the field of natural hazard modelling have used hyperparameter algorithms, such as RS
and GS, to determine the optimal parameters of ML models; their results have shown that
these algorithms have a positive effect on improving model performance. For groundwa-
ter potential modelling, Al-Fugara, Ahmadlou, Al-Shabeeb, AlAyyash, Al-Amoush, and
Al-Adamat [54] determined the optimal parameters in the SVR model using hyperparame-
ter RS and genetic algorithms. Their findings demonstrated that these algorithms improved
the SVR model’s performance in groundwater potential modelling.

The effect of hyperparameter algorithms on the performance of the XGB model in
groundwater aflaj potential modelling in the Nizwa watershed showed that the Bayesian-
XGB algorithm had better performance than the RS-XGB and GS-XGB algorithms (Table 2
and Figure 7). By increasing the number of samples and input/output data, the Bayesian
algorithm adjusted the objective function’s posterior distribution to optimise the model
parameter and obtain the best parameters [55,56]. The high efficiency of using BO for
optimising ML algorithms, such as random forest, logistic regression, and SVM models,
has been confirmed in landslide hazard modelling [57,58]. Janizadeh, et al. [59] also used
BO to optimise XGB model parameters to model flood susceptibility. Their results showed
that the Bayesian hyperparameter algorithm enhanced the performance of the XGB model
in modelling flood susceptibility.

This study highlighted the relative importance of the 13 independent variables in
groundwater aflaj potential modelling, but demonstrated that annual rainfall, elevation,
and distance from fault variables are more important than other variables in modelling
(Table 3). The mountainous zone of the study area has the highest aflaj groundwater
potential. All five maps displayed very high aflaj groundwater potential in the study area
(Figure 8) because of the numerous faults that cause water to pool between the faults,
resulting in the formation of wet fractures and the installation of water resources in the
alluvium. Abrams, et al. [60] observed that moisture fissures support the use of lineament
density to represent the fracture systems’ role as groundwater conduits in the western
Hajar Mountains of Oman. The aflaj collect and discharge the water from these moisture
fissures. As a result, high lineament densities increase the ability to store and transmit
groundwater via the secondary porosity of fractures in the subsurface. Negative curvatures
also indicate areas where runoff may pool or channel, potentially increasing infiltration.

Although standing water at the valley bottoms can indicate a saturated subsurface or
poor infiltration conditions, the presence of water resources in alluvial deposits suggests
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enough groundwater for human use in this area. Our findings showed that the lowest
(very low) aflaj groundwater potentials were located away from the mountain plains. The
average annual rainfall in most parts of the country is less than 100 mm, but it can reach
350 mm in mountainous areas. The geology and hydrogeology of Oman are complex, and
there are many different aquifer systems, many of which are relevant only in local areas.

This research suggests that ML algorithms are adequate for aflaj system groundwater
prospecting and that using remote sensing-derived variables and advanced GIS layers
improves the model accuracy and precision of aflaj groundwater potential maps. Even
if a given study area contains many variables that influence hydrogeological conditions,
most can be precisely mapped using ML, deep learning methods, remote sensing, and GIS
products. This is especially important for large study areas like remote or undeveloped
regions and data-scarce locations where ground-based investigations like geophysical and
direct hydrological surveys are impractical. Both surface and subsurface geology and
lineaments must be carefully considered during aflaj groundwater potential indexing.

To index groundwater potential in varying layers, knowledge-based approaches are
necessary. The effectiveness of the SVM and XGB ML models, as well as the hyperparameter
algorithms GS, RS, and BO to optimise the parameters of the XGB maps, supports the use of
knowledge-based techniques for calculating semi-quantitative models of aflaj groundwater
potential, enabling extrapolation of aflaj groundwater potential in areas with a shortage
of data.

5. Conclusions

SVM and XGB ML models were used in this study to model and predict groundwater
potential in the Nizwa watershed. The primary goal of this study was to optimise the
parameters of the XGB model using three hyperparameter algorithms: GS, RS, and BO. The
variables of slope, aspect, attitude, plan curvature, profile curvature, TWI, drainage density,
and lineament density were calculated using LiDAR data and GIS. Sentinel-2 satellite data
were used to map the LULC. Based on the evaluation of accuracy in the training stage, the
following models showed a high level of accuracy based on the AUC: Bayesian-XGB (0.99),
GS-XGB (0.97), RS-XGB (0.96), SVM (0.96), and XGB (0.93). The ML and hyperparameter
algorithms’ factor analysis results recommended thirteen factors to investigate and map
aflaj groundwater potential in the study area. Thus, the study concluded that evaluating
existing groundwater datasets, facilities, and current and future spatial datasets is critical
for designing systems capable of mapping groundwater aflaj based on geospatial and ML
techniques. In turn, groundwater protection service projects and integrated water source
management (IWSM) programs will be able to safeguard the aflaj irrigation system by
implementing timely preventative measures. The mapping of groundwater aflaj potential
can contribute to the development of more effective management techniques for their
control. In addition, mapping is necessary for developing predictive models that offer
information on the likelihood of occurrence, spatial distribution, and density under various
environmental variables. These updated maps will aid IWSM initiatives in educating
and empowering authorities and organizations concerned with groundwater quality and
quantity. Spatial modelling will also help reduce costs, like GIS, ML, and remote sensing-
based methods developed to pursue this research promise more practical and cost-effective
solutions. In addition, this research will save money on monitoring since the remote sensing-
based technologies developed in this project will give a more efficient and cost-effective
way to monitor water resources on a broad scale in Oman.
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