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Abstract: Climate extremes, particularly drought, often affect the ecosystem. Guangdong Province
is one of the most vulnerable areas in China. Using the normalized difference vegetation index
(NDVI) to capture vegetation dynamics, this study investigated vegetation responses to drought,
temperature, and precipitation extremes on a monthly scale in the vegetation area of Guangdong
without vegetation type changes from 1982 to 2015. As extreme temperatures rose, a drought trend
occurred in most months, with a higher rate in February and April. The vegetation evenly showed
a significant greening trend in all months except June and October. The vegetation activity was
significantly positively correlated with the increased extreme temperatures in most months. However,
it exerted a negative correlation with drought in February, April, May, June, and September, as
well as precipitation extremes in February, April, and June. The response of vegetation to drought
was the most sensitive in June. The vegetation tended to be more sensitive to short-term droughts
(1–2 months) and had no time lag in response to drought. The results are helpful to provide references
for ecological management and ecosystem protection.

Keywords: vegetation dynamics; monthly scale; climate extremes; drought; NDVI; Guangdong

1. Introduction

Vegetation, the plant community covering the ground’s surface, is an irreplaceable
component of terrestrial ecosystems and is very sensitive to climate change [1,2]. Changes
in vegetation can alter the ecology and reflect natural evolution [3–5]. Climate extremes
have profound impacts on ecosystems and vegetation patterns, such as productivity re-
duction and ecosystem degeneration [6–15]. Among all climate extremes, drought is the
most common natural hazard that occurs owing to an imbalance between precipitation and
high temperatures [16,17]. The variability of climate extremes has great spatial inhomo-
geneity [18–20]. In the few past decades, high-temperature extremes mostly showed an
increasing trend in China, while precipitation extremes showed various trends in different
directions [21]. Drought has become increasingly severe since the late 1990s in China [22].
Areas affected by drought have doubled in China during the last three decades [23]. Under-
standing the vegetation response to climate extremes can help evaluate hydrological and
ecological responses, identify the most vulnerable ecosystems, and guide adaptation deci-
sions [8,19,20,24]. Therefore, it is important to study the variations in vegetation dynamics
and their responses to climate extremes.

The influence of climate extremes on vegetation dynamics differs in different
regions [5,13,25]. Extreme temperature shows a complex effect on vegetation in China [26].
Extreme precipitation generally promotes vegetation growth in most arid areas of China
but inhibits it in humid areas [26,27]. Water shortage caused by drought can trigger leaf
damage and substantial reductions in ecosystem productivity [7,10]. Vegetation recovery
is usually slow after severe damage [8]. The effect of drought on terrestrial ecosystems is
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becoming increasingly acute and will worsen and intensify with global warming [28]. Thus,
the response of vegetation to climate extremes, especially drought, is a crucial scientific
issue in regions sensitive to climate warming [29].

The normalized difference vegetation index (NDVI) has been widely used to represent
vegetation coverage and investigate vegetation responses to climate extremes [13,26,30–33].
An increase in NDVI generally indicates enhanced vegetation growth, whereas a decrease
in NDVI displays reduced vegetation growth. Many studies investigated the spatial
heterogeneity of the NDVI trends in different regions, pointing out that the NDVI has
been increasing in recent years in China at both the national and regional scales [34].
Nevertheless, due to uneven changes in the NDVI in different growing periods [19,35], the
analyses focusing only on the annual or longer scales rather than the monthly scale are
insufficient to reflect variations in the NDVI.

In addition, many studies respectively identified the temporal differences in veg-
etation responses to climate extremes, as well as different time-lag effects in different
spaces [8,19,34–36]. The timescales at which different plants respond to drought can also
be substantially different [8]. Temperature and water requirements of vegetation vary in
different months [29], and the influence of extreme factors on vegetation differs in different
growing periods [35,37]. In terms of exploring the relationship between vegetation dynam-
ics and climate extremes, the analysis on a monthly scale is more helpful to understand the
main limiting factors of vegetation growth than that on a longer time scale [35,37]. Hence,
it is of great significance to study this relationship on a monthly scale.

Guangdong Province, one of China’s southernmost provinces, is a typical subtropical
monsoon region. Strong monsoon, uneven terrain, dense river net, and negative effects of
erosion and deposition have resulted in Guangdong being one of the most vulnerable areas
to climate change. Vegetation is a significant ecological barrier in Guangdong. Extreme
temperature and precipitation indices in Guangdong were much higher than those in most
areas of China [38]. The fragile environment makes it vitally important to understand the
impact of climate extremes on vegetation in this region. Some studies have addressed
the influences of mean climate variations and anthropogenic activities on vegetation in
Guangdong [39,40]. Nevertheless, the impacts of climate extremes, especially drought, on
vegetation dynamics remain unclear in Guangdong.

A monthly scale analysis is essential for the vegetation variations and their responses
to different climate extremes (temperature and precipitation extremes, and drought) in
Guangdong. This kind of study can determine the critical period and the sensitivity
of vegetation responses to climate extremes, and provide knowledge for meteorological
disaster forecasts, vegetation conservation, and ecosystem restoration in both Guangdong
and other similar regions. Considering the different climate extremes and focusing on
the effect of drought during 1982–2015, this study tried to identify the leading extreme
indicators driving vegetation changes in each month, the most sensitive months, and the
drought timescales at which vegetation highly responded to drought in the vegetation area
of Guangdong.

2. Materials and Methods
2.1. Study Area and Data

Figure 1 shows the geographic location of Guangdong. As the largest province in the
southern coastal area of China, Guangdong has a subtropical monsoon climate with an
average temperature of around 21 ◦C and annual total precipitation of approximately 1800
mm (Figure 1a). Guangdong usually experiences wet conditions from April to September
and arid conditions from November to January. It is an important crop production base in
China, and its main crops include rice, vegetables, peanuts, tuber crops, sugar cane, corn,
and soybeans. In view of a strong monsoon climate, uneven terrain, and dense river net,
Guangdong is vulnerable to climate change.
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Figure 1. The geographic location of the study area, and spatial distribution of meteorological sta-
tions and land use land cover classes (LULC). Note: the normalized difference vegetation index 

Figure 1. The geographic location of the study area, and spatial distribution of meteorological stations
and land use land cover classes (LULC). Note: the normalized difference vegetation index (NDVI)
data originated from the advanced very-high-resolution radiometer sensors of the National Oceanic
and Atmospheric Administration (https://www.nasa.gov/nex (accessed on 1 January 2021)); the
digital elevation data and the LULC data were provided by the Resource and Environment Science
and Data Center, Chinese Academy of Sciences (https://www.resdc.cn/ (accessed on 10 October
2021)); only the vegetation areas where the vegetation types did not change during 1982–2018 are
colored in (e).

https://www.nasa.gov/nex
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Table 1 shows the datasets used in this study. The daily maximum temperature (TX),
daily minimum temperature (TN), and daily precipitation data were obtained from the
China Meteorological Administration (http://data.cma.cn/ (accessed on 15 October 2019)).
This study selected 85 meteorological stations with high quality data records. Based on the
climate characteristics of Guangdong (a subtropical monsoon climate with generally warm
temperature and sufficient rainfall) (Figure 1a), this study selected six extreme temperature
indices and four extreme precipitation indices from the Expert Team on Climate Change
Detection and Indices (ETCCDI) [41] to reflect the frequency and intensity of temperature
and preconception extremes (Table 2).

Table 1. Datasets used in this study.

Name Data Source Spatial Scale

Daily weather data China Meteorological Administration
(http://data.cma.cn/, accessed on 15 October 2019) -

SPEI data The Global SPEI database (SPEIbase v2.6)
(https://spei.csic.es/database.html, accessed on 15 October 2021) 0.5◦

LULC data Resource and Environment Science and Data Center, Chinese Academy
of Sciences (https://www.resdc.cn/, accessed on 10 October 2021) 1 km

Digital Elevation data Resource and Environment Science and Data Center, Chinese Academy
of Sciences (https://www.resdc.cn/, accessed on 10 October 2021) 250 m

GIMMS NDVI3g data National Oceanic and Atmospheric Administration
(https://www.nasa.gov/nex, accessed on 1 January 2021)

1/12◦

(approximately 8 km)

Table 2. Definitions of climate indices in this study.

Indices Indicator Name Definition Unit

TXm Maximum temperature Monthly mean value of daily maximum temperature ◦C
TNm Minimum temperature Monthly mean value of daily minimum temperature ◦C
TXx Max TX Monthly maximum value of daily maximum temperature ◦C
TNx Max TN Monthly maximum value of daily minimum temperature ◦C
TXn Min TX Monthly minimum value of daily maximum temperature ◦C
TNn Min TN Monthly minimum value of daily minimum temperature ◦C
Pt Total precipitation Monthly total values of daily precipitation mm
Rx1day Max 1-day precipitation amount Monthly maximum 1-day precipitation mm
Rx5day Max 5-day precipitation amount Monthly maximum consecutive 5-day precipitation mm

SDII Simple daily intensity index Total precipitation divided by the number of wet days
(defined as PRCP ≥ 1.0 mm) in the month mm day−1

SPEI Standardized precipitation
evapotranspiration index

The difference between monthly precipitation and potential
evapotranspiration 1

Note: PRCP represents the daily precipitation.

The standardized precipitation evapotranspiration index (SPEI), which is sensitive to
temperature and precipitation, integrates the effect of evapotranspiration and precipitation.
The SPEI is a standardized metric that allows comparisons across regions [42] and can
indicate drought on multiple timescales [43]. Meanwhile, it is advantageous in quantifying
drought compared with many other drought indices (i.e., the standardized precipitation
index and the Palmer drought severity index) and studying responses of vegetation to
drought [8,19,29,44,45]. The Global SPEI database (https://spei.csic.es/database.html
(accessed on 15 October 2021)) has been widely used worldwide [8,29,44]. Therefore,
the SPEI from 1-month scale to 24-month scale obtained from the Global SPEI database
(SPEIbase v.2.6) was chosen to characterize drought in this research. The SPEI values less
than or equal to –0.5 indicate drought conditions.

The land use and land cover (LULC) data and the digital elevation data were ob-
tained from the Resource and Environment Science and Data Center, Chinese Academy of
Sciences (https://www.resdc.cn/ (accessed on 10 October 2021)). The sub-regions of the

http://data.cma.cn/
http://data.cma.cn/
https://spei.csic.es/database.html
https://www.resdc.cn/
https://www.resdc.cn/
https://www.nasa.gov/nex
https://spei.csic.es/database.html
https://www.resdc.cn/
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three vegetation types (farmlands, forests, and grasslands) were extracted from the LULC
data (Figure 1c–e). This study only analyzed the vegetation areas that did not change in
vegetation type from 1982 to 2018 to avoid the impact of land use and land cover change,
and, therefore, excluded urban, water, and barren areas from the spatial analysis.

At present, although a series of vegetation indices, such as the NDVI, the vegetation
condition index (VCI), and the vegetation health index (VHI), have been developed to
reflect changes in vegetation activities [46], the NDVI is still a good indicator when dealing
with vegetation coverage and greenness in China and many other regions [13,26,29–33].
Thus, the NDVI was employed as an indicator to monitor vegetation dynamics in this work.
This study used the NDVI remote sensing data from the Global Inventory Monitoring and
Modeling Studies (GIMMS) NDVI3g dataset [47], which originated from the advanced
very-high-resolution radiometer sensors of the National Oceanic and Atmospheric Admin-
istration (https://www.nasa.gov/nex (accessed on 1 January 2021)). The GIMMS NDVI3g
dataset has been corrected to remove non-vegetation effects, such as atmospheric attenua-
tion, cloud cover, volcanic aerosol, radiometric calibration, sensor degradation, view, and
illumination geometry [48]. Although the spatial resolution of the GIMMS NDVI3g dataset
is relatively low, the GIMMS NDVI3g dataset has the longest time series (1982–2015). The
dataset has been verified to be reliable through comparisons with ground-based validations
or other NDVI products [49,50] and possesses sufficient quality in identifying vegetation
dynamics and its relationship with climate indices [47,51]. Considering the above, this
study used the GIMMS NDVI data directly. The monthly NDVI values were obtained using
the maximum-value composites (MVCs) method.

2.2. Methods

Since the GIMMS NDVI3g dataset only covers data from 1982 to 2015, this research
conducted the analysis based on the data of this period. The flowchart of this study is
illustrated in Figure 2. All climate indices were generally calculated on a monthly scale.
The climate data of the meteorological stations were resampled to a spatial resolution of
1/12◦ to spatially match the NDVI dataset via the kriging method. Additionally, the SPEI
data were rescaled to the spatial resolution of the NDVI dataset by the bilinear interpolation
method. The Theil–Sen (TS) median trend analysis method has low sensitivity to both
the influence of missing time series observations and the outliers in the time series [52].
Consequently, in this study, the TS slope estimator was used to explore the variation rate β
within the time series and calculated using Equation (1):

β = Median[
xi − xj

i− j
] for all j < i, 1 < j < i < n (1)

where β is the variation rate within the time series; n is the number of years (equal to 34
in this study); i and j are the ordinal numbers of years; xi and xj are the sequential data at
times i and j, respectively. A positive β-value indicates an upward trend, and vice versa.
β = 0 means no change.

Since the Mann–Kendall (MK) test [53] does not require the data to be distributed
normally or linearly, in this study the MK trend test was used to detect significant trends.
Pearson correlation analysis was applied to investigate the strength of the correlations
between extreme indices and vegetation dynamics. The significance level of p = 0.05
was used as the threshold to distinguish significance. In addition, this research analyzed
the time-lag effects of climate extremes on vegetation. The time lag for a climate index
was defined as the number of months after which the vegetation showed the strongest
significant correlation with this climate index [17,36,54]. The time lag is generally shorter
than six months [36,54]. Thus, this paper only took into account time lags of 0–6 months.

https://www.nasa.gov/nex
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The SPEI time series for different timescales represent the cumulative water balance
over the previous corresponding number of months [8]. For each pixel, this study calculated
the maximum value (Rmax) of the correlation coefficient between the monthly NDVI series
(Jan–Dec) and the different timescales SPEI (from 1-month scale to 24-month scale).

Ri,j = cor
(

NDVIi, SPEIi,j
)

for all 1 ≤ i ≤ 12, 1 ≤ j ≤ 24 (2)

Rmax = max1≤i≤12 , 1≤j≤24
(

Ri,j
)

(3)

where i is the ith month, ranging from 1st to 12nd month; j is the SPEI timescale, ranging
from 1 to 24 months; NDVIi is the NDVI series of ith month; SPEIi,j is the ith month SPEI
with the timescale of j months; Ri,j is the correlation coefficient between NDVIi and SPEIi,j;
Rmax is the maximum correlation coefficient, indicating the strength of drought impacts
on vegetation.

The month corresponding to Rmax is the sensitive month, indicating the period when
vegetation is the most sensitive to drought. The SPEI timescale corresponding to Rmax
indicates the dominant drought timescale, representing the speed at which vegetation
responds to drought. The longer sensitive timescale implies a slower vegetation response
and a stronger vegetation resistance or resilience, partly indicating the low sensitivity of
vegetation to drought. On the contrary, the shorter timescale demonstrates the higher
sensitivity of vegetation to drought [29].

3. Results
3.1. Variability of Climate Extremes and Vegetation Dynamics

Figure 3 illustrates the regional mean of the monthly drought frequency and the trend
rates of each climate index in each month in the whole Guangdong region. The frequencies
of drought on the SPEI timescales of 13–24 months are not shown (Figure 3a), as they were
similar to the results for the timescales less than 12 months. It is clear that drought has
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occurred every month and on different timescales over the past 34 years. June, October,
and November witnessed a relatively higher frequency of 1-month timescale drought. With
regard to the trend rate, the extreme temperatures showed a significant increasing trend in
all months except January and December (Figure 3b). The warming rates were higher in
February, October, and November. The highest warming rate was 0.124 ◦C year−1 for TXm
in February.
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Nevertheless, as for the precipitation extremes in the whole Guangdong region
(Figure 3c), only Rx5day experienced a significant decreasing trend in April, with a rate
of −1.389 mm year−1. In February, Pt significantly decreased with a rate of −1.933 mm
year−1 in the vegetation area. According to the maximum rate of the different timescales
SPEI (Figure 3d), the SPEI significantly decreased in February (−0.044 year−1), April
(−0.042 year−1), May (−0.037 year−1), March (−0.035 year−1), July (−0.030 year−1), Au-
gust (−0.030 year−1), and October (−0.026 year−1). This indicates that the frequency of
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drought has increased in the past few decades. In February and April, the greater warming
rate and decreasing precipitation rate may give rise to the relatively stronger drought trend.

With a focus on a monthly scale, Figure 4 investigates the variation of the regional
averaged NDVI in different vegetation areas. The NDVI was around 0.6 in all months, and
generally higher in the second half of the year than in the first half of the year. Farmlands
had the lowest NDVI, whereas forests had the highest in each month. In terms of the varia-
tion trends during 1982−2015, the NDVI was relatively stable in June and October, while
it showed a significant increase in other months. For all vegetation, the highest greening
rate was 0.0028 year−1 in February, followed by 0.0023 year−1 in January, 0.0018 year−1

in August, and 0.0016 year−1 in July and December. In May, September, and November,
the NDVI increased at a rate of around 0.0013 year−1. For each type of vegetation, the
highest greening rate also occurred in February, peaking at 0.0031 year−1 in the farmland
area. Generally, the greening rate of forests was the lowest, while that of farmlands was the
highest in each month.
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3.2. Correlation between NDVI and Climate Extremes on a Monthly Scale

Figure 5 investigates the spatial distributions of the correlations between the monthly
NDVI and each extreme index. The correlations between the monthly NDVI and different
temperature indices showed a similar pattern, and roughly 80–95% of the vegetation area
passed the significance test for the positive correlations (Figure 5a–f). In some areas, the
significant coefficient can be as high as 0.8. Moreover, Wang et al. [55] pointed out that the
temperature extremes generally had high rates of increase in most of Guangdong during
the past few decades. This indicates that the NDVI increased with the extreme temperature
rising in this region.

The spatial patterns of the correlations for the different precipitation indices were
similar (Figure 5g–j), but different from those for the temperature indices. The precipitation
extremes showed much weaker correlations with the NDVI than the temperature extremes.
Approximately 60–75% of the vegetation area passed the significance test for the correlations
with the precipitation indices. The significant coefficients showed north–south patterns.
The precipitation indices were significantly positively correlated with the NDVI in a few
areas of southern Guangdong, while they were strongly negatively correlated with the
NDVI in the parts of the northern and northeastern regions. Therefore, the effects of
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precipitation extremes on vegetation dynamics had an obvious north–south difference, and
the northern and northeastern regions were mainly characterized by the inhibitory effect of
precipitation extremes on plant growth.
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Figure 5. Spatial distributions of the correlation coefficients between the monthly NDVI and each
extreme index during 1982–2015: (a) TXm (maximum temperature); (b) TNm (minimum temperature);
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Furthermore, with respect to the drought effect (Figure 5k,l), 90% of the vegetation
showed significant and negative correlations with the 1-month timescale SPEI, and ap-
proximately 69% of it with the 2-month timescale SPEI. The negative correlations with
the 1-month timescale SPEI showed a similar spatial pattern, but stronger magnitudes
compared with those of the 2-month scale SPEI. The stronger correlations mostly occurred
in northern and northeastern Guangdong. As the timescale of the SPEI increased, the corre-
lations between the NDVI and the SPEI became much weaker. Only half of the vegetation
significantly correlated with the 3-month timescale SPEI, around 30% of it with the 4- or
5-month timescale SPEI, and less than 12% with the SPEI on the timescale longer than six
months (results not shown). Thus, the influence of the SPEI on vegetation mainly occurred
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on the short timescale (1–2 months), especially the 1-month timescale. In terms of the
correlation between the 1-month timescale SPEI and the NDVI on the regional average, the
significant coefficient was approximately –0.21 for all vegetation, with a value of –0.22 for
forests and –0.19 for farmlands. The responses of the different vegetation to drought did
not show much difference.

Then, based on the regional and monthly average, the correlations between vegetation
and different climate extremes were further explored to identify the potentially different
effects of climate extremes in different months (Figure 6). For any certain month, once one
of the extreme temperature (precipitation) indices showed a significant correlation with the
NDVI, this research considers that the temperature (precipitation) extremes were signifi-
cantly correlated with the NDVI in that month. For each type of vegetation, the correlations
varied greatly from January to December. The NDVI was significantly positively correlated
with temperature extremes in most months (Figure 6a–f). The significant and positive
correlations occurred in February, March, April, June, August, September, October, and
November. The coefficient was often higher than 0.4. However, some negative correlations
also existed between the NDVI and temperature extremes. In the forest area, the NDVI
was significantly and negatively correlated with TNm and TNx in October, and with TNm
in December.
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Nevertheless, the NDVI only displayed significant and negative correlations with
the extreme precipitation indices (Pt, Rx5day) in February, April, and June (Figure 6g–j).
Compared with farmlands and grasslands, the forest area was more affected by precipi-
tation extremes in June. With regard to drought, the NDVI was significantly negatively
correlated with the 1-month timescale SPEI in February, April, and June (Figure 6k). In
June, the correlation was stronger, and the forest area was more affected by drought, with a
correlation coefficient close to −0.5. In May and September, the NDVI showed significant
and negative correlations with the SPEI on the timescale longer than one month, and the
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correlation magnitudes were a little weaker compared with those of the 1-month timescale
SPEI (results not shown). In addition, there was a significant and positive correlation
between the NDVI and the long-timescale SPEI in November. Generally, the magnitudes
of correlations between vegetation and climate extremes did not show much difference
among the three types of vegetation.

3.3. Sensitivity of Vegetation Responses to Drought

To further explore the strength of drought impact on vegetation, Figure 7a illustrates
the spatial distribution of maximum correlation coefficients (Rmax) between the NDVI
and the SPEI during 1982–2015. The Rmax was statistically significant in 94.47% of the
vegetation area. A total of 73.02% of the vegetation area showed a negative correlation
coefficient, whereas only 21.45% of it displayed a positive correlation coefficient. The
Rmax value was −0.6 in most vegetation areas, indicating that vegetation was significantly
inhibited by drought in Guangdong. The areas with the greater negative correlations were
mainly located in northern and northeastern Guangdong, which is similar to the result
from Figure 5.
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Figure 7b analyzes the dominant timescale of vegetation responses to drought. The
vegetation in Guangdong was more sensitive to the short-timescale drought. The propor-
tion of the 1-month timescale was the highest (30.57% of the vegetation area), followed by
that of the 2-month timescale (11.27%). The timescales of three months and four months
respectively accounted for 6.50% and 4.97%, whereas those of the other longer months
(5–24 months) rarely appeared. Thus, the dominant timescale of vegetation responses to
drought was 1–2 months.
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In addition, the most sensitive month in which vegetation responded to drought had
great spatial heterogeneity in Guangdong (Figure 7c,d). The most sensitive month was
June which accounted for 16.64% of the vegetation area, and this was followed by May,
November, and September respectively making up 14.13%, 13.57%, and 11.83%. However,
February and April respectively constituted 7.8% and 7.5%, while the other six months
respectively occupied less than 5.0%. Additionally, by comparing the spatial distribution
of Rmax with that of the most sensitive months, it can be found that drought in November
had a positive impact on vegetation rather than a negative one. Thus, in Guangdong,
the most sensitive month of vegetation responses to drought was June, followed by May
and September.

3.4. Time Lags of NDVI Responses to Climate Extremes

Vegetation dynamics usually has delay responses to climate extremes [35–37,54,56].
Figure 8 investigates the time-lagged response of the NDVI to the different climate extremes
based on the regional mean. The coefficients with the time lag longer than five months
were not shown as they were much weaker than those with the shorter time lag. For
all vegetation, the coefficients were as high as 0.70 when the NDVI lagged the extreme
temperature indices by 1–2 months. Except for TXm and TXn, the time lags of vegetation
responses to the temperature indices were mostly two months. The responses of farmlands
and grasslands to TXm and TXn displayed a 1-month time lag. With regard to the NDVI
responses to precipitation extremes, the coefficients were around 0.60 when the NDVI
lagged precipitation extremes by 2–3 months. The time lag for forests and grasslands was
mostly three months, whereas it was approximately two months for farmlands. Thus, the
response time lag of farmlands to precipitation extremes was one month shorter than that
of forests and grasslands. However, the NDVI responses to the SPEI did not show any time
lags, indicating that the influence of drought on vegetation occurred quickly in Guangdong.

Figure 9 illustrates the spatial heterogeneity of the time lag to further explore the
vegetation’s delayed responses. For the temperature extremes (Figure 9a–f), the vegetation
responses with a 2-month lag accounted for the largest part (45.0–63.0% of the vegetation
area), and the vegetation responses with a 1-month lag mainly occurred in the parts of
the farmland area (20.0–36.0% of the vegetation area). Only 8.0–25.0% of the vegetation
showed a time lag of three months. The delayed responses of vegetation to precipitation
extremes (Figure 9g–j) were spatially different from those to temperature extremes. The
unequal lagged effects of temperature and precipitation extremes particularly occurred in
some northern and northeastern regions.

By comparing the distribution of the lag results (Figure 9g–j) with that of land use
and land cover classes (Figure 1e), we can vaguely find that the lag time of farmlands to
precipitation extremes was shorter than that of the other two vegetation areas. The grids
covered by a 3-month delay accounted for 48.0–53.0% of the vegetation area, whereas those
with a 2-month delay constituted 15.0–28.0%. The vegetation responses with 4-month and
1-month lags were respectively scattered in a few areas of the central-northern and south-
western regions. However, the vegetation rarely showed delayed responses to drought; in
other words, the grids with no time lag accounted for 88.0% of the vegetation area. The
asymmetric responses of vegetation to the different climate extremes were distinguished
in Guangdong.
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months; only the vegetation areas with the correlation passing the 0.05 significance test are colored in
the figures.

4. Discussion
4.1. Variations in Climate Extremes

The SPEI is a good indicator for identifying drought and assessing the intensity and
duration of drought [33,42,44]. The multiyear mean SPEI approximately decreased from
southwest to northeast (results not shown). According to Figure 3, the trend rates of each
climate index were strongly temporal heterogeneous, which highly proves that it is of
great significance to carry out the research on a monthly scale. Both the increased rates
of extreme temperatures and drought were the highest in February. The SPEI showed
a significant drought trend in most months, and the extreme temperatures significantly
increased in most corresponding months. The high temperature can enhance evaporation
and increase soil drought conditions [57]. Thus, drought in Guangdong is mainly attributed
to the increasing extreme temperature. In addition to the great warming rate of extreme
temperatures, the significant decrease in precipitation would also contribute to the strong
drought trend in February and April.

In order to further explore the spatial distributions of drought variations, Figure 10
illustrates the trend rate of the spatial SPEI, which was calculated by selecting the maximum
rates of the SPEI among 24-timescale series (from 1-month to 24-month) in each pixel. The



Remote Sens. 2022, 14, 5369 15 of 21

northeastern region and parts of northern Guangdong mostly witnessed a significant
decreasing SPEI (in other words, a significant drought trend). In those regions, the trend
rate of drought was mostly higher than 0.04 year−1 in many months, with the highest
value around 0.06 year−1. The grids with intensified drought accounted for 73.02% of
the vegetation area in April, respectively followed by 65.23% in February, 63.0% in May,
53.51% in March, and 46.80% in June. Around 41.0% of the vegetation area showed drought
trends in July, August, September, October, and November, but only 35.63% in December
and 25.96% in January. By comparing the spatial patterns of the variations of drought
and temperature extremes [55], we can find that the vegetation area experiencing drought
intensification mostly corresponded well with that suffering from the high increases of
temperature extremes. This further clarifies the contribution that the temperature rise made
to drought intensification in Guangdong.
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4.2. Impact of Climate Extremes on Vegetation Change

Knowledge of vegetation responses to climate extremes is helpful for evaluating
the vegetation vulnerability and resilience to climate extremes [24]. Over the past few
decades, some parts of Guangdong have suffered from huge anthropogenic activities,
such as rapid urbanization, economic development, and population growth [39,40]. The
vegetation coverage in Guangdong was affected by local social changes and anthropogenic
disturbances, which can weaken the accuracy of the relationship between climate extremes
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and the NDVI. In order to avoid the impact caused by the above disturbances, this study
only considered the vegetation areas with unchanged vegetation types when analyzing the
vegetation variation and the effects of climate extremes on vegetation. Thus, the results
related to vegetation are reliable.

The vegetation greenness in China presents great northwest–southeast differences
(Figure 1a). Highly different from northwestern China, most areas in Guangdong have a
high vegetation cover rate. In the vegetation area of Guangdong, the vegetation activity
strengthened in most months except June and October during 1982–2015 (Figure 4b), and
it positively responded to the increased temperature indices in most months (Figure 6).
Extreme temperature has a complex effect on vegetation [25,26]. Although high temperature
usually precludes vegetation growth in many areas [26], sufficient precipitation would
mitigate the negative effect of the increased high temperatures in South China [37]. Located
in southern China, Guangdong had annual precipitation as high as 1780.9 mm in the
past 34 years. Therefore, the adverse effect of the rise in extreme temperature rarely
occurred in Guangdong, and the increasing extreme temperature promoted plant growth
in most months.

The impact of precipitation extremes on vegetation was weaker than that of tempera-
ture extremes in Guangdong (Figures 5 and 6), which is similar to that in Guangxi [37]. The
vegetation in Guangdong has sufficient water for growth and extreme precipitation is a less
important factor affecting vegetation, which differs significantly from that in arid and semi-
arid regions where vegetation is sensitive to limited precipitation [26,29,34]. The negative
effect of precipitation extremes mainly occurred in the northern and northeastern parts
of Guangdong which possesses less precipitation. The decreased extreme precipitation in
February and April tended to prevent vegetation growth.

Drought implies a deficit in water availability which differs from the normal level [42].
Vegetation recovery is usually slow after severe damage from drought [8]. Owing to the reg-
ulation of precipitation, the correlations between vegetation and drought in humid regions
are relatively weaker than those in arid regions of China [29]. However, this study finds
that vegetation growth was widely inhibited by drought in Guangdong (Figure 5k,l and
Figure 6k). February, April, and June generally witnessed increased extreme temperatures
and the adverse effect of precipitation extremes on vegetation, which can well explain the
negative effect of drought on vegetation in those months. In addition, on account of the
significant drought trend in February and April, the vegetation growth was further greatly
restrained in those three months.

Vegetation type can influence the effect of climate extremes on vegetation
dynamics [13,58]. For the effect of temperature extremes on vegetation, the correlation
magnitudes among the three types of vegetation were slightly different in each month, but
the differences were not significant. Except for June, the correlation between precipitation
extremes and vegetation activities in each month was basically the same or insignificant
for the three types of vegetation. In June, the forest area was more sensitive to extreme
precipitation than the other two vegetation areas. In terms of drought impact, the forest
area was relatively more affected in June, whereas the farmland area was more influenced
in February. Thus, the analysis on a monthly scale clearly reflects the influences of climate
extremes on vegetation in different growing periods.

4.3. Sensitivity Analysis of Vegetation Responses to Drought

The physiological response of vegetation to drought determines the resistance and
resilience of vegetation to water deficit [8]. Drought conditions may be different when
being calculated during different periods. Vegetation responds differently to drought on
different timescales [8], and the timescale of drought can highly affect the magnitude of
vegetation responses [20,59]. It is necessary to consider drought on different timescales
when the effect of drought on vegetation is assessed [29,45].

The timescale of vegetation responses to drought in Guangdong was thoroughly inves-
tigated in this study. Figure 5 points out that the influence of drought on vegetation mainly
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happened on the short timescales (1–3 months), with drought on the 1-month timescale
showing the greatest impact on vegetation. According to Figures 5 and 7a, vegetation was
significantly inhibited by drought in most vegetation areas of Guangdong, with the greater
negative correlations mainly located in northern and northeastern Guangdong. The effect
of drought on vegetation in Guangdong highly differs from that in many other regions
where drought was positively related to vegetation dynamics [19,20,29,59].

Meanwhile, although the vegetation in humid regions was mostly inclined to respond
to long-term drought [8], the vegetation in Guangdong was the most sensitive to drought
on timescales of 1–2 months (Figure 7b). The dominant timescale in Guangdong was much
shorter than that in many other regions, such as Qiling [20], and the Continental United
States [17]. These imply that the vegetation in Guangdong had a rapid response and weak
resistance to drought. In addition, although the forest area was generally sensitive to longer-
timescale droughts, as the plant roots are mostly long and can reach groundwater [60], this
research did not find a tremendously clear difference in the drought timescales among
farmlands, forests, and grasslands.

According to Figure 6, February, April, and June witnessed a negative vegetation
response to 1-month timescale drought. May and September experienced a similar but
weaker vegetation response to drought when the SPEI timescale was longer than one
month or even 12 months. Those partly indicate that the vegetation in February, April,
and June was more sensitive to short-timescale drought, while the vegetation in May and
September was more sensitive to longer-timescale drought. Furthermore, the most sensitive
month of vegetation responses to drought in Guangdong was June, closely followed by
May and September (Figure 7c,d). According to Qi et al. [20], the vegetation in the Qinling
Mountains of China was also the most sensitive to drought in May and June. June and
May are the critical periods for vegetation growth in Guangdong, especially for crops, such
as rice, vegetables, peanuts, tuber crops, sugar cane, corn, and soybeans. For instance,
the rice in June is mostly at the heading and flowering stage, often suffering from high
temperatures [61]. Although irrigation can mitigate the adverse effects of drought and
other extreme climatic events on rice to some extent, drought often tends to amplify the
negative effects of extreme heat on crop production [14]. Thus, the crop growth in those
periods will be greatly inhibited.

4.4. Lagged Responses of Vegetation to Different Climate Extremes

The lag of vegetation responses to climate extremes was thoroughly investigated in
this study (Figures 8 and 9). The farmland, forest, and grassland areas generally responded
to temperature extremes with two months’ time-lag effects, but they showed different lag
responses to precipitation extremes. The farmland area responded to extreme precipitation
with a lag of two months, one month earlier than the forest and grassland areas. Therefore,
the response of forests and grasslands to temperature extremes was one month earlier
than that to precipitation extremes, but the farmland area showed a similar time lag to
the temperature and precipitation extremes. The time lags in vegetation responses to
temperature and precipitation extremes in Guangdong were longer than those in Guangxi
and the whole Central Asia [35,37]. The vegetation response to soil moisture typically
showed a 1-month time lag [62], which partly explains the lag in vegetation responses to
temperature extremes.

Although both the temperature and precipitation extremes showed obvious time-lag
effects on vegetation, drought did not have any time-lag effects on vegetation growth
in Guangdong. This implies that the responses of vegetation to drought were faster
than those to other climate extremes in Guangdong. The farmland, grassland, and forest
vegetation responded to drought immediately, without any difference among the three
types of vegetation. However, drought has lag effects on vegetation in some other places,
such as the Continental United States [17]. The lack of lag in vegetation responses to
drought further indicates that drought will generate a great threat to vegetation growth in
Guangdong with the increase in extreme temperature.
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Overall, the temperature extremes showed the strongest correlation with vegetation
dynamics in Guangdong, followed by drought. The increasing extreme temperature pro-
moted plant growth in most months. Nevertheless, drought exerted a negative effect
on plant growth in February, April, May, June, and September, and the precipitation
extremes made a negative effect in February, April, and June. Although the inhibiting
effects of drought and precipitation extremes on vegetation were relatively weaker than
the promoting effects of temperature extremes, the inhibiting effects of drought and pre-
cipitation extremes should be paid more attention. Based on the categorization of extreme
climate effects on vegetation dynamics [26], Guangdong belongs to the heat-promoting
and drought-inhibiting compound type.

The monthly scale analysis shows that the responses of vegetation to climate extremes
displayed great temporal heterogeneity in different months. Thus, it is an effective approach
to understand how vegetation responds to climate extremes in different growing periods.
This study can help find effective preventive measures for the protection of the Guangdong
ecosystem. Drought can easily reduce vegetation activity and slow plant growth [8].
Appropriate measures, for example, introducing drought-resistant vegetation, should be
formulated to reduce the damage caused by drought in February, April, May, June, and
September. People can also lessen drought effects on agriculture by using irrigation and
film-mulching, especially in June and May. Moreover, this work is particularly important
under the background of ongoing global warming. The effect of future drought will almost
certainly be worsened by rising temperatures [28]. The future temperature may frequently
go beyond the vegetation’s optimum and enhance drought degrees. Prolonged exposure to
climate extremes may result in fragile vegetation. People should take precautions against
heat threats and related threats in Guangdong.

4.5. Limitations and Uncertainties

Although the GIMMS NDVI data have been proven to be reliable for this kind of
study [47], there were some limitations and uncertainties in the study. Firstly, the GIMMS
NDVI data are indirect remote sensing data, and their accuracy is limited to the satellite
sensor sensitivity [63,64]. There may be some errors in the modeled NDVI because of the
influence of the fragmentized terrain and saturated problem [64]. In addition, the differ-
ences in the data resolution may lead to weaknesses in the result. There were uncertainties
when the climate data were resampled to the spatial resolution of the GIMMS NDVI data.
Furthermore, changes in vegetation have feedback to the climate system [3,5], and the
vegetation–climate interactions are highly heterogeneous [8,58]. This study did not strictly
consider the feedback of vegetation to climate extremes. More information is required to
analyze the vegetation–climate interactions in the future. Future work should address these
uncertainties to obtain more valuable conclusions.

5. Conclusions

This paper analyzed the impacts of different climate extremes (temperature extremes,
precipitation extremes, and drought) on vegetation dynamics on a monthly scale in Guang-
dong from 1982 to 2015, mainly focusing on vegetation response to drought. The major
conclusions are summarized as follows.

(1) Drought showed an increasing trend in most months, corresponding to the increase
in extreme temperatures. The stronger trend rates of drought happened in February and
April. Except for June and October, the vegetation in other months showed a significant
greening trend.

(2) The vegetation dynamics displayed strong and positive correlations with the
enchanted temperature extremes in most months. However, it showed great negative
correlations with precipitation extremes and 1-month timescale drought in February, April,
and June, and with long-timescale drought in May and September. The response of
vegetation to drought was the most sensitive in June.
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(3) For various timescales, the most significant negative correlation between vegetation
and drought mainly occurred on the timescales of one to two months. With a rapid response
and weak resistance to drought, the vegetation did not have any time lag. However, the
vegetation responded to temperature and precipitation extremes with a time lag of at least
two months.

The results promote our insight into the interaction between vegetation and climate
and help improve the sustainable use of natural resources and facilitate the implementation
of reasonable mitigation measures.
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