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Abstract: Height estimation from a single Synthetic Aperture Radar (SAR) image has demonstrated
a great potential in real-time environmental monitoring and scene understanding. The projection
of a single 2D SAR image from multiple 3D height maps is an ill-posed problem in mathematics.
Although Unet has been widely used for height estimation from a single image, the ill-posed problem
cannot be completely resolved, and it leads to deteriorated performance with limited training data.
This paper tackles the problem by Unet with the help of supplementary sparse height information and
proxyless neural architecture search (PDPNAS) for Unet. The sparse height, which can be accepted
from low-resolution SRTM or LiDAR products, is included as the supplementary information and is
helpful to improve the accuracy of the estimated height map, especially in mountain areas with a wide
range of elevations. In order to explore the effect of sparsity of sparse height on the estimated height
map, a parameterized method is proposed to generate sparse height with a different sparse ratio.
In order to further improve the accuracy of the estimated height map from a single SAR imagery,
PDPNAS for Unet is proposed. The optimal architecture for Unet can be searched by PDPNAS
automatically with the help of a depth-aware penalty term p. The effectiveness of our approach
is evaluated by visual and quantitative analysis on three datasets from mountain areas. The root
mean squared error (RMSE) is reduced by 90.30% through observing only 0.0109% of height values
from a low-resolution SRTM product. Furthermore, the RMSE is reduced by 3.79% via PDPNAS for
Unet. The research proposes a reliable method for estimating height and an alternative method for
wide-area DEM mapping from a single SAR image, especially for the implementation of real-time
DEM estimation in mountain areas.

Keywords: synthetic aperture radar (SAR); height estimation; single SAR image; Unet; sparse height
information; proxyless depth-aware penalty neural architecture search (PDPNAS)

1. Introduction

The Digital Elevation Model (DEM) is a 3D representation of the height information
about the terrain surface of earth or other planets. It can be mapped from airborne laser
radar measurement (LiDAR), photogrammetry, synthetic aperture radar (SAR) stereo
measurement, and interferometric synthetic aperture radar (InSAR) technology. DEM
generated by LiDAR and InSAR has high accuracy. Limited by the high cost and small
coverage, aerial LiDAR products are difficult to be applied in large-scale areas.

Due to its all-time and all-weather ability, SAR is widely applied in earth observa-
tions [1]. InSAR is an imperative technology for global Digital Elevation Model (DEM)
mapping with the advantage of phase-measuring ability. The classical methods require
two or more SAR images to extract elevation. The InSAR images are collected from either
two radar sensors imaging at one time or one radar sensor acquired twice with one revisit
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interval. However, they are limited to the long operation time, high cost, and complex
data postprocessing.

By contrast, height estimation from a single SAR image has no restrictions on image
acquisition. However, height estimation from a single SAR image is an ill-posed problem,
since the pixel value from a certain 2D SAR image can be represented from more than one
height value. In order to tackle this problem, geometry-based methods leverage monocular
cues, including orientation of the surfaces [2], location motion cues [3] and superpixel
segmentation of the planar surfaces [4]. These methods make it possible to construct a
3D structure from a single 2D image. However, complex geometric operations lead to
challenges in large memory consumption and long operation time, and it is hard to meet
the requirement of real-time performance in practical applications.

With the development of convolution neural networks (CNN), it has been widely used
in monocular height estimation from a single aerial image. Typically, a U-shape CNN (Unet)
is applied for height estimation from a single imagery. IM2HEIGHT [5] is the first attempt
to estimate a height map from a single-view optical image via an end-to-end Unet. Skip
connections are proposed to combine the low-level and high-level feature maps for higher
height estimation accuracy. Residual blocks are employed to improve the performance
of Unet. Costante [6] attempts to use single SAR imagery and a phase map for height
estimation. Since the phase map from a single SAR image is uniformly distributed [7]
and meaningless, a more efficient postprocessing approach is required to be performed
on the phase map for height estimation. Amirkolaee [8] proposes an improved decoder
network for Unet. A multi-scale convolution layer is applied in the decoder subnetwork for
capturing more context information. The spatial resolution of the output feature map has
been improved by this method. IMG2DSM [9] leverages the generative adversarial network
for monocular height estimation on the base of Unet. Son [10] proposes a deep monocular
depth network for single aerial imagery height estimation. It is especially efficient for 3D
reconstruction in urban areas when the building suffers from sudden change. However,
the ill-posed one-to-many problem is not completely resolved by Unet, especially with
limited data in remote sensing. The accuracy of the estimated height map is not high
enough, especially for mountain areas with a wide range of elevations.

Supplementary information enforcing geometric constraints has proved to be efficient
for tacking the ill-posed problem. These methods can be categorized into: multi-task
learning and multi-sensor fusion methods. In multi-task learning methods, additional
visual tasks are jointly trained with height estimation. The additional tasks are composed of
pixel-wise semantic segmentation [11,12], 2D/3D edges detection [13] and signed distance
prediction [14]. The potential relationships between these tasks are learned by Unet, which
leads to superior performance. Mallya [15] proposed the PackNet, and it includes multiple
visual tasks with the use of one single Unet. In multi-sensor methods, multi-source data
are utilized as the inputs of Unet to estimate the height map. IM2ELEVATION [16] takes
both of the LiDAR and optical data to be the inputs of Unet for height estimation and
a registration strategy based on mutual information. Both LiDAR and optical data are
accepted as the inputs of Unet for height estimation. Amirkolaee [17] suggests that features
are not well defined for the non-ground object in a single aerial image. Then, the estimated
height map from ground objects and a Shuttle Radar Topography Mission (SRTM) DEM
data from non-ground objects are combined for high-precision height estimation. Kim [18]
proposes a very deep super resolution (VDSR) for depth completion based on the VGG16
network. Xia [19] leverages the sparse height information for monocular depth estimation
(PrDepth). DORN features are extracted from a network which is pretrained on a large-scale
depth estimation KITTI dataset. Since there are no available large-scale SAR datasets for
extracting suitable DORN features in advance, the DORN features pretrained by depth
estimation datasets may not be helpful for height estimation from a single SAR image.

Another approach to tackle this problem by Unet and similar architectures with limited
data is to benefit from transfer learning and data augmentation techniques, and they
can be used as alternative methods to the supplementary information-based methods.
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UNet-VGG16 [20] is proposed to improve the performance of segmentation for magnetic
resonance imaging (MRI) images with the help of a pretrained model. The encoder of UNet-
VGG16 is extracted from VGG16, which is pretrained on ImageNet datasets, and the correct
classification ratio (CCR) has been improved significantly by UNet-VGG16. Pellegrin [21]
leverages the depth estimation Unet model pretrained on a large-scale urban dataset KITTI,
and then, the pretrained model was applied for a single aerial image height estimation.
Few-shot learning, which relies on knowledge transferring, focuses on improving the
performance of CNN with limited data. Stan [22] proposes an efficient approach for
unsupervised few-shot continual learning. Since the distribution of the source domain
is unacceptable in this case, a surrogate Gaussian prototypical distribution estimator is
used to measure distances between the data from the source and target domain. Then, the
distribution of the two domains can be aligned indirectly. Wibowo [23] proposes using a
dynamic adaptive subspace classifier [24] to improve the performance of few-shot learning.
Zhang proposes using the data augmentation method to generate more training data for
vehicle detection from two-pass SAR images [25]. Since the registration errors exist in the
two-pass SAR images and they have a great impact on the detection precision, simulated
registration errors are introduced to generate the training data which is more realistic.

Neural architecture search (NAS) has been widely used in automatically designing the
optimal architecture for CNN. An over-parameterized network consisting of many mixed
blocks is employed to search for the optimal architectures. Each mixed block contains many
conventional operations of CNN, including 3 × 3, 5 × 5, 7 × 7 convolution/transposed
convolution/down or upsampling, identity mapping, etc. Limited by the computation
consumption, conventional NAS methods [26,27] are trained on proxy tasks when they
are applied to large-scale datasets. The proxy tasks mean smaller datasets/models, fewer
training epochs, etc. Typically, the performance of optimal architecture learned on proxy
tasks is not guaranteed on the target task. The emergence of proxylessNAS [28] has
made it possible to learn the optimal architecture on a target task directly. Most of the
feasible paths linking candidate operation sets are cut off, and only one of them is set as
active in the training stage. Therefore, the performance of the optimal model searched
by proxyless NAS is guaranteed on the target task, and it can be deployed in practical
applications. The searching cost is reduced by path binarization and a path-level pruning
in the training stage. The time complexity of proxylessNAS is nearly the same as the
conventional networks, and the classification accuracy increases by 2.78% on ImageNet
datasets. NAS-Unet [29] is the first attempt to combining the advantages of proxylessNAS
and Unet. The optimal architecture learned by NAS-Unet may be asymmetric. It leads to a
deteriorated performance for Unet. Another problem of NAS-Unet is that the Unet searched
by proxyless may be sub-optimal. Since deeper layers prefer larger kernels according to
the results of proxylessNAS on the ImageNet classification task, the relative depth of it is
changed due to the existence of skip connections (or cweights in NAS-Unet) in Unet, and it
may be paused to select the optimal architecture for Unet.

Inspired by the success of height estimation with multi-source data and NAS-Unet [29],
we propose sparse height information as the supplementary input of Unet and proxyless
depth-aware penalty neural architecture search (PDPNAS) for Unet to achieve better height
estimation accuracy. The sparse height information can be produced from LiDAR sen-
sors [30], Time-of-Flight (ToF) sensors [31], stereo matching [32], UAV photogrammetry [33],
etc. Since the spatial resolutions of the height data obtained from the above sensors are
different, a parameterization method for generating a sparse height information with the
different sparse ratios is proposed. A nearest-neighbor filling method is applied for the
sparse height information. The performance of Unet can be improved by observing only a
small fraction of height values from other products. In the end, the optimal architecture
for Unet is learned by PDNAS without increasing large computation cost. This research
will provide an effective solution for a single SAR elevation retrieval and a new idea for
real-time DEM mapping.

The key contributions of this work are as follows:
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• A height estimation network based on Unet was proposed. Sparse height information
SH and distance map d are used as additional input for higher reconstruction accuracy.
The root means square error of height estimation in a mountain area can be improved
from ∼315 m to about 32 m (the sparse ratio of SH is 0.011%).

• A customized method for generating SH with different sparse ratios is proposed.
To accommodate for various sparse inputs, a mask function is proposed to simulate
the sparse patterns.

• A proxyless depth-aware penalty neural architecture search is proposed to learn the
optimal architecture for Unet.

2. Materials and Methods
2.1. The Proposed Method

Since the phase map of a single SAR image is noisy and meaningless, only the intensity
of the SAR image will be included as the input of our network. The intensity map of SAR
is denoted as I ∈ IM×N , where M and N are the numbers of pixels in azimuth and range
directions. The original ground truth DEM is in map coordinates, and a geocoding process
is required to convert to radar coordinates. The geocoded ground truth height map in SAR
coordinate systems is denoted as H ∈ HM×N . The estimated height map from a single
SAR image I is denoted as Ĥ ∈HM×N .

Height estimation from a single SAR image is to establish the mapping function
fΘ : I →H from the intensity map of SAR imagery to the height domain, where Θ are the
parameters of f . The original sparse height is Hs ∈HM×N . To be comparable with different
sparsity, a parameterized method that can generate HS with different downsampling factors
S× S is proposed in this paper. HS requires being densified by nearest neighbor filling
for Unet training. The densified sparse height information is denoted as SH. The distance
map d, which is calculated from nearest neighbor filling densification, is also recorded and
accepted as inputs. The loss function L is listed as following:

L = min
Θ

M

∑
x=1

N

∑
y=1
||H(x, y)− Ĥ(x, y)||22, (1)

Ĥ(x, y) = fΘ(I(x, y), SH(x, y), d(x, y)), (2)

where (x, y) is the location in azimuth and range coordinates.
All of the inputs and outputs are normalized from 0 to 1 due to the leakyReLu [34]

and sigmoid activation function employed in our model. The normalization procedure is
listed as the following:

I
′
=

I
max(I)

, (3)

d
′
=

d
max(d)

, (4)

SH
′
=

SH
1.1 ·max(SH)

, (5)

H
′
=

H
1.1 ·max(SH)

, (6)

According to Equations (3)–(6), the normalization of I
′

is dividing by max(I), and the nor-
malization of d

′
is the same as that of I

′
. It is slightly different for H

′
and SH

′
; for that, the

data range of H cannot be obtained in a practical application. Therefore, the normalization
of SH

′
and H

′
is dividing by 1.1×max(SH) to obtain a valid normalized vector, which is

from 0 to 1.
All of the train and test data of Unet are cut into 256 × 256 small slices. Two examples

of I and its corresponding H which measure 256 × 256 pixels are shown in Figure 1.
Typically, since the 256× 256 patches are predicted independently by Unet, post-processing
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on test sets is applied before connecting the adjacent height patches in other research.
For instance, Amirkolaee [8] leverages height shifting to avoid the large distinction among
adjacent predicted height patches. In our methods, the supplementary SH restricts the
estimated range of adjacent patches. Therefore, no additional post-processing is needed to
achieve high precision when connecting the small patches to a large complete height map.

(a1) (b1)

(a2) (b2)

Range

A
zim

u
th

Range

A
zim

u
th

Range

A
zim

u
th

Range

A
zim

u
th

Figure 1. Two examples of acquired SAR (a1,a2) and its corresponding geocoded ground truth DEM
(b1,b2). The color bar represents the height information, and the unit is meters.

In the following, we will introduce the main steps including coordinate transformation
and registration, sparse height information extraction and PDPNAS for Unet.

2.2. Coordinate Transformation and Image Registration

Due to the side-looking imaging geometry of SAR, SAR images and ground truth
DEM are located in different coordinates. In order to make it trainable for Unet, ground
truth DEM is transformed from map coordinates to SAR coordinates, which is known as
geocoding. The straightforward geocoding suffers from inevitable holes in layover/shadow
areas, and it occurs more in mountain areas. In this paper, a backward geocoding is
employed based on the lookup tables between SAR and DEM coordinates. Details about it
can be referred to [35]. The geocoding procedure can be divided into three steps:

1. Establishing initial geometric transformation between SAR image and DEM based on
range-Doppler (RD) model [36].

2. Refining the geometric transformation by offset calculation between SAR data and
simulated SAR based on DEM.

3. Resampling image data sets from DEM to SAR coordinates system.

The initial definition for geometric transformation between SAR and DEM is based
on orbital information and DEM parameters. The initial definition of transformation is
not accurate due to the errors of orbital state vectors. Meanwhile, the resolution of DEM
and SAR images are different, and it requires interpolation operation. Thus, a refinement
procedure is required to achieve high-precision geocoding products.

In the refinement procedure, the registration offsets between the corresponding loca-
tions of the geocoded SAR and DEM image are computed. A conventional method is to
leverage the manually selected control points to generate many pairs of pixel positions.
A more efficient way is to leverage the lookup tables which represents the geometric trans-
formation between two coordinate systems. The lookup table is based on the orbital data
and the parameters of SAR image and DEM. A simulated SAR intensity map is gener-
ated by the DEM and lookup table. The registration offsets between them are computed
automatically through cross-correlation analysis.

Once a high-precision lookup table is established, the geometric transformation can
be operated from DEM (map) to an SAR (radar) coordinated system. Due to the existence
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of layover and shadow in SAR images, an interpolate operation is performed in the areas
of layover and shadow. In order to explore the representation ability of our network,
comparison experiments are performed in the areas of layover and shadow and beyond.

2.3. Parameterization of Sparse Height

The original sparse height map HS can be observed by in-suit measurements (con-
ventional leveling or GNSS measurement), LiDAR [37,38] or downsampled low-resolution
SRTM products. In practice, the paired high-resolution 3D LiDAR points and SAR prod-
ucts are hard to acquire. The available LiDAR maps from OpenTopography products
measure 80× 50 pixels in a SAR intensity map measuring 8130× 5796 pixels. Since the
image slices in the train datasets measure 256 × 256 pixels, the limited data obtained from
LiDAR products make it impossible for Unet training. In this situation, HS is acquired by
downsampling from low-resolution SRTM products in this paper.

In order to explore the effect of HS with different sparse ratios on single SAR height
estimation, we propose to extract the sparse height points by downsampling from a low-
resolution SRTM product via a mask mapping function MS×S, where S× S are the down-
sampling factors. In order to generate HS with different sparse ratios, the whole DEM
image is divided into thousands of areas. Each area measures S× S pixels. Only the middle
point of each area is kept, and the others are set as 0. In order to feed HS to Unet, a nearest
neighbor filling process is required to generate densified sparse height SH. Then, the whole
SH and d are cut into 256 × 256 small slices. Several examples of the 256 × 256 small
slices are shown in Figure 2a is the supplementary height map which is received from
low-resolution SRTM products. Figure 2(b1–b4) are the original sparse height map HS with
different downsampling factors. Figure 2(c1–c4) are the densified sparse height SH gener-
ated from Figure 2(b1–b4) by nearest neighbor filling. Figure 2(d1–d4) are the distance maps
which represent the Euclidean distance from a pixel without height values (MS×S(x, y) = 0)
to its nearest sampling center (MS×S(x∗, y∗) = 1), d =

√
(x− x∗)2 + (y− y∗)2. The mathe-

matical expression of MS×S is as follows:

MS×S(x, y) =

1, x =
S
2
+ S · i and y =

S
2
+ S · j, where i, j = 0, 1, 2, . . .

0, others.
(7)

where (i, j), i, j = 0, 1, 2, . . . denote the ordinal numbers of the downsampling center points.
Details about the algorithm are shown in Algorithm 1. At first, the mask function MS×S

is established as described in Equation (7). Then, HS is generated by the Hadamard product

(Hadamard product: For X =

[
x11 x12
x21 x22

]
, Y =

[
y11 y12
y21 y22

]
, X ◦ Y =

[
x11 · y11 x12 · y12
x21 · y21 x22 · y22

]
)

of ground truth height map H and mask MS×S, HS = H ◦MS×S. It allows obtaining
sparse height points with various sparse ratios by setting the downsampling factors S× S.
The downsampling factors S× S are set as 32 × 32, 64 × 64, . . . , and 192 × 192. Taking
S = 96 as an example, it represents that only one real height point is kept from every
96 × 96 pixels. In order to feed HS to Unet, it requires being densified by nearest neighbors
filling. The densified sparse height is labeled as SH. Euclidean distance maps measuring
the distance from MS×S(x, y) to the nearest sampling center MS×S(x∗, y∗) are stored as
d =

√
(x− x∗)2 + (y− y∗)2. Then, the supplementary inputs of Unet are generated by

concatenating SAR image I with SH and d.
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(b1) HS with S = 32 (b2) HS with S = 64 (b3) HS with S = 96 (b4) HS with S = 128

(c1) Densified SH with S = 32 (c2) Densified SH with S = 64 (c3) Densified SH with S = 96 (c4) Densified SH with S = 128

(d1) distance d with S = 32 (d2) distance d with S = 64 (d3) distance d with S = 96 (d4) distance d with S = 128

(a) Supplementary Height 
from Low-Resolution SRTM

Figure 2. Generate original sparse height HS with different downsampling factors S × S from
supplementary height map. Each image measures 256 × 256 pixels. To feed it to Unet, HS is densified
by nearest neighbor filling (NNF). The densified sparse height is SH and the distance map from NNF
is d. S is the downsampling factor. Details about the process is listed in Algorithm 1.

Algorithm 1 Parameterized methods for generating inputs of SAR2HEIGHT.

Input: SAR image I, ground truth height map H, downsampling factors S× S
Output: Sparse height information HS, densified sparse height SH, Euclidean distance

map d.
1: M← get Image Height of I
2: N ← get Image Width of I
3: Generate MS×S according to Equation (7)
4: HS = H ◦MS×S
5: for x = 1 to M do
6: for y = 1 to N do

7: (i∗, j∗) = arg min
i,j

√
(x− (

S
2
+ S · i))2 + (y− (

S
2
+ S · j))2

8: x∗ = S
2 + S · i∗ . Get the coordinates of nearest downsampling center.

9: y∗ = S
2 + S · j∗

10: SH(x, y) = HS(x∗, y∗)
11: d(x, y) =

√
(x− x∗)2 + (y− y∗)2

12: end for
13: end for

With the downsampling factors of S× S, the downsampling ratio can be estimated
by 1

S×S × 100%. Taking S = 96 as example, the sparse ratio is 1
96×96×100% = 0.0108%. It

means that only 256× 256× 0.0108% ≈ 7 points are kept in a 256× 256 original sparse
height map HS. In the following, the sparse height refers to the densified sparse height
map SH.
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2.4. Proxyless Depth-Aware Penalty Neural Architecture Search (PDPNAS) for Unet

Details about the PDPNAS for Unet are shown in Figure 3 and Table 1. Similar
to IM2HEIGHT [5], down and upsampling subnetworks are included in the network.
Since the representation ability of the network can be improved with the increase of
depth, there are 10 mobile inverted residual blocks [39] (MBResblocks), including 5 down
MBResblocks and 5 up MBResblocks. Due to the fact that large amounts of parameters
in the modern deep learning network lead to overfitting when the train datasets are not
large enough, the advantage of MBResblocks is that the total depth of Unet is increased by
MBResblocks without including too many parameters. Each block contains 3 convolution
layers, including 1 × 1 inverted bottlenecks, k5xk5 depth separately convolution, and
1 × 1 channel refinement convolution layers; k5 can be learned by PDPNAS. Both low-
level and high-level features are combined by the skip connections for high-precision
height estimation.

Team Of Computer Vision and Remote Sensing
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(a) Structure of Unet composed of mixed blocks

Figure 3. Network structure of PDNAS for Unet composed of down/up mixed blocks and down/up
MBResblocks. Each mixed block contains a set of candidate operations, including 3 × 3, 5 × 5
convolution/transposed convolution, etc.

As illustrated in Figure 3, the Unet with PDPNAS is composed of D mixed blocks
instead of the conventional convolution layers with fixed kernel size. Each mixed block
contains N candidate operations, including convolution with kernel size 3 × 3, 5 × 5,
max/average pooling with kernel size 3 × 3, 5 × 5, identity mapping, etc. Therefore, N par-
allel paths exist in a single mixed block, and the output of each candidate operations from a
mixed node in depth d is denoted as od ∈ RN , d = 0, 1, 2, . . . , D. Different mixed blocks con-
sist of different candidate operations. As shown in Figure 3, convolution or pooling layers
are included in down mixed blocks and down MBResblocks, while transposed convolution
or upsampling layers are included in the up mixed blocks and up MBResblocks.
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Table 1. Details of network structure. D is the total depth of Unet and D = 17 in our experiments. i
is the # of Down MBResblocks in Unet and i = 1, 2, 3, 4, 5. k†

i = k6−i.

Layer Kernel Size Operation Strides Depth Output Size

Input 0 (256, 256, 3)

Down
Subnetwork

Down1 k1 × k1 × 64 Conv/Down Pool 2 1 (128, 128, 64)
Down2 k2 × k2 × 128 Conv/Pool 2 2 (64, 64, 128)
Down3 k3 × k3 × 256 Conv/Pool 2 3 (32, 32, 256)

5×
Down

[MBResblocks]

[Conv1 1× 1× 512 Conv 1 (32, 32, 512)
Conv2 ki × ki × 512 Conv 1 3 + i (32, 32, 512)
Conv3] 1× 1× 256 Conv 1 (32, 32, 256)

5×
Up

[MBResblocks]

[Conv1 1× 1× 512 Conv 1 (32, 32, 512)
Conv2 k†

i × k†
i × 512 Conv 1 D-3-i (32, 32, 512)

Conv3] 1× 1× 256 Conv 1 (32, 32, 256)

Up
Subnetwork

Up1 k3 × k3 × 256 match with Down3 2 D-3 (32, 32, 256)
Up2 k2 × k2 × 128 match with Down2 2 D-2 (64, 64, 128)
Up3 k1 × k1 × 64 match with Down1 2 D-1 (128, 128, 64)

Output Out kO × kO × 1 Conv 2 D (256, 256, 1)

In the training stage of PDPNAS, only one of the N parallel paths for a mixed block
in depth d is set as active, which is the same as proxylessNAS [28]. It is implemented
by the gate parameters gd ∈ {0, 1}N , d = 0, 1, 2, . . . , D. In order to make it trainable,
the importance parameters αd ∈ RN , d = 0, 1, 2, . . . , D, which are also known as architecture
parameters, are introduced to PDPNAS. Therefore, the gate parameters are determined by
the architecture parameters and can be denoted as:

gd =


[1, 0, 0, . . . , 0], with a probability of αd,1

[0, 1, 0, . . . , 0], with a probability of αd,2

. . .
[0, 0, 0, . . . , 1], with a probability of αd,N

(8)

where d = 0, 1, 2, . . . , D. The architecture parameters can be learned by PDPNAS. As illus-
trated in Figure 3, the active and inactivate paths in Figure 3b–e are plotted as red and black
lines, respectively. The output of a mixed node in depth d is denoted as md = ∑N

i=1 gd,iod,i.
Due to the existence of skip connections in Unet, a symmetric architecture is required

to achieve higher height estimation accuracy. For instance, the activate operation of Down1
layer should be matched with that of the Up3 layer, as described in Table 1. If the active
operation of Down1 is a 3 × 3 convolution layer, then that of Up3 should be a 3 × 3 trans-
posed convolution layer. The mismatching between Down1 and Up1 leads to deteriorated
performance for height estimation. The gray lines in Figure 3 means that the path of an
up mixed block (or down MBResBlocks) will not be selected once the active path of the
corresponding down mixed block (or up MBResblocks) has been determined.

In order to further improve the height estimation accuracy of PDPNAS, a depth-aware
penalty is proposed to set the proper penalty p for each mixed block according to its depth
d and kernel size k. The principal idea of PDPNAS is to solve the problem of sub-optimal
searching by PDPNAS for Unet. The Shallower layers prefer smaller kernels according to
the results of proxylessNAS [28]. Since they are connected to deeper layers directly by skip
connections of Unet, the relative depth of them is changed. In this situation, it is difficult
for NAS to find the optimal architecture for Unet. Therefore, the rule-based penalty term
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we proposed can improve the performance for NAS on Unet. The penalty term pd is shown
in Equation (9) and can be illustrated in Figure 4:

pd =

{
emax(k)/2·k′ ·(d/D−0.5), if k

′
< 0

e−max(k)/2·k′ ·((D−d)/D−0.5), if k
′ ≥ 0

(9)

where k
′

is the normalized kernel size from −1 to 1. Since k is the kernel size in the set of
candidate operations and k = 1, 3, 5, 7, k

′
can be calculated by k′ = k/4− 1. d is the depth

of the mixed block in Unet. D is the total depth of Unet and D = 17 in this paper.
Hence, the architecture parameters α can be iterative optimized as shown in

Equation (10):
∂L

∂αd,i
=

N

∑
j=1

∂L

∂gi
pi(δij − pi) · pd, (10)

where pi is the parameters that denote the importance of δi in the set candidate operations
and gi is the binarized gate parameters, as shown in Figure 3. It is involved in the computa-
tion graph and can be computed by back-propagation, δij = 1 if i = j else δij = 0. Details
about the architecture parameters αi are related to proxylessNAS [28].

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Depth of the mixed block

1

2

3

4

Pe
na

lty

k=1
k=3
k=5
k=7

Figure 4. Penalty for a candidate operation set, including convolution and down pooling with a
kernel size of 1, 3, 5 and 7.

3. Results and Discussion
3.1. Experiment Setup

SAR images and ground truth DEM are collected over three mountain areas located in
Guiyang, Geermu and Huangshan. High-resolution L-band (Advanced Land Observation
Satellite-2) ALOS-2 products are used in Guiyang datasets, and DEM 12.5 m is used as
the target height map. The resampled spatial resolution of ALOS-2 is 5.7 m in the range
direction and 8.5 m in the azimuth direction. A low-resolution (30 m) Shuttle Radar
Topography Mission digital elevation model (SRTM) product is used as supplementary
sparse input. The elevation range of Guiyang datasets is from 597.70 to 2823.79 m. Images
in the Guiyang datasets measure 8130 × 5796 pixels. Both Geermu and Huangshan
datasets use C-band Sentinel-1 SAR products and SRTM 30 m for evaluation, which can be
easily accessed online. SRTM 90 m is used for supplementary sparse height information.
The elevation ranges of Gerrmu and Huangshan datasets are from 2672.74 to 5709.02 m and
100 to 1770.24 m, respectively. Images of Both Geermu and Huangshan datasets measure
6554 × 4800 pixels.
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In the Guiyang datasets, the high-resolution L-band SAR images are collected from
ALOS-2 products. They are not public and are bought for academic research. The original
high-resolution ground truth height maps, which are from DEM 12.5 m, can be down-
loaded from https://search.asf.alaska.edu/ (accessed on 16 April 2017). They are col-
lected from the L-band PALSAR satellite and generated by InSAR techniques. The sup-
plementary height maps, which are from SRTM 30 m, can be downloaded from https:
//search.earthdata.nasa.gov/search (accessed on 16 April 2017). They are collected from
NASA SRTM C products. In the Geermu and Huangshan datasets, the C-band SAR im-
ages can be downloaded from https://asf.alaska.edu/data-sets/sar-data-sets/sentinel-
1/sentinel-1-data-and-imagery/ (accessed on 5 September 2022). The method for obtain-
ing ground truth SRTM 30 m is the same as the supplementary SRTM 30 m in Guiyang
datasets. The supplementary SRTM 90 m height maps can be downloaded from https:
//firmware.ardupilot.org/SRTM/ (accessed on 5 September 2022).

The paired SAR images and geocoded height maps in radar coordinates are generated
via image registration and geocoding introduced in Section 2.2. As shown in Figure 5, 80%
of the images are used as training samples and 20% are used as test samples. Then, all
the images (SAR image, height map, sparse height information, distance map) are cut into
256 × 256 small image slices for Unet training. All of the experiments are repeated three
times, and both the average and standard deviation are reported for the comparison results.

(a) (b) (c)

Figure 5. Split train and test data sets for Guiyang, Geermu and Huangshan datasets, respectively.
Here, 80% of the images along the azimuth direction are selected for train sets and 20% are selected
for test sets. (a) is the SAR imagery from Guiyang datasets measuring 8130 × 5796 pixels. (b) is the
SAR imagery from Geermu datasets measuring 6554 × 4800 pixels. (c) is the SAR imagery from
Huangshan datasets measuring 6554 × 4800 pixels.

3.2. Evaluation Metrics

To estimate the accuracy of the proposed approaches for height reconstruction from
a single SAR image, numerical metrics, which are root mean square error (RMSE) and
structural similarity (SSIM) index, are used in our experiments.

RMSE(x, y) =

√√√√ 1
n

M

∑
i=1

N

∑
j=1

(xij − yij)
2, (11)

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (12)

where xi and yi come from the estimated height and height from ground truth, respectively.
µx and µy are mean values of x and y, respectively. σx , σy and σxy are standard deviations

https://search.asf.alaska.edu/
https://search.earthdata.nasa.gov/search
https://search.earthdata.nasa.gov/search
https://asf.alaska.edu/data-sets/sar-data-sets/sentinel-1/sentinel-1-data-and-imagery/
https://asf.alaska.edu/data-sets/sar-data-sets/sentinel-1/sentinel-1-data-and-imagery/
https://firmware.ardupilot.org/SRTM/
https://firmware.ardupilot.org/SRTM/
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and cross-covariance for images. C1 and C2 are small normal numbers. It is capable of
comparing local patterns of pixel intensities.

3.3. The Effect of Sparse Height Information and Distance Map

Experiments are carried out for evaluating the effect of sparse height information and
PDPNAS for Unet on the three datasets. The height information is estimated from a single
SAR image based on a Unet network with various inputs. The results of the whole test sets
and an example of local 256 × 256 small slices are shown in Figures 6 and 7. As shown
in Figure 6, the height information with SAR is distortions and it is quite different from
the ground truth height map. The most possible reason for the errors in height estimation
results from the one-to-many relationship between texture and elevation. The results are
improved significantly by accepting sparse height information SH as inputs. The results of
Unet with SAR, sparse height information and distance map as inputs are the best among
them. As shown in Figure 7, the shape and texture may be well estimated without sparse
height information. However, the estimated height range of it is quite different from the
real ground truth height. The estimated height map in some areas outlined in Figure 7
shows the superiority of accepting sparse height information and a distance map as inputs
for Unet. It proves that the estimated height with sparse height information and distance
map can significantly improve the reliability of the estimated height map. The results
in Figure 6(f1–f3) and Figure 7(f1–f3) show that the supplementary inputs SH+d could
significantly improve the performance of height estimation from a single SAR image in
mountain areas, especially for that with a wider range of height values.

(a1) SAR Image

(b1) GT DEM

(c1) Height Estimation by SAR, SSIM=0.45

(d1) Height Estimation by SAR+SH, SSIM=0.71

(e1) Height Estimation by SAR+SH+d, SSIM=0.72

(a2) SAR Image

(b2) GT DEM

(c2) Height Estimation by SAR, SSIM=0.26

(d2) Height Estimation by SAR+SH, SSIM=0.33

(e2) Height Estimation by SAR+SH+d, SSIM=0.59

(a3) SAR Image

(b3) GT DEM

(c3) Height Estimation by SAR, SSIM=0.78

(d3) Height Estimation by SAR+SH, SSIM=0.82

(e3) Height Estimation by SAR+SH+d, SSIM=0.83

Guiyang Dataset Geermu Dataset Huangshan Dataset

(f1) Estimated Height with SAR vs. SAR+H+D (f2) Estimated Height with SAR vs. SAR+H+D (f3) Estimated Height with SAR vs. SAR+H+D

Figure 6. Height estimation result of a single SAR image based on sparse height information and
PDNAS for Unet in three datasets. The downsampling factors of SH are 96× 96. (a1–a3) are the
SAR images, (b1–b3) are the ground truth height map. (c1–c3,d1–d3,e1–e3) are the estimated height
map with SAR, SAR+SH, SAR+SH+d respectively. Elevation lines along the range directions with
a fixed middle azimuth value marked by red dash lines in (a1–e1), (a2–e2), (a3–e3) are plotted in
(f1–f3) respectively.
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Height Estimation With 
I + SH + d

Height Estimation With 
I + SH

Height Estimation With 
I

SAR Image GT DEM

(d1) SSIM=0.70(c1) SSIM=0.67(b1) SSIM=0.37(a1) (e1)

Guiyang

Geermu

Huangshan

(d3) SSIM=0.91(c3) SSIM=0.90(b3) SSIM=0.87(a3) (e3)

(d2) SSIM=46(c2) SSIM=45(b2) SSIM=0.12(a2) (e2)

(f1) 

(f2)

(f3)

Figure 7. Local height estimation results from a single SAR based on SH, d and PDPNAS for Unet
in Guiyang, Geermu and Huangshan datasets. The samples which measure 256 × 256 pixels are
extracted from the whole test set. From left to right, there are (a1–a3) SAR images I, (b1–b3) estimated
height maps with I as input, (c1–c3) estimated height maps with I and SH as inputs, (d1–d3) estimated
height maps with I, SH and d as inputs. (e1–e3) are the ground truth height maps. Elevation lines
along range directions with a fixed middle azimuth value marked by red dash lines in (a1–e1), (a2–e2),
(a3–e3) are plotted in (f1–f3) respectively. The downsampling factors of SH are 96 × 96.

Numerical results on the effect of sparse height information and PDPNAS are shown in
Table 2, which are from the Guiyang datasets. The RMSE of an estimated height map with
SAR as inputs is 90.30% higher than that with I+SH+d as inputs by observing only 0.0109%
height values from low-resolution SRTM products. It is 90.30% higher than that with
I+SH+d as inputs and PDPNAS for Unet. In the Geermu datasets, the RMSE is reduced
by 95.9% with I+SH (downsampling factors are 96× 96)+d as inputs and PDPNAS for
Unet compared with Unet and single SAR as input. In the Huangshan datasets, the RMSE
is reduced by 70.18% with I+SH (downsampling factors are 96 × 96)+d as inputs and
PDPNAS for Unet compared with Unet and single SAR as input. Note that the elevation
range of Geermu is wider than that of the Guiyang datasets, and the height range of
Guiyang is wider than that of the Huangshan datasets. The numerical results suggest
that the sparse height information could significantly improve the performance of height
estimation, especially for mountain areas with a wide height range.

Other information associated with sparse height information may also affect the height
estimation results, as shown in Table 2. In our experiments, we test the effect of including
the d as the third input besides SAR image and sparse height. The comparison experiments
have been carried out when additional sparse height information (distance in our case) is
included or not. The experiment results in Table 2 show that the sparse height information
can improve the accuracy of single-channel SAR elevation estimation. As listed in Table 2,
with lower downsampling factors, the accuracy of the reconstruction result is higher. With a
downsampling factors of 32 × 32, the RMSE of height estimation is reduced by about 2.5%
when the distance map is included or not, respectively. When downsampling factors are
192 × 192, there is only at most one sparse height point for each 256 × 256 local patch.
Even with such sparse height points, it is noted that the estimated height can reach 74.03 m,
65.39 m of RMSE with our model with/without a distance map in the Guiyang datasets.
The results proved that our method has achieved remarkable accuracy of height estimation
from a single SAR image.

As shown in Table 2, with distance map as the input, all of the RMSE of estimated
height is lower than that without it, no matter what downsampling factors are applied.
With the increase of sparsity (decrease of percentage points sampled), it has a more positive
impact on height estimations. Moreover, when the downsampling ratio of the sparse height
information is lower than 0.019%, the SSIM of the estimated height can be improved with
the distance information as the third input.
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Table 2. Comparison experimental results on the supplementary inputs of sparse height information
(SH), distance map (d) and PDPNAS for Unet on three datasets.

Datasets Downsample
Factors

% Points
Sampled Inputs Include

PDPNAS RMSE (m) SSIM

Guiyang

— — I No 326.74 ± 10.75 0.40 ± 0.05

32× 32 0.0976

SH No 30.28 ± 0.25 0.52 ± 1 ×10−3

I+SH No 17.94 ± 0.63 0.72 ± 3 ×10−3

I+SH+d No 17.49 ± 0.79 0.75 ± 1 ×10−3

I+SH+d Yes 15.70 ± 0.70 0.78 ± 7 × 10−3

64× 64 0.0244

SH No 59.02 ± 0.69 0.28 + 2 ×10−3

I+SH No 29.45 ± 1.61 0.68 ± 3 ×10−3

I+SH+d No 26.65 ± 1.63 0.70 ± 0.03
I+SH+d Yes 24.18 ± 0.28 0.74 ± 2 × 10−3

96× 96 0.0109

SH No 78.40 ± 1.54 0.24 ± 4 ×10−3

I+SH No 37.84 ± 0.43 0.68 ± 6 ×10−3

I+SH+d No 32.95 ± 0.65 0.70 ± 6 ×10−3

I+SH+d Yes 31.70 ± 0.14 0.72 ± 5 × 10−3

128× 128 0.0061

SH No 109.91 ± 0.77 0.15 ± 2 ×10−3

I+SH No 53.60 ± 0.46 0.64 ± 7 ×10−3

I+SH+d No 46.56 ± 0.46 0.64 ± 0.02
I+SH+d Yes 45.01 ± 0.57 0.68 ± 7 × 10−3

160× 160 0.0039

SH No 117.72 ± 0.79 0.14 ± 1 ×10−3

I+SH No 63.65 ± 0.52 0.63 ± 5 ×10−3

I+SH+d No 56.27 ± 0.56 0.63 ± 1 ×10−3

I+SH+d Yes 53.94 ± 0.44 0.68 ± 1 × 10−3

192× 192 0.0027

SH No 145.83 ± 1.41 0.11 ± 3 ×10−3

I+SH No 74.03 ± 1.296 0.59 + 7 ×10−3

I+SH+d No 65.39 ± 0.54 0.62 ± 4 ×10−3

I+SH+d Yes 62.55 ± 0.42 0.64 ± 0.08
— — I Yes 1015.22 ± 43.63 0.27 ± 0.01

Geermu

64× 64 0.0244
SH Yes 90.96 ± 1.27 0.07 ± 3 ×10−3

I+SH Yes 41.61 ± 1.53 0.36 ± 9 ×10−3

I+SH+d Yes 29.77 ± 1.48 0.36 ± 6 × 10−3

96× 96 0.0109
SH Yes 77.42 ± 1.74 0.25 ± 4 ×10−3

I+SH Yes 43.18 ± 1.25 0.36 ± 9 ×10−3

I+SH+d Yes 41.61 ± 1.53 0.37 ± 5 × 10−3

128× 128 0.0061
SH Yes 145.82 ± 2.13 0.03 ± 0.11

I+SH Yes 65.44 ± 4.15 0.35 ± 6 ×10−3

I+SH+d Yes 63.93 ± 2.831 0.37 ± 2 × 10−3

Huangshan

— — I Yes 124.16 ± 3.18 0.780 ± 5 ×10−3

64× 64 0.0244
SH Yes 108.12 ± 0.40 0.06 ± 1 ×10−3

I+SH Yes 36.00 ± 1.05 0.81 ± 6 ×10−3

I+SH+d Yes 29.98 ± 2.80 0.83 ± 2 × 10−3

96× 96 0.0109
SH Yes 123.82 ± 0.36 0.04 ± 1 ×10−3

I+SH Yes 49.06 ± 2.84 0.81 ± 4 ×10−3

I+SH+d Yes 37.02 ± 0.63 0.83 ± 2 × 10−3

128× 128 0.0061
SH Yes 161.71 ± 0.58 0.02 ± 2 ×10−3

I+SH Yes 60.14 ± 1.03 0.81 ± 0.006
I+SH+d Yes 45.77 ± 1.26 0.82 ± 2 × 10−3
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3.4. Comparison of Different Network Structures

Comparison experiments are conducted among six different methods. They are VDSR [18],
PackNet [15], IM2HEIGHT [5], 3DMap [10], SAR&phase [6] and ours. The downsampling
factors of SH in this experiment are 96 × 96. The comparison experiments are performed
on the Guiyang datasets, and the numerical results are listed in Table 3. It shows that our
model has the best performance among all these six network structures. The RMSE of
IM2HEIGTH together with SH+d as inputs is 40.06% higher than our methods. It shows the
superiority of our network, which uses an advanced Unet and PDPNAS. Since the structure
of Unet is not reported in 3DMap [10], it is set to be the same as ours for comparison in
this paper. The RMSE of 3D MAP Reconstruction together with SH+d as inputs is 14.72%
higher than ours, and it suggests that the building adaptive loss function is not suitable for
height estimation in mountain areas. The RMSE of SAR&phase is 91.92% higher than ours,
while that of SAR&phase together with the same structure of Unet to us, using PDPNAS
for Unet and SH+d as inputs, is 5.32% higher than ours. It suggests that the meaningless
phase map is not helpful for single SAR imagery height estimation.

As illustrated in Figure 8, the results of ours are more realistic than the others. The re-
sults of IM2HEIGHT are worse than 3D MAP Reconstruction, SAR&phase together with
PDPNAS for Unet and SH+d as inputs, and ours. As shown in Figure 9, the details of
our estimated height map are more realistic, and they are more similar to that of the
ground truth height map than the others, especially for the outline areas. The results in
Figure 9(g1–g6) show that the estimated height map of ours has lower reconstructed errors
compared with other methods.

The RMSE and SSIM of IM2HEIGHT, 3DMap, SAR&phase and ours are illustrated
in Figure 10. In total, 132 unique 256 × 256 local patches of the test scene are used
for evaluation. The RMSE of our methods is around 30 m, and it provides a relatively
high accuracy for height estimation compared with other methods. Considering that few
percentages of height points from low-resolution SRTM are used for height estimation, our
method has remarkable performance on height estimation with a single SAR image.

Table 3. Comparison experiments between different methods in Guiyang datasets. The sparse factors
of SH are 96 × 96.

Method Inputs
Structure
of Unet

Same to Us

Include
PDPNAS RMSE (m) SSIM

VDSR [18] I+SH+d No No 79.36 ± 6.92 0.31 ± 6 ×10−3

PackNet [15] I+SH+d No No 59.55 ± 1.80 0.49 ± 2 ×10−3

IM2HEIGHT [5] I+SH+d No No 52.89 ± 0.37 0.31 ± 5 ×10−3

3DMap [10] I+SH+d Yes No 37.17 ± 1.11 0.54 ± 0.01

SAR&phase [6]
I+phase No No 392.22 ± 3.68 0.01 ± 3 ×10−3

I+SH+d+phase Yes No 33.48 ± 0.25 0.72 ± 5 ×10−3

ours I+SH+d
Yes No 32.95 ± 0.65 0.70 ± 6 ×10−3

Yes Yes 31.70 ± 0.14 0.73 ± 5 × 10−3
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(b1) Height Estimation by IM2HEIGHT, SSIM=0.32

(a) SAR Image

(c1) Height Estimation by 3D Map Reconstruction, SSIM=0.57

(d1) Height Estimation by SAR and Phase, SSIM=0.70

(e1) Height Estimation by ours, SSIM=0.72

(f) GT DEM

Guiyang Dataset

(b2) Height Estimation by IM2HEIGHT vs. GT

(c2) Height Estimation by 3D Map Reconstruction vs. GT

(d2) Height Estimation by SAR and phase vs. GT

(e2) Height Estimation by Ours vs. GT

Figure 8. Height estimation result of different methods in Guiyang datasets. From top to bottom, (a) is
SAR image. (b1–e1) are the estimated height by IM2HEIGHT, 3D map reconstruction, SAR&phase
and ours, respectively. Elevation lines along range directions with a fixed middle azimuth value
marked by red dash lines in (b1–e1) are plotted in (b2–e2) respectively. (f) is the ground truth height
map. The downsampling factors of SH are 96 × 96.

Height Estimation
By 3D Map Reconstruction

Height Estimation 
By ours

GT DEM

(c1) SSIM=0.66 (e1) SSIM=0.85 (f1) GT

(c2) SSIM=0.53 (e2) SSIM=0.73 (f2) GT

(c3) SSIM=0.53 (e3) SSIM=0.73 (f3) GT

(c4) SSIM=0.67 (e4) SSIM=0.86 (f4) GT

(c5) SSIM=0.52(b5) SSIM=0.33 (e5) SSIM=0.76 (f5) GT

(c6) SSIM=0.44 (e6) SSIM=0.73 (f6) GT

SAR Image

(a1)

(a2)

(a3)

(a4)

(a5)

(a6)

Height Estimation
By IM2HEIGHT

(b1) SSIM=0.46

(b2) SSIM=0.32

(b3) SSIM=0.32

(b4) SSIM=0.46

(b6) SSIM=0.19

Height Estimation
By SAR & phase

(d1) SSIM=0.83

(d2) SSIM=0.72

(d3) SSIM=0.70

(d4) SSIM=0.85

(d5) SSIM=0.74

(d6) SSIM=0.73

(g1) Estimated Height vs. GT

(g2) Estimated Height vs. GT

(g3) Estimated Height vs. GT

(g4) Estimated Height vs. GT

(g5) Estimated Height vs. GT

(g6) Estimated Height vs. GT

Estimated Height vs. GT

Figure 9. Six local height patches estimated by different methods in Guiyang datasets. From the
left to right, (a1–a6) are the SAR images. (b1–b6,c1–c6,d1–d6,e1–e6) are the estimated height map
by IM2HEIGHT, 3D Map Reconstruction, SAR&phase and our method, respectively. (f1–f6) are the
ground truth height maps. Elevation lines along range directions with a fixed middle azimuth value
marked by red dash lines in (a1–f1), (a2–f2), (a3–f3), (a4–f4), (a5–f5), (a6–f6) are plotted in (g1–g6)
respectively. The downsampling factors of SH are 96 × 96.
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Figure 10. (a) RMSE and (b) SSIM of SAR&phase, IM2HEIGHT, 3D map reconstruction and ours on
132 unique 256 × 256 local patches of the test scene with downsampling factors of 96 × 96.

3.5. The Effect of PDPNAS

Comparison experiments on the effect of PDPNAS have been conducted in Guiyang
datasets, and the results are shown in Table 2 and Figure 11. As shown in Table 2, the RMSE
is reduced by about 3% in all the cases. It suggests that PDPNAS could find optimal
architectures for Unet, and it is helpful for singe SAR height estimation. The result in
Figure 11 is consistent with that of Table 2. It is worth noting that the SSIM is increased
significantly, as shown in Figure 11, and it suggests that the estimated height map with
PDPNAS is more realistic that that without PDPNAS. Although the improvement is not
that outstanding compared with sparse height information, the work of PDNAS is still
valuable in that it makes it possible for Unet to be deployed on a hard device.

Comparison experiments among Unet, NAS-Unet and PDPNAS for Unet are con-
ducted, and the numerical results are shown in Table 4. The RMSE of NAS-Unet is increased
by 1.76% compared with symmetric Unet. It suggests that the asymmetric architecture
searched by NAS-Unet leads to a deteriorated performance compared with Unet. The RMSE
of PDPNAS for Unet with symmetric constraint and depth-aware penalty is reduced by
3.79% and 5.49% compared with Unet and NAS-Unet, respectively. It shows the superiority
of PDPNAS for height estimation with a single SAR imagery. Comparison experiments
have also been conducted on the effect of MBResblocks, and the results are shown in Table 4.
The RMSE of PDNAS without MBResblocks is 40.06% higher than that with MBResblocks.
It shows the superiority of MBResblocks for Unet.
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Figure 11. RMSE and SSIM of Unet with I+SH and I+SH+d and PDPNAS for Unet with I+SH+d on
Guiyang datasets. x-axis represents the downsampling ratios (or the percentages of sampled points)
of SH. (a) The RMSE results. (b) The SSIM results.

Table 4. Comparison experiments on the effect of PDPNAS for Unet in Guiyang datasets. The down-
sampling factors of sparse height information are 96 × 96.

Methods Include
MBResblocks

Is
Symmteric

Includes
Depth-Aware

Penalty
RMSE (m) SSIM

Unet Yes Yes No 32.95 ± 0.65 0.70 ± 6 ×10−3

NAS-Unet Yes No No 33.54 ± 0.63 0.69 ± 0.01

PDPNAS
for Unet

No Yes Yes 52.89 ± 0.37 0.31 ± 5 ×10−3

Yes No Yes 32.67 ± 0.34 0.71 ± 3 ×10−3

Yes Yes Yes 31.70 ± 0.14 0.72 ± 5 × 10−3

3.6. Comparison on the Effect of Sparse Height with Various Sparsity

Comparison experiments are carried out to evaluate the effect of sparse height with
various sparsity during height reconstruction in the three datasets. In the Guiyang dataset,
the downsampling factors of sparse height information are 32 × 32, 64 × 64, 96 × 96,
128 × 128, 160 × 160, and 192 × 192. In the Geermu and Huangshan datasets, the down-
sampling factors of sparse height information are 64 × 64, 96 × 96, 128 × 128. The height
estimation results are illustrated in Figures 12 and 13. As shown in Figure 12, the estimated
height map with lower downsampling factors is nearly the same as the ground truth height
map. Even with an extremely sparse height as input (downsampling factors are 192 × 192),
the estimated height map is realistic and similar to the ground truth height map. The results
on PDPNAS are consistent with those without PDPNAS for Unet.
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(e1) Height Estimation with SH+d (sparse factor 128), SSIM=0.60

(d1) Height Estimation with SH+d (sparse factor 96), SSIM=0.71

(c1) Height Estimation with SH+d (sparse factor 64), SSIM=0.71

(a2) SAR Image I

(h2) GT DEM

(g2) Height Estimation with SH+d (sparse factor 192), SSIM=0.65

(f2) Height Estimation with SH+d (sparse factor 160), SSIM=0.68

(e2) Height Estimation with SH+d (sparse factor 128), SSIM=0.67

(d2) Height Estimation with SH+d (sparse factor 96), SSIM=0.72

(c2) Height Estimation with SH+d (sparse factor 64), SSIM=0.74

(b2) Height Estimation with SH+d (sparse factor 32), SSIM=0.77

(a1) SAR Image I

(b1) Height Estimation with SH+d (sparse factor 32), SSIM=0.73

(A) Height Estimation With Unet (B) Height Estimation With PDPNAS for Unet

(c1) Downsampled by 64x64

(h1) GT DEM

(g1) Height Estimation with SH+d (sparse factor 192), SSIM=0.62

(f1) Height Estimation with SH+d (sparse factor 160), SSIM=0.63

(b3) Height Estimation with SH+d (sparse factor 32) vs. GT

(c3) Height Estimation with SH+d (sparse factor 64) vs. GT

(d3) Height Estimation with SH+d (sparse factor 96) vs. GT

(e3) Height Estimation with SH+d (sparse factor 128) vs. GT

(f3) Height Estimation with SH+d (sparse factor 160) vs. GT

(g3) Height Estimation with SH+d (sparse factor 192) vs. GT

(C) Height Estimation vs. GT

Figure 12. Comparison experimental results of different sparse height information as inputs
with/without PDPNAS for Unet in Guiyang datasets. Different sparse height information was
applied, and the downsampling factors are 32 × 32, 64 × 64, 96 × 96, 128 × 128, 160 × 160, and
192 × 192. Elevation lines along range directions with a fixed middle azimuth value marked by red
dash lines in (a1–g1), (a2–g2) are plotted in (b3–g3) respectively.

As shown in Figure 13, two examples are selected from Guiyang datasets to show
the effect of sparse height information with different downsampling factors. The first row
presents the SAR image and the corresponding ground truth DEM. Reconstruction results
without sparse height information as input are presented in the second row. In another
word, it means that the height is estimated by a SAR image alone with the Unet network.
The results show that the estimated height of some areas is in a reasonable range. However,
there is a large disparity between the reconstructed height and the ground truth DEM
in some areas. The denser the sparse height information is, the better the details of the
estimated height maps are, and the closer they are to the ground truth DEM. It is a trade-off
between the quality of estimated height map and the resolution of supplementary low-
resolution SRTM products. It is worth noting that even in the case of downsampling of
192 × 192, our model still performances very well, and it presents a clear texture and looks
similar to ground truth DEM. It means that only one height point is observed in a 256 × 256
image slice. The quantitative results are shown in Table 2, which is consistent with the
above results.
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Figure 13. Two local estimated height maps with various sparsity in Guiyang datasets. Comparison
experiments between Unet with and without PDPNAS are also shown in the figure. The down-
sampling factors are 32 × 32, 64 × 64, 96 × 96, 128 × 128, 160 × 160, and 192 × 192, respectively.
Elevation lines along range directions with a fixed middle azimuth value marked by red dash lines in
the figures are plotted in 4th and 8th columns respectively.

3.7. Layover and Shadow

Comparison experiments are performed to evaluate the impact of layover and shadow
areas on the three datasets. As illustrated in Figures 14 and 15, the areas of layover and
shadow are marked as red in both SAR and height maps of the Guiyang, Geermu and
Huangshan datasets. Since the elevation ranges of Geermu are wider and the maximum
elevation is larger than the other datasets, layover and shadow occur more often com-
pared with the Guiyang and Huangshan datasets, which is consistent with the description
in Section 2.1. Meanwhile, the areas of layover are larger than those of shadow in the
Geermu datasets. By contrast, the maximum elevation in the Huangshan datasets is lower
and the elevation ranges are shallower than those in the other two datasets, and fewer
layover/shadow areas exist in the Huangshan datasets.

(a2) SAR Of Geermu

(b2) Height of Geermu

(a1) SAR of Guiyang

(b1) Height of Guiyang 

(a3) SAR of Huangshan

(b3) Height Of Huangshan

Layover Areas

Figure 14. Layover areas are marked as red points in three datasets.
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(a2) SAR Of Geermu

(b2) Height of Geermu

(a1) SAR of Guiyang

(b1) Height of Guiyang 

(a3) SAR of Huangshan

(b3) Height Of Huangshan

Shadow Areas

Figure 15. Shadow areas are marked as red points in three datasets.

Since the layover and shadow areas are inconsistent as shown in Figures 14 and 15,
the sliding window cannot be used to calculate SSIM. Hence, SSIM is not suitable for
elevation in layover and shadow areas. Therefore, mean absolute relative error (MARE) is
added as an elevation metric besides RMSE in this section. The MARE can be calculated
as following:

MARE(x, y) =
1
n

n

∑
i=1

(
|xi − yi|
max|y| ), (13)

where xi and yi come from the estimated and ground truth height maps, respectively.
As listed in Table 5, comparison experiments are conducted with different SH. In the

Guiyang datasets, our model performs well in shadow areas. When the downsampling
factors of SH are lower than 96 × 96 (which can be 32 × 32, 64 × 64, 128 × 128), both
the RMSE and MARE of the estimated height in the shadow areas are nearly the same
as the areas without layover and shadow. It is worth noting that it leads to deteriorating
performance in the areas of layover; both the RMSE and MARE in layover areas are nearly
3× higher compared with the other areas. When the layover and shadow areas are removed
from the test sets, the RMSE of the estimated height map is reduced to about 30.09 m.

In the Geermu and Huangshan datasets, the RMSE of the areas with layover and
shadow areas is lower than that without them, which is consistent with the results in the
Guiyang datasets. The RMSE of Geermu is higher than the other datasets with the same SH
as input, even without layover and shadow. The first reason is that the maximum height
of the Geermu dataset is larger than the others. Since the output height is normalized to
[0, 1], the same error from the estimated height of the three datasets leads to tremendous
distinction for RMSE. By contrast, the RMSE of the Huangshan datasets with the same
SH is lower than the other two datasets; for that, the maximum height of the Huangshan
datasets is lower than the others. The second reason for the higher RMSE in the Geermu
dataset is that the areas of layover and shadows are larger than those of the other datasets,
as shown in Figures 14 and 15. It suggests that the geometric distortions caused by the
side-looking imaging geometry of SAR have a great negative impact on the estimated
height map. Therefore, future work is to ease the negative effect of layover on single SAR
height estimation.

Note that the mean absolute relative error (MARE) of the Huangshan datasets is
higher than that of the other two datasets, even with a lower RMSE. It suggests that a more
intelligent method is required to generate a normalized height map. Moreover, the RMSE
of the Guiyang datasets is lower than that of the other two datasets with the same SH as
inputs. Compared with the results of the Huangshan datasets, the larger areas of layover
and shadow in the Guiyang datasets do not leads to higher RMSE in the estimated height
map. The reason is that the spatial resolution of SAR applied in the Guiyang datasets is
higher than the others, and it has a significant positive impact on the estimated height map.
Therefore, a high-resolution SAR product is required to generate a high precision estimated
height map.
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Table 5. Comparison experiments on the layover and shadow areas on the three datasets.

Datasets Downsample
Factors

% Points
Sampled

Include
Layover

Include
Shadow

Include
Others RMSE (m) MARE (%)

Guiyang

32 × 32 0.0976

Yes Yes Yes 15.70 ± 0.70 0.54 ± 3 ×10−3

Yes No No 72.73 ± 1.41 3.47 ± 0.01
No Yes No 15.87 ± 0.63 0.66 ± 9 ×10−3

No No Yes 12.39 ± 0.19 0.50 ± 4 × 10−3

64 × 64 0.0244

Yes Yes Yes 23.38 ± 0.28 1.00 ± 2 ×10−3

Yes No No 81.71 ± 1.32 4.14 ± 0.01
No Yes No 24.60 ± 0.62 1.17 ± 2 ×10−3

No No Yes 21.52 ± 0.39 0.95 ± 7 × 10−3

96 × 96 0.0109

Yes Yes Yes 31.70 ± 0.14 1.38 ± 2 ×10−3

Yes No No 93.25 ± 1.46 4.78 ± 0.02
No Yes No 31.66 ± 0.65 1.45 ± 3 ×10−3

No No Yes 30.09 ± 0.18 1.33 ± 8 × 10−3

128 × 128 0.0061

Yes Yes Yes 45.01 ± 0.57 2.01 ± 4 ×10−3

Yes No No 104.45 ± 1.60 5.62 ± 0.01
No Yes No 56.30 ± 0.55 2.54 ± 6 ×10−3

No No Yes 43.11 ± 0.35 1.96 ± 3 × 10−3

160 × 160 0.0039

Yes Yes Yes 53.94 ± 0.44 2.38 ± 1 ×10−3

Yes No No 119.69 ± 1.45 6.53 ± 0.01
No Yes No 57.91 ± 0.88 2.67 ± 1 ×10−3

No No Yes 50.52 ± 0.76 2.32 ± 1 × 10−3

192 × 192 0.0027

Yes Yes Yes 62.55 ± 0.42 2.88 ± 2 ×10−3

Yes No No 114.76 ± 1.87 6.19 ± 0.02
No Yes No 65.64 ± 1.07 3.18 ± 5 ×10−3

No No Yes 60.96 ± 0.80 2.84 ± 1 × 10−3

Geermu

64 × 64 0.0244

Yes Yes Yes 29.77 ± 1.48 0.46 ± 1 ×10−3

Yes No No 67.82 ± 1.58 1.28 ± 0.03
No Yes No 37.62 ± 1.16 0.72 ± 0.01
No No Yes 25.06 ± 0.23 0.45 ± 1 × 10−3

96 × 96 0.0109

Yes Yes Yes 41.61 ± 1.53 0.72 ± 1 ×10−3

Yes No No 87.17 ± 1.40 1.69 ± 0.01
No Yes No 57.58 ± 1.10 1.15 ± 4 ×10−3

No No Yes 39.16 ± 0.61 0.70 ± 1 × 10−3

128 × 128 0.0061

Yes Yes Yes 63.93 ± 2.83 1.01 ± 1 ×10−3

Yes No No 125.83 ± 1.39 2.54 ± 0.01
No Yes No 101.13 ± 1.51 2.10 ± 4 ×10−3

No No Yes 55.90 ± 0.26 0.99 ± 1 × 10−3

Huangshan

64 × 64 0.0244

Yes Yes Yes 29.98 ± 2.80 5.58 ± 0.06
Yes No No 43.90 ± 1.36 6.26 ± 0.03
No Yes No 34.74 ± 1.51 6.23 ± 0.01
No No Yes 23.23 ± 0.16 3.92 ± 0.02

96 × 96 0.0109

Yes Yes Yes 37.02 ± 0.63 7.85 ± 0.02
Yes No No 49.25 ± 1.44 8.91 ± 0.02
No Yes No 47.35 ± 1.36 8.87 ± 0.04
No No Yes 33.77 ± 0.44 6.76 ± 0.01

128 × 128 0.0061

Yes Yes Yes 45.77 ± 1.26 9.25 ± 0.10
Yes No No 59.04 ± 1.74 10.83 ± 0.80
No Yes No 58.82 ± 0.31 10.78 ± 0.30
No No Yes 42.69 ± 0.66 8.00 ± 0.09
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4. Conclusions

In this paper, we propose a single SAR imagery height estimation method via PDPNAS
for Unet with the help of a sparse height SH and distance map d in mountain areas. Even
though the ground truth (GT) points in SH are extremely sparse (for instance, only one GT
point in a 256 × 256 small slices), it could reduce the search space and improve the
accuracy of height estimation by 80.86% compared with only accepting SAR as input.
The performance of Unet for height estimation is improved significantly in mountain
areas. Then, flexible downsampling methods are proposed to generate SH with different
sparse ratios; thus, it could be convenient to produce paired SAR and SH for Unet training.
In order to further improve the accuracy of height estimation, a PDPNAS method is
proposed for Unet; skip connections and mobile inverted residual blocks are included
in the Unet. PDPNAS tackles the problem of sub-optimal searching for proxylessNAS
on Unet via a depth-aware penalty term. The accuracy of Unet is improved by 3% via
PDPNAS in the Guiyang datasets. Several experiments on three datasets are carried out
to test the effects of sparse height information and PDPNAS. All the experiments have
demonstrated that our model can generate height information with high quality from a
single SAR image, which could be helpful for the research of height estimation from both
hardware and software perspectives. It will be helpful for the development of new methods
for fast worldwide DEM mapping as well. In the future, we will provide the extensive
experiments of height estimation with SAR and 3D LiDAR point clouds as inputs. Since
that the magic of sparse height has been proved in this paper even with an extremely high
sparsity, it makes it possible to obtain a high-resolution estimated height map with a single
SAR imagery and low-cost LiDAR products as inputs.
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