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Abstract: This study applies Gravity Recovery and Climate Experiment (GRACE) data and the Water-
GAP (Water Global Analysis and Prognosis) Global Hydrology Model (WGHM) to investigate the in-
fluence of the Bui reservoir operation on water storage variation within the Volta River Basin (VRB).
Variation in groundwater storage anomalies (GWSA) was estimated by combining GRACE-derived
terrestrial water storage anomalies (TWSA), radar altimetry records, imagery-derived reservoir (Lake
Volta and Bui) surface water storage anomalies (SWSA), and Global Land Data Assimilation System
(GLDAS)-simulated soil moisture storage anomalies (SMSA) from 2002 to 2016. Results showed that
TWSA increased (1.30 ± 0.23 cm/year) and decreased (−0.82 ± 0.27 cm/year) during 2002–2011 and
2011–2016, respectively, within VRB, matching previous TWSA investigations in this area. It revealed
that the multi-year averages of monthly GRACE-derived TWSA changes in 2011–2016 displayed
an overall increasing trend, indicating storage increase in regional hydrology; while the Lake Volta
water storage changes decreased. The GRACE-minus-WGHM residuals display an increasing trend
in VRB water storage during the Bui reservoir impoundment during 2011–2016. The observed trend
compares well with the estimated Bui reservoir SWSA, indicating that GRACE solutions can retrieve
the true amplitude of large mass changes happening in a concentrated area, though Bui reservoir is
much smaller than the resolution of GRACE global solutions. It also revealed that GWSA were almost
stable from 2002 to 2006, before increasing and decreasing during 2006–2011 and 2012–2016 with rates
of 2.67 ± 0.34 cm/year and −1.80 ± 0.32 cm/year, respectively. The observed trends in the GRACE-
derived TWSA and GWSA changes are generally attributed to the hydro-meteorological conditions.
This study shows that the effects of strong El-Niño Southern Oscillation events on the GWSA interan-
nual variability within the VRB is short-term, with a lag of 6 months. This study specifically showed
that the Bui reservoir operation significantly affects the TWSA changes and provides knowledge on
groundwater storage changes within the VRB.

Keywords: GRACE/GRACE-FO; climate change; water storage variations; Volta River Basin; vegeta-
tion index; anthropogenic activities

1. Introduction

The Volta River Basin (VRB), covering almost 400,000 km2, approximately 28% of
Africa’s continental West Coast, is one of the main river networks in Africa. The basin
stretches over six different countries: Ghana, Benin, Ivory Coast, Togo, Burkina Faso,
and Mali. Water and environmental resources of the VRB have undergone extreme stress
due to the complex configuration of geographical and social aspects, as well as incessant
stress of climate change [1,2]. Therefore, the basin-living people are extremely sensitive to
temporal and spatial precipitation and climate change. In addition, water resources scarcity
will be further aggravated due to deforestation, high land degradation rate coupled with
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climate change, and high population growth [3–5]. In 2007, to mitigate the future danger
for the well-being of their populations, administrations of the six aforementioned countries
established some action plans under the responsibility of the Volta Basin Authority, built on
fundamentals of integrated water resources management [6]. To execute these action plans,
scientific investigations on the recent trends and future predictions of water availability
in the basin are required to help the decision makers and advisors.

Recurrent flooding events and the increasing needs for freshwater and power supplies
have led to the development of major new engineering projects (e.g., dams) across the VRB.
One of world largest man-made lakes (Lake Volta) is located in the VRB. Lake Volta is
presently the main lake in the VRB, and is controlled by the Akosombo dam, which has
been in operation since 1965. Besides Akosombo dam, a new important dam, called Bui
dam was constructed from 2009 to 2010, and its reservoir impoundment started in 2011.
The Bui dam was commissioned for use in 2013. In the VRB, especially in the Afram
Plains area (with a total land area of approximately 3095 km2), annual increase in domestic
water needs of approximately 2.5% due to the projected annual increase in population
would induce an increase in groundwater withdrawal rates from 12,800 m3/day in 2015
to approximately 30,400 m3/day by 2050 [7]. Indeed, along the tropics and in many parts
of Sub-Saharan Africa, groundwater is the main source for freshwater and for irrigated
agriculture [8]. Groundwater inevitably becomes the water source in dry areas far from
streams and reservoirs or to alleviate water shortage during droughts. In order to achieve
the Sustainable Development Goals, ensuring the development and the adjustment to
climate changes throughout Africa, groundwater resources will be increasingly used [9,10].
In this case, it is imperative to investigate groundwater storage variation, examining
the repercussions of human activities (e.g., construction of dams) and the impacts of
climate changes.

Across West Africa, the roles of climatic change have been largely reported, whether
it is at regional or basin level [11–20]. It is shown that rainfall patterns and hydro-
meteorological conditions are influenced by the large-scale ocean-land-atmospheric inter-
changes and global climate teleconnections (e.g., El-Niño Southern Oscillation (ENSO),
Atlantic Multi-decadal Oscillation (AMO)). Climate change causes severe weather episodes.
The major findings of previous studies on terrestrial water storage in West Africa (including
the VRB) [3,18,21–26] largely agree on the statistically significant changes in terrestrial wa-
ter storage due to anthropogenic and natural causes. Terrestrial water storage is the vertical
integration of surface water storage (e.g., reservoirs, lakes, rivers), soil moisture storage,
groundwater storage, snow, and ice storage, as well as canopy storage. These water compo-
nents might react differently to climate change, as rainfall is the main input for terrestrial
water storage. Long periods of drought and flood directly affect groundwater availability
and dependency. However, none of the above studies have addressed groundwater storage
variation, or the impact of climate teleconnections and human activities on groundwater
storage variation in the VRB.

Indeed, the most recent methods to monitor groundwater storage changes were
based on a network of accurately located and designed observation wells, which monitor
changes in groundwater levels over a long-term period [7,27]. However, according to
Famiglietti et al. [28], remote sensing can supply large-scale data in water stock variation,
which are steady across national boundaries. Nevertheless, so far in the VRB, due to the lack
of basin-wide in situ data, there is no significant investigation of groundwater storage
changes at basin scale. The present study aims to investigate changes in groundwater
stocks, including the impact of human activities (e.g., construction of dams) and climate
teleconnections influences in the VRB, using large-scale remotely sensed data from satellite
gravimetry such as the Gravity Recovery and Climate Experiment (GRACE).

GRACE provides monthly, vertically integrated estimations of terrestrial water storage
anomalies (TWSA) related to a specific baseline or long-term average at a spatial resolution
> 100,000 km2. As indicated above, groundwater is one component of terrestrial water
storage. Therefore, groundwater storage can be isolated from the GRACE terrestrial water
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storage estimates by removing independent estimates of all other water components (e.g.,
surface water storage, soil moisture storage). An increase in the application of remote
sensing and global models of groundwater investigations can be observed across the world,
especially in areas where ground-based data are unavailable at large scale, such as the Volta
River Basin. Global land surface models (LSMs) and global hydrologic models (GHMs) are
the two main global models that provide independent estimates of water budget compo-
nents. The LSMs are mostly established to design the limit condition for climate standards
including water and energy conservation. Most of LSMs, such as Global Land Data Assimi-
lation System (GLDAS), do not contain information about human activities and broadly
limit their contents to soil moisture and snow. Bonsor et al. [29] investigated the seasonal
and decadal groundwater changes in African sedimentary aquifers (not including the VRB),
by combining GRACE products and LSM outputs. Their work revealed an inconsistency
between the GRACE-LSMs driven results and in situ data of groundwater recharge from
different basins. Consequently, Bonsor et al. [29] highlighted the need for more in situ data
from wells to further improve the LSMs outputs. The GHMs, based on water balance, were
basically established to assess water shortage. While most GHMs do not introduce energy
balance, all the models mostly contain surface water, soil moisture, and groundwater.
In contrast to LSMs, the GHMs mostly include human activities, such as water withdraw,
return flow from surface water or groundwater withdrawal, and reservoir storage. In many
parts of the world (such as major U.S. aquifers, North China Plain, Tigris-Euphrates Basin,
Three Gorges Reservoir, Northwest India, etc.), the GHMs have been applied to investigate
human activity impacts on water storage changes [30–33].

This study, therefore, aims to (i) investigate the influences of the Bui reservoir operation
and climate changes on the TWSA changes within the VRB; (ii) estimate the groundwater
storage anomalies (GWSA) changes; (iii) quantify the contributions of water components
into the basin’s TWSA changes and understand their temporal dynamics. The GWSA
analysis was restricted to the basin’s fractured land, which contains the Lake Volta and Bui
reservoir (Figure 1).

Figure 1. Study area showing the Volta River Basin and its river system (Black Volta, White Volta,
and Oti River). The shaded region in the inset map is the extent of the Volta River Basin.

The remainder of the study is subdivided as follows: a brief introduction to the study
region and datasets used is presented in Section 2; Section 3 presents the methods used;
Section 4 presents the results; and Sections 5 and 6, the discussion and conclusion, respectively.
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2. Study Area and Data Used Materials
2.1. The Volta River Basin

The Volta River Basin is one of the largest basins in sub-Saharan Africa, extending approxi-
mately between latitudes 5◦30’N–14◦30’N and longitudes 5◦30’W–2◦00’E. It spreads out across
at least four climatic regions, oriented from lowland rainforest in the south, to the semi-arid
Sahel-Sudan desert in the north [34]. The VRB is characterized by sedimentary aquifers, which
are classified between the fractured zone and a mélange of intergranular and fractured land.
The Volta Fractured Land, which is defined by the red line (Figure 1), is the main fractured
land within the VRB, and therefore, offers good conditions for groundwater storage under
the influences of extreme wet events [29,35]. The basin’s climate is generally characterized by
two types of rainy seasons: unimodal and bimodal, which are mainly induced by the move-
ment of the Inter-Tropical Convergence Zone (ITCZ) [34,36]. The basin’s hydrological network
is divided into three main sub-catchments, namely the Nakambé and Mouhoun, which feed
the White Volta and Black Volta rivers, respectively, and the Oti River. The Volta River gener-
ally flows south across Ghana and discharges into the Gulf of Guinea. The flows of the rivers
are relatively managed by dams to support power and water resources. Groundwater aquifer
depths are shallow in most parts of the basin, while a significant groundwater aquifer is present
in the upper Volta basin (north-western). The information about the aquifer systems and their
recharge properties were obtained from the World-wide Hydrogeological Mapping and As-
sessment Program (https://www.whymap.org/whymap/EN/Home/whymap_node.html,
accessed on 10 January 2021) website. The map “Groundwater resources and recharge” gives
knowledges on the types and properties of the global groundwater aquifer system. It should
be noted that the GWSA changes estimation in this study will focus on the Volta Fractured
Land area, which contains Lake Volta and Bui reservoir.

2.2. GRACE Data

Launched in March 2002, the GRACE satellite mission has improved the applications
of remotely sensed data in a wide range of hydrological investigations. The GRACE
twin satellites were designed to yield data on spatiotemporal variations in the Earth’s
gravity field, which mainly include storage changes in surface water, soil moisture and
groundwater. Therefore, vertically integrated estimates of TWSA related to a specific
baseline or long-term average can be derived from GRACE products.

Monthly GRACE and GRACE-Follow Release-06 level-2 GSM products, provided
by the Center for Space Research of the University of Texas at Austin, were used to
estimate TWSA changes within the VRB relative to the 2004–2009 baseline. The GRACE
products, expressed as spherical harmonic coefficients and up to degree/order 60, constitute
the hydrological and geophysical signals over land, as oceanic and atmospheric mass
variations have been separated. In this study, GRACE Matlab Toolbox (GRAMAT) (https://
github.com/fengweiigg/GRACE_Matlab_Toolbox, accessed on 10 January 2021) developed
by Feng et al. [37], was used to estimate TWSA.

2.3. TWSA from WGHM

The WaterGAP (Water Global Analysis and Prognosis) Global Hydrology Model
(WGHM) reproduces day-to-day water flows and storages of the hydrological cycle glob-
ally with a spatial resolution of 0.5 degree. It has been implemented in many areas (e.g.,
Three Gorges Reservoir, North China Plain, Tigris-Euphrates Basin) to study human activity
impacts on water storage changes [30–33]. The WGHM has been updated to version 2.2d,
providing monthly output of terrestrial water storage changes, as well as all water resource
components, including surface water storage (e.g., rivers, wetlands, lakes, and reservoirs)
and soil moisture storage [38,39]. The WGHM combines exhaustive information on at-
tributes, extent and location of lakes, reservoirs, and wetlands to simulate surface water
changes. However, the global database of lakes and wetlands used by the WGHM does
not include the Bui Reservoir [40]. Therefore, monthly WGHM-derived TWSAs relative
to the 2004–2009 baseline were used in this study to investigate the influence of the Bui

https://www.whymap.org/whymap/EN/Home/whymap_node.html
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reservoir implementation on changes in TWSA within the VRB. The TWSA from WGHM
were subtracted from the GRACE-estimated TWSA, before being compared with the water
storage changes of both Lake Volta and Bui reservoir. It is worth recalling that the WGHM-
derived TWSA were filtered in the same way as GRACE data before subtraction from
the GRACE-estimated TWSA.

2.4. SMSA from GLDAS

Soil moisture is one of the storage changes in the water cycle, and its reliable esti-
mation is crucial for an accurate segregation of the groundwater changes. In this case,
the soil moisture storage changes used in this study were obtained by averaging the soil
moisture storages from three types of GLDAS outputs (version 2.1), i.e., NOAH, CLM,
and VIC. By integrating relevant terrestrial and satellite observations and applying a data
assimilation approach, the global land surface model, GLDAS, can simulate optimal land
water and energy fluxes. The GLDAS dataset was provided by Goddard Earth Sciences
Data and Information Services Center, Greenbelt, Maryland, USA (https://disc.gsfc.nasa.
gov/datasets?keywords=GLDAS, accessed on 10 January 2021).

2.5. Precipitation Data, Climate Indices and Drought Index

The 0.5◦ × 0.5◦ global grids of monthly estimates of the Global Precipitation Climatol-
ogy Centre (GPCC) data set from 1948 to 2016 were used to estimate annual precipitation
anomalies, as well as annual standardized precipitation anomalies. The annual precipi-
tation anomalies were obtained by subtracting the mean relative to the period 1948–2016
for each grid cell. Then, the monthly time series from 2003 to 2016 were standardized
by removing the mean relative to the same period and dividing by the standard devia-
tion at each grid cell. The GPCC data were estimated using approximately 67,200 rain
gauge stations over global land areas. Previous studies have shown that the GPCC based
precipitation data have a good correlation with other in situ based precipitation datasets,
such as the Global Precipitation Climatology Project (GPCP) [41], and Tropical Rainfall
Measuring Mission-based precipitation [20,24,42,43]. Additionally, global climate tele-
connection indices, such as Atlantic Meridional Mode (AMM), Multivariate ENSO index
and unsmoothed AMO were used to examine the possible links between estimated water
storage changes and global teleconnections factors over the VRB. Moreover, monthly time
series of the Palmer Drought Severity Index (PDSI) on a 2.5◦ grid from 1948 to 2016 were
used to investigate wet or dry conditions in the VRB.

2.6. Satellite Imagery and Altimetry

As both Lake Volta and Bui reservoir are the main man-made freshwater sources
for the VRB, they play significant roles in the basin’s water system. Therefore, particular
attention to their surface water storage changes will be helpful to carefully segregate
the groundwater storage changes. Studies have shown that satellite images and altimetry
data can be combined to estimate the surface mass changes over lakes and reservoirs [44,45].

The height records for Lake Volta and Bui reservoir used in this study were ob-
tained from the Hydroweb database (https://hydroweb.theia-land.fr, accessed on 1 May
2022) [46]. The dataset was compiled from observations from different radar altimetry mis-
sions, including Topex/Poseidon, Jason-2, Jason-3, Envisat, and Sentinel-3A. These satellite
altimetry observations were corrected from the solid earth tide, pole tide, ionospheric delay
wet and dry tropospheric delay, and altimeter biases. The surface of reference used to
recover the surface water level include GGMO2C, a high-resolution global gravity model
developed to degree and order 200 [47].

Furthermore, Landsat 7 ETM+ (Enhanced Thematic Mapper) and Landsat 8 images
were used to quantify the Lake Volta area changes, while the Bui reservoir area changes
used in this study were obtained from the Hydroweb database. Indeed, the Landsat images
have eight bands with 30 m spatial resolution. Due to cloud cover and the unavailability of
Landsat images, a total of 71 images were downloaded for the period 2002–2016 to estimate

https://disc.gsfc.nasa.gov/datasets?keywords=GLDAS
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the changes in lake area in this study. The quality of these selected images for each month
was basically < 50% cloud cover. The scanline error correction and blue band masking were
applied to remove the satellite scanline error and to exclude the pixels with cloud cover.
In the present study, the Modified Normalized Difference Water Index (MNDWI) was used
to estimate the changes in Lake Volta area [48,49]. The MNDWI can be expressed as:

MNDWI =
ρgreen − ρSWIR

ρgreen + ρSWIR
(1)

where ρgreen and ρSWIR are the reflectance of green and shortwave-infrared bands, respec-
tively. The MNDWI values range from −1 to 1.

2.7. Normalized Difference Vegetation Index

Associated with primary production of vegetation and photosynthetically active
radiation, the Normalized Difference Vegetation Index (NDVI) is responsive to vegetation
condition. Previous studies [50,51] have used the NDVI to monitor water storage and
surface vegetation changes. The Moderate Resolution Imaging Spectroradiometer (MODIS)
NDVI products MOD13A13 from 2003 to 2016 were used in this study to monitor the control
of water storage on changes in surface vegetation. Global MOD13A3 data were provided
monthly at 1 km spatial resolution as a gridded Level-3 product.

3. Methods
3.1. Recovering of Lake Surface Water Storage Changes

The water volume changes for Lake Volta and Bui reservoir were retrieved to carefully
estimate the changes in GWSA within the Volta Fractured Land region. In this case, the area-
height relationship method was first adopted to retrieve the geometric link (an empirical
equation) between the inundated area and the water levels. This method consists of
combining the changes in surface water area with altimetry radar surface water level
measurements. The empirical equation accuracy is however highly related to the time
delays between the day of the month that the images were taken and the day of the month
when the water levels were recorded [52]. Therefore, a time delay of 5 days was adopted for
the Lake Volta, while water level records and area changes of the same day were applied
for the Bui reservoir. The images and the corresponding water level records that were not
within this time delay were then eliminated. For Lake Volta, a recent study by [26] has
highlighted that there is a linear relationship between its water height and inundated area.
Therefore, the linear regression analysis was applied to recover the area-height relationships
for both Lake Volta and Bui reservoir. Once these empirical equations were retrieved,
the monthly changes in water area could be derived from the water height records.

Once the monthly water extent and changes in water level were obtained, the second
method of [53] was used to calculate the changes in lake water volume between two months:

∆V =
1
2
(H2 −H1)(S2+S1) (2)

where ∆V represents the change in lake water volume from lake height H1 with an area of
S1 to H2 with S2. The water volume was obtained with two consecutive area and height
values. The water balance can be achieved with total of all the month values between 2002
and 2016.

Once the monthly changes in water volume were obtained, the surface water storage
changes for Lake Volta and Bui reservoirs were then obtained by, for each month, dividing
the water mass (volume) by the average area of Lake Volta or Bui reservoir, which are
~8500 km2 and ~222 km2, respectively. After that, two sets of grids with 0.01 × 0.01 degree
resolution were constructed to accurately mark the shapes and locations of both Lake
Volta and Bui reservoir [21], respectively. The grid cells within the lake and Bui reservoir’s
boundaries were set to 1, and 0 otherwise. These sets of grid cells were then filtered
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in the same way as the GRACE data to get GRACE-like observations for a 1 m water level
change. To obtain the filtered time-varying Lake and Bui reservoir water storage changes,
the estimated surface water storage changes were then multiplied by the reconstructed
GRACE-like observations (see details in [21,25]).

3.2. Estimating GRACE-Derived TWSA and GWSA

The Earth’s surface mass changes over a specific time can be expressed in equiva-
lence water heights based on the GRACE time-variable spherical harmonic coefficients.
This approach can be illustrated as follows:

∆h(θ, λ) =
aρave

3ρw
∑N

n=0 ∑n
m=0 Pnm(cos θ)

2n + 1
1 + k′n

[∆Cnm cos(mλ) + ∆Snm sin(mλ)] (3)

where ∆h is the monthly equivalence water heights (m); a is the equatorial radius of
the Earth (6378 km); ρave is the Earth’s mean density (5515 kg/m3); ρw is water density
average (1000 kg·m−3); n and m are harmonic degree and order; λ and θ are longitude and
colatitude (90 – latitude); k′n is the n-degree load LOVE number [54]; Pnm is the fully nor-
malized associated Legendre functions; ∆Cnm and ∆Snm are the monthly GRACE observed
Stokes coefficients after removing the 2004–2009 baseline. Degrees ranging from 0 to higher
values express spatial resolutions, which can range from global to regional. The degree
in Equation (3) is truncated at degree N = 60 in this study. To obtain accurate TWSA across
a given region, a series of processes were required to treat the GRACE data. In order to
suppress the noise and error caused by GRACE satellite measurements, the present study
applied various techniques as follows: the first-degree and C20 coefficients were replaced
by more consistent estimations as proposed by [55,56]. The model, suggested by [57],
was applied to remove the glacial isostatic adjustment induced long-term non-hydrological
mass variations signal. In addition, a 300 km Gaussian smoothing filter and the Swenson
destriping method were applied to reduce correlated errors and high-frequency noise
in the original GRACE GSM products.

Monthly changes in GRACE-derived TWSA generally include surface water storage
anomalies (SWSA) (e.g., reservoirs, lakes, rivers), soil moisture storage anomalies (SMSA),
GWSA, snow and ice storage anomalies and canopy storage anomalies. However, the rela-
tive contribution of canopy and snow water storage is assumed to be very small compared
to the other water components (i.e., SWSA, SMSA, and GWSA) in Africa [29,58]. Therefore,
it can be assumed that the TWSA in the VRB include SWSA, SMSA and GWSA. The GWSA
can, therefore, be segregated by removing the SWSA and SMSA from the GRACE-derived
TWSA. The SWSA and SMSA were computed by averaging each grid point of surface
water storage and soil moisture storage over the 2004–2009 baseline (the same used with
the GRACE product) and subtracting them from surface water storage and soil moisture
storage at each time step, respectively. Changes in the SWSA include those in the radar
altimetry records and imageries-derived water storage data for both Lake Volta and Bui
reservoir, which are the main reservoirs in the VRB, while the SMSA changes were derived
from GLDAS outputs. For that, a GRACE-derived GWSA time series analysis in this study
was focused on the Volta Fractured Land, which contains both Lake Volta and Bui reservoir
(Figure 1), to avoid the probable surface water underestimation from others lake/reservoir
within the basin. It is worth recalling that both SWSA and SMSA were filtered in the same
way as GRACE data before subtraction of them from the GRACE-estimated TWSA.

GWSA = TWSA− (SWSA + SMSA) (4)

3.3. The Cross Wavelet Transform Approach

The cross wavelet transform approach (https://github.com/grinsted/wavelet-coherence,
accessed on 10 January 2021) is an effective technique for signal analysis, which merges wavelet
transform and cross spectrum analysis. It can successfully capture the links between two
time series, and therefore can show the correlation between two sequences in both time and

https://github.com/grinsted/wavelet-coherence
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frequency domains. Furthermore, cross-wavelet transform can effectively reveal the regions with
significant correlation between two time series [59–61]. In this study, the cross wavelet transform
method was applied to investigate the influences of climate teleconnection indices on the changes
in GRACE TWSA. The cross wavelet transform (XWT) of two time series xm and ym can be
defined as WXY = WXWY∗ , with ∗ being their complex conjugation. The cross wavelet power
can be indicated as WXY. The local relative phase between xm and ym in both time and frequency
domains can be described as a complex argument arg

(
WXY). The theoretical distribution of

the cross wavelet power of the two time series, with PX
k and PY

k as their background power
spectra, is given as follows:

D
(

WX
m (s)WY∗

m (s)
σXσY

< p
)
=

Zv(p)
v

√
PX

k PY
k (5)

where Zv(P) is the significance level associated with the probability, P, of a probability distri-
bution function (pdf) defined by the square root of the product of two X2 distributions [62].

3.4. Decomposition of Time Series

The Seasonal and Trend decomposition using the LOcally wEighted Scatterplot Smooth-
ing (LOESS) (https://github.com/vijuSR/STLDecompose, accessed on 10 January 2021) algo-
rithm (STL) was applied to decompose the time series of storage components into long-term
variability (trend + interannual variability), seasonality and residuals. The STL is a filtering
method for decomposing time-series data into additive components (long-term variability,
seasonality and the residual) based on loess smoothing models [63]. The temporal components
are as follows:

Y(t) = L(t) + S(t) + r(t) (6)

where, L, S, r and t represent the time-series data, long-term variability, seasonality, residual
and the time, respectively. In addition, the least square fitting approach was applied to
estimate the linear trend. The de-seasonalized component was obtained by removing
the linear trend and seasonality from the raw series.

The temporal component contributions in each storage component were estimated as
the percent of the Mean Absolute Deviation (MAD) of each temporal component relative to
the sum of the MADs of all temporal components [31].

4. Results
4.1. Terrestrial Water Storage Anomalies versus Changes in Precipitation

Figure 2 displays the temporal variation of the TWSA, and the annual mean precipi-
tation changes within the VRB from 2002 to 2020. The TWSAVFL and TWSAVRB represent
TWSA changes over the Volta Fractured Land and the VRB, respectively. It can be observed
that both the TWSAVFL and TWSAVRB have almost the same characteristics; therefore, only
the TWSAVRB changes are presented in this part. However, it is important to note that
the TWSAVFL contribute about 83% of the TWSAVRB changes, showing that the Volta Frac-
tured Land is important within the VRB. Indeed, the changes in the TWSAVRB presented
an increasing trend (1.30 ± 0.23 cm/year) and a negative trend (−0.82 ± 0.37 cm/year) from
2002 to 2010 and 2011 to 2017, respectively, before increasing (3.52 ± 1.73 cm/year) again
from 2018 to 2020. Similarly, the precipitation increased and decreased over the same periods.
To analyze the changes in the TWSAVRB and precipitation, least square fit was applied to
estimate the annual amplitudes and phases of the TWSAVRB and precipitation time series
with their root mean square errors (RMSE). As shown in Table 1, the annual amplitude of
the TWSAVRB was consistent with precipitation, about 9–10 cm. However, there was a dif-
ference between their annual phases. The annual phases of the TWSAVRB and precipitation
were 9.35 and 6.37 months, respectively. These values suggest that the annual amplitudes of
precipitation and TWSAVRB peaked around June and September, respectively. A delay of 3
months then occurred between their annual amplitude’s peaks. According to the observed
trends in the TWSAVRB and precipitation, it can be concluded that, besides the precipitation,

https://github.com/vijuSR/STLDecompose
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the TWSAVRB changes were also influenced by additional factors (e.g., human activities,
evapotranspiration, runoff). The RMSE values for precipitation and the TWSAVRB annual
amplitudes were 0.45 and 0.73, respectively. To appreciate the signals in the TWSAVRB and
precipitation time series, the RMSE values were compared with their annual amplitudes
through their relative RMSE (RMSE/amplitude). Therefore, the signals in the TWSAVRB and
precipitation were reliable as their relative RMSE were 7% and 5%, respectively.

Figure 2. Monthly changes of GRACE-derived TWSAVFL and TWSAVRB, respectively, over Volta Frac-
tured Land and Volta River Basin, and Annual precipitation changes within the basin from 2002 to 2020.
Volta Fractured Land represents the Lake Volta and Bui reservoir catchment.

Table 1. Annual Amplitude and Phase of TWSAVRB and Precipitation.

Data Style Annual
Amplitude (cm) RMSE (cm) Annual

Phase (month) RMSE (cm)

TWSAVRB 9.80 0.73 9.35 0.14
Precipitation 9.31 0.45 6.37 0.09

As precipitation is the main input for water resources within the VRB, it is worth giving
an overview of the influences of hydrological conditions on precipitation changes. Figure 3
is a juxtaposition of precipitation and the drought index for the study period. It shows
a similarity between temporal variability in both PDSI and annual precipitation anomalies
over the Volta River Basin, where negative and positive values of PDSI, respectively,
describe hydrological dry and wet conditions. During the drought period from 1970 to
1991/92, which reached its peak in 1983, (as indicated by the negative values of PDSI),
the annual rainfall anomalies were continually negative. The period from 1993 to 2000 was
characterized by a mix of both drought and wet seasons. Because of the dominant drought
episode in the period from 2001 to 2007, annual precipitation anomalies were constantly
negative, while significant positive anomalies were found in 2003. Annual precipitation
anomalies consistent with PDSI values, were continuously positive from 2008 to 2011,
before becoming negative from 2012 to 2016.
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Figure 3. Annual precipitation anomalies relative to mean precipitation of 1948−2016 and PDSI time-series.

4.2. Water Mass and Level Changes in Both Lake Volta and Bui Reservoir

Water height records of the main reservoirs within the VRB, i.e., Lake Volta and Bui
Reservoir, are presented in Figure 4. Lake Volta mainly experienced a rise in lake level during
2007–2011 and 2016–2019, and a decline during 2011–2016. Indeed, a total rise of 12.56 m
occurred from July 2007 to November 2011, with a mean rising rate of over 0.23 m/month.
In addition, a total rise of 9.41 m was observed from June 2016 to November 2019, with
a mean rising rate of over 0.22 m/month. Furthermore, a total decline of−11.75 m occurred
from November 2011 to June 2016, with an average declining rate of over −0.20 m/month.
Another less evident decline of −6.56 m was observed from November 2003 to July 2007,
with an average decline rate of −0.14 m/month. The seasonal changes in lake water level
often reached their minimum and maximum values in June and November, respectively. It is
worth pointing out that changes in level for Lake Volta in 2012 showed an increase of 0.1 m
between February and October, but a decrease of −0.58 m between January and December.
These suggest that Lake Volta presented no significant water level changes in 2012.

Figure 4. Radar altimetry-derived monthly water level records above sea level (a.s.l.) for (a) Lake
Volta and (b) Bui reservoir. The dotted red box displays the inset of monthly water level time-series
of the Lake Volta in 2012.
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Figure 4b presents the water level changes in the Bui Reservoir from October 2011
to 2021. It is worth recalling that the construction of the main Bui dam, which impounds
Bui reservoir, began in December 2009, after the Black Volta River diversion was achieved
in December 2008. Then, the Bui reservoir impoundment process specifically started in June
2011. In contrast to Lake Volta, Bui Reservoir presented a rapid water level increase in 2012
(Figure 4b). After impounding water continuously for eight months, there was a total
increase of about 34.4 m from February to October in 2012 with a mean rising rate of about
4.3 m/month. After 2012, the water level displayed either a balanced or a declining trend
and was associated with significant seasonal variations of 12 m maximum.

As Lake Volta and Bui reservoir are the main water reservoirs within the VRB (Figure 1),
their changes in surface water storage were estimated by combining altimetry and imageries
data to accurately segregate the changes in GWSA. It is worth recalling that level records
for Lake Volta during 2002 to 2020 were derived from satellite altimetry, while the area
changes were derived from Landsat 7/8 imageries for the period of 2003 to 2016. Therefore,
we used the lake level changes over 2003–2016 to retrieve the geometric link (Figure 5a)
between the changes in the lake level and surface area. Because geometric equation
accuracy is highly related to the time delays between the day of the month in which
the images and water levels were recorded, a time delay of 5 days was adopted. Therefore,
the images and the corresponding water level records that are not within this time delay
were then eliminated to improve the accuracy of the regression model (Figure 5a). There
was a significant linear correlation (R2 = 0.934) between the lake water height and surface
area changes.

Figure 5. Regression models between radar altimetry-derived water level and imageries-derived
water area changes: (a) for Lake Volta and (b) Bui Reservoir. Estimated surface water mass changes
based on water area-height relationship for (c) Lake Volta and (d) Bui reservoir from 2002 to 2016 and
2011 to 2016, respectively.

Furthermore, the Hydroweb-estimated level and area changes for Bui reservoir from
October 2011 to July 2020 were applied to retrieve the geometric link between the changes
in level and area in the Bui reservoir. Similarly, the reservoir’s surface areas and the corre-
sponding water levels of the same day of the month are used to recover the area-height
relationship presented in Figure 5b. There was a good linear correlation between the Bui
reservoir water height and area changes, with R2 = 0.992.
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Once both Lake Volta and Bui reservoir area-height relationships were derived,
the monthly changes in their water area or level can be retrieved based on the radar
altimetry water height observations or imageries-derived water area. The monthly changes
in their respective water area and height were then combined using the Equation (2) to
recover their respective monthly water mass changes. Lake Volta and Bui Reservoir’s water
mass changes are presented in Figure 5c,d.

Obviously, changes in the lake water mass increased and decreased over 2002–2016.
The most noticeable features in Figure 5c are the water mass rise from 2007 to 2011 and
decline over 2012–2016. Indeed, a total mass rise of 71.86 Gt occurred from July 2007 to
November 2011, with a mean rising rate of over 1.35 Gt/month. Conversely, a total decline
of −67.95 Gt occurred from November 2011 to June 2016, with an average declining rate
of over −1.21 Gt/month. Another less evident decline of −34.54 Gt was observed from
November 2003 to July 2007, with an average decline rate of −0.76 Gt/month. In contrast
to the Lake Volta, the Bui reservoir presented a total mass rise of 13.29 Gt from October
2011 to December 2013, with a mean rising rate of ~0.49 Gt/month (Figure 5d). In addition,
the Bui reservoir water mass displayed either a balanced or a declining trend after 2013,
and was associated with significant seasonal variations up to ~6 Gt.

Furthermore, surface water storage changes for Lake Volta and Bui reservoir were then
obtained by dividing each month’s water mass by the standard average areas for the lake
and the reservoir, which were ~8500 km2 and ~222 km2, respectively. To be consistent with
GRACE data, the estimated surface water storage changes were filtered in the same way as
the GRACE data. The filtered SWSA changes can then be obtained by adopting the same
baseline (2004–2009) as the GRACE data.

4.3. Influences of Bui Reservoir Operation on Changes in TWSAVRB in Spatial Domain

To investigate the influences of the Bui Reservoir operation on changes in the spatial do-
main for TWSAVRB, the original GRACE Stokes coefficients were converted to mass changes
after replacing the first-degree and C20 coefficients by more consistent estimations [55,56].
The estimated mass changes in this section were free from any decorrelation filter and
smoothing that would degrade the signals of Bui Reservoir impoundment in the spatial
domain. However, before using these unfiltered and unsmoothed mass changes, it is worth
comparing them to those that are filtered and/or smoothed.

Figure 6 shows the spatial pattern of GRACE-observed mass variations within the VRB
between February and November in 2012, when the Bui Reservoir water level rapidly
increased (Figure 4b), using GRACE original Stokes coefficients and different filters (G300,
DDK8 and P4M6 + G150). Obviously, all four results display an overall positive trend
in the GRACE-observed mass variations over the surrounding area of Bui Reservoir. Higher
amplitude of mass variations was observed in GRACE original data (Figure 6a) and DDK8
(Figure 6c), while lower amplitude of mass variations was seen in G300 (Figure 6b) and
P4M6 + G150 (Figure 6d). A filter method is generally applied to suppress noise and
correlated errors in GRACE original data. Therefore, the observed signals in such G300
(Figure 6b) and P4M6 + G150 (Figure 6d) could be attributed to the rapid increase in the Bui
Reservoir water level. The G300 and P4M6 + G150 filters are stronger than the DDK8
filter, suggesting that signals in DDK8 could be affected by noise and correlated errors,
as similar amplitude was seen in the GRACE original data (Figure 6a) and DDK8 (Figure 6c).
The main conclusion from Figure 6 was that the quick water level increase in Bui reservoir
in 2012 might have been captured by the GRACE satellites.
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Figure 6. GRACE-observed mass changes between February and November in 2012 (Bui Reservoir
impoundment). The raw (a) GRACE estimate is compared with (b) a 300 km Gaussian filtered
GRACE estimate, (c) a DDK8 filtered GRACE estimate, (d) a combination of the decorrelation filter
P4M6 and a 150 km Gaussian filter. The location of the Bui Reservoir is marked with a white star.
The pink area represents the Volta Lake.

Even though signals in Figure 6a were highly contaminated by noise and correlated errors,
the corresponding mass changes were kept in the following analysis of this section. The mass
changes from the GRACE original data were adopted to avoid the signals deterioration that
could be induced by a filter method over the surrounding area of Bui Reservoir.

The monthly changes in Raw TWSAVRB (RTWSAVRB) derived from the GRACE origi-
nal data with seasonal variations removed in 2012 are presented in Figure 7. ‘Raw’ means
that the original GRACE Stokes coefficients were converted into mass anomalies changes
after replacing the first-degree and C20 coefficients by more consistent estimations. The av-
erage mass over the first 4 months in 2012 was taken as the reference and was deducted
from all the other monthly grids. According to the water level changes in Figure 4b,
RTWSAVRB was expected to rapidly increase from February 2012 to November 2012 over
the surrounding area of Bui Reservoir, reaching a maximum in November 2012. Obvi-
ously, the observations in March-August 2012 were largely contaminated by north-south
oriented striped noise. However, positive RTWSAVRB changes were generally discernible
after September 2012, except in December 2012. As seen in Figure 4b, the water level also
displayed significant seasonal variations up to 12 m after 2012. The seasonal variations
generally reached their trough and peak values in June and November, respectively.

The estimated monthly changes in RTWSAVRB were further averaged over September-
November (Figure 8) to deeply investigate how GRACE observes the mass changes over
the surrounding area of Bui Reservoir before and after the Bui dam construction. As seen
from Figure 8, no significant signals were generally apparent around the Bui Reservoir
area before 2007. A significant positive RTWSAVRB grew from 2008 to 2012, before de-
creasing after 2012. Indeed, as the impoundment of the Bui reservoir began in December
2009 after the Black Volta River diversion was achieved in December 2008, this could be
responsible for the observed positive RTWSAVRB in 2008 over the surrounding areas. Fur-
thermore, the reservoir impoundment process specifically started in June 2011, and the dam
was commissioned for use in December 2013. The observed strong positive RTWSAVRB
in 2012 could certainly be induced by the rapid increase in the water level of Bui Reservoir.
These consecutive observations from the GRACE original data approximately indicate
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that the evolutions of RTWSAVRB over the surrounding area of Bui Reservoir were mainly
as a consequence of water impoundment caused by the Bui reservoir operation.

Figure 7. The raw GRACE estimated monthly mass changes with seasonal variations removed during
the period from January 2012 to December 2012. All the plots have been deduced from the mean of
the first 4 months in 2012. The location of the Bui Reservoir is marked with a white star. The pink
area represents the Volta Lake.

Figure 8. Multi-year averages of raw GRACE estimated mass changes in SeptemberNovember from
2003 to 2016 with seasonal variations removed. All the plots have been deduced from the mean of
the first 4 months in 2012. The location of the Bui Reservoir is marked with a white star. The pink
area represents the Volta Lake.
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4.4. Influences of Bui Reservoir Operation on Changes in TWSAVRB Detected by GRACE
in Spectral Domain

Figure 9 displays the monthly and multi-year averages of precipitation, GRACE-
observed and WGHM-derived TWSAVRB. It is worth highlighting that the WGHM pre-
dictions did not include the Bui Reservoir impoundment, as the global database of lakes
and wetlands used by the WGHM does not contain the Bui Reservoir [40]. Therefore, com-
paring the GRACE-observed TWSAVRB with the WGHM-derived TWSAVRB could help
in understanding whether the Bui Reservoir impoundment can be captured by GRACE
satellites. As seen in Figure 9a,b, the precipitation in July-September accounted for more
than 56% of the total annual precipitation, suggesting that precipitation in the VRB was
mainly concentrated in July-September. From 2003 to 2010, monthly precipitation reached
its maximum in August, with an average value of 21.33 cm (Figure 9a). Similarly, the maxi-
mum of monthly precipitation during 2011–2016 was up to 18.77 cm in August (Figure 9b),
showing that the precipitation decreased during this period.

Figure 9. Monthly mean time-series of GRACE-observed TWSAVRB, WGHM-derived TWSAVRB and
precipitation derived from Global Precipitation Climatology Centre in the VRB area computed for
two periods: (a) 2003–2010 and (b) 2011—-2016; (c) monthly time-series of GRACE-observed and
WGHM-derived TWSAVRB over 2002–2016; (d) difference between GRACE-observed TWSAVRB and
WGHM-derived TWSAVRB, monthly time-series of altimetry-imageries-derived SWSA for both Lake
Volta and Bui Reservoir.

Obviously, the monthly changes in GRACE and the WGHM-derived TWSAVRB had
similar patterns before 2010, while the GRACE-observed TWSAVRB presented higher
amplitude than the WGHM-derived TWSAVRB after 2010 (Figure 9c). Indeed, during
the 2003–2010 period, when the Bui reservoir impoundment had not started, the monthly
mean changes of GRACE and the WGHM-derived TWSAVRB reached their maximum
in September with average values of 13.94 cm and 11.73 cm, respectively (Figure 9a).
In addition, monthly WGHM-derived and GRACE-estimated TWSAVRB reached their
minimum in March and April, with average values of −5.15 cm and −9.58, respectively.
The annual amplitudes of GRACE-observed and WGHM-derived TWSAVRB, respectively,
were ~11 cm and ~8 cm, while their annual phases for the same period were ~9 and ~7,
respectively. The differences between these annual amplitudes and phases can be related to
the fact that certain physical processes may be ignored in WGHM predictions [64].

Furthermore, during the 2011–2016 period, when the Bui Reservoir impoundment
began, the monthly mean changes of GRACE and the WGHM-derived TWSAVRB reached
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again their maximum in September with average values of 16.89 cm and 5.15 cm, respec-
tively (Figure 9b). During this period, the annual amplitudes of GRACE and the WGHM-
estimated TWSAVRB were, respectively, ~9 cm and ~7 cm; whereas they reached their
minimum in April with average values of −1.73 cm and −9.18 cm, respectively. Clearly,
the decreased precipitation in 2011–2016 was reflected in both GRACE and the WGHM-
derived TWSAVRB signals, as the latter presented lower annual amplitudes in 2011–2016
(~9 cm and ~7 cm) than in 2003–2010 (~11 cm and ~8 cm). In addition, the WGHM-
estimated TWSAVRB presented lower monthly average values in 2011–2016 with respect
to the precipitation patterns. The WGHM-derived TWSAVRB ranged between −9.18 and
+5.15 in 2011–2016, whereas they changed between −5.15 cm and +11.73 cm in 2003–2010.
The GRACE-observed TWSAVRB, in contrast, displayed higher monthly average values
in 2011–2016. The changes in the GRACE-observed TWSAVRB ranged between −1.73 cm
to 16.89 cm in 2011–2016, while they ranged between −9.58 cm to 13.94 cm in 2003–2010.
Clearly, the multi-year averages of the monthly GRACE time series in 2011–2016, when
the Bui Reservoir impoundment began, displayed an overall increasing trend; indicating
storage increase in regional hydrology. In contrast, the WGHM time series did not display
any trend, indicating no storage increase in regional hydrology.

To deeply understand the observed disparities between the GRACE and the WGHM-
derived TWSAVRB during 2011–2016, the difference between their monthly time series was
then compared to the surface water storage anomalies for Lake Volta and Bui reservoir
(Figure 9d). It is worth recalling that the estimated surface water storage changes were
filtered in the same way as the GRACE data. In addition, the filtered SWSA changes
presented in Figure 9d were then obtained by adopting the same baseline (2004–2009) as
GRACE data for the Lake Volta, while the first four months in 2012 were used as the baseline
for the Bui reservoir. Obviously, the increasing trend in the residuals (GRACE-WGHM)
during 2011–2016 was mainly related to the Bui reservoir impoundment (Figure 9d). Finally,
it was concluded that TWSAVRB changes were affected by the Bui Reservoir operation.

4.5. Temporal Variations of Water Storages within the Volta Fractured Land

Figure 10 presents the monthly, seasonal, and de-seasonal changes in TWSAVFL,
as well as in water components, including Altimetry-imageries estimated SWSA, GLDAS-
derived SMSA and GRACE-derived GWSAVFL within the Volta Fractured Land from
2002 to 2016. The de-seasonalized temporal components that dominated the interannual
variability were obtained by removing the linear trend and seasonal signals from the raw
series. To avoid the probable surface water underestimation from other lakes/reservoirs
within the basin, the GRACE-derived GWSAVFL time series analysis in this study was
focused on the Volta Fractured Land, which contains the main Lake Volta and Bui reservoir
(Figure 1). As the WGHM model does not include water storage in the Bui reservoir,
the GRACE-derived GWSAVFL were obtained by combining SMSA from GLDAS outputs
and altimetry-imageries-derived SWSA over the Volta Fractured Land. The altimetry-
imageries-derived SWSA presented in Figure 10b were obtained by combining estimated
changes in surface water storage for both Lake Volta and Bui reservoir. It is worth recalling
that the altimetry-imageries estimated SWSA and GLDAS-derived SMSA were filtered
in the same way as the GRACE data.

It can be seen from Figure 10a that the seasonal component of the TWSAVFL presented
significant constant amplitude from 2002–2010, before slightly decreasing after 2010. How-
ever, its interannual variability decreased and increased, respectively, during 2003–2007
and 2007–2010, before decreasing again from 2011–2016. The seasonal variability and
long-term (interannual variability + linear trend) contributions were estimated to be ~52%
and ~40%, respectively. It was concluded that the changes in the TWSAVFL depend on both
seasonal and interannual variability. It is worth recalling that the TWSAVFL signals were
similar to the TWSAVRB, representing about ~83% of those at basin scale, suggesting that
the TWSAVRB is largely dependent on the TWSAVFL (see Section 4.1 for details).
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Figure 10. Temporal component time series of (a) TWSAVFL; and water component from
(b) Altimetry−imageries estimated SWSA, (c) GWSAVFL and (d) GLDASderived SMSA. The al-
timetryimageriesderived SWSA were obtained by combining both Lake Volta and Bui reservoir
estimated surface water storage changes. Monthly time series of water storages were de-seasonalized
by removing the linear trend and seasonal signals. The seasonal component in each water storage
was derived by applying the seasonal and trend decomposition using the loess (STL) algorithm
while the linear trend was estimated using the least square fitting approach. All the time series were
averaged over Volta Fractured Land from 2002 to 2016.

Figure 10b shows that monthly changes in SWSA decreased and increased during 2003–
2006 and 2007–2012 at rates of −0.21 ± 0.16 cm/year and 1 ± 0.07 cm/year, respectively,
before decreasing again from 2013 to 2016 with a rate of −0.84 ± 0.16 cm/year. Similarly,
the interannual component of SWSA decreased and increased, respectively, during 2003–
2006 and 2007–2012, before decreasing again after 2012. However, its seasonal component
generally presented a constant amplitude over the study period. The SWSA’s seasonal and
long-term variability (interannual variability + linear trend) contributions were estimated to
be ~67% and ~26%, respectively. It can be concluded that SWSA changes mainly depend
on the interannual variability.

Figure 10c shows that the GWSAVFL was almost stable from 2002 to 2006, before in-
creasing and decreasing during 2006–2011 and 2012–2016, with rates of 2.67± 0.34 cm/year
and −1.80 ± 0.32 cm/year, respectively. A recent study by Resende et al. [35] revealed that
the groundwater storage increased from 2006 to 2011 based on groundwater level records
from shallow wells that were located in the proximity of Lake Volta (generally <20 km)
within the Volta Fractured Land. This is consistent with the observed results in this study.
In addition, Figure 10c shows that the interannual component of GWSAVFL increased and
decreased, respectively, during 2007–2010 and 2011–2016. However, its seasonal component
generally presents constant amplitude over the study period. The seasonal variability and
long-term (interannual variability + linear trend) contributions were estimated to be ~46%
and ~44%, respectively. It can be concluded that the changes in the GWSAVFL depend on
both seasonal and interannual variability.

Figure 10d shows that SMSA decreased over the study period at a rate of −0.27 ± 0.03
cm/year. It seems that the SMSA presented no significant interannual changes during 2002–
2016. However, significant seasonality was observed during the study period. In term of
percentage, the long-term variability and seasonality contributions of SMSA were estimated
to be ~30% and ~61%, respectively. It was concluded that the changes in SMSA mainly
depend on the seasonal variability.
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To thoroughly understand the water components influences, their contributions were
also quantified. This revealed that the contributions of SWSA, GWSAVFL and SMSA
were ~19%, ~57%, and ~24%, respectively, within Volta Fractured Land. In addition,
the contributions of SWSA, GWSAVFL, and SMSA were ~12%, ~62%, and ~26%, respectively,
within the VRB. A study by Ferreira and Asiah [65] reported that the contribution of
the changes in surface water storage in Lake Volta was about 48% of the terrestrial water
storage changes within the VRB. Similarly, Ndehedehe et al. [25] estimated that contribution
to be about 41% of the basin’s terrestrial water storage changes. However, Ferreira et al. [21]
highlighted the contribution from Lake Volta to be around 8.8% within the VRB, which is
in agreement with the finding value in this study. It is worth highlighting that previous
studies did not include the new Bui reservoir storage nor storage changes from soil moisture
and groundwater. Ferreira et al. [21] have attributed the difference between their result and
those from the previous studies to the methodology applied. According to the previous
findings (41%, 48%, and 8.8%), a mean value of the Lake Volta contribution can be estimated
for about ~32.6%. Therefore, the estimated contribution of both Lake Volta and Bui reservoir
in this study represents about ~37% of previous findings within the VRB. In addition, it can
be concluded that GWSA is the main water component in the VRB as well as in Volta
Fractured Land.

5. Discussion
5.1. Water Storage Changes Influenced by Natural Causes

Decrease in precipitation and/or increase in temperatures over time results in a de-
cline of terrestrial water storage due to decreased accumulation of water in various
lakes/reservoirs and increased evaporation, and vice versa [3]. As found in Section 4.1,
the changes in precipitation which govern the changes in TWSAVRB were largely in-
fluenced by the hydro-meteorological conditions (e.g., floods and droughts). This sug-
gests that the temporal changes in freshwater could be likely impacted by severe hydro-
meteorological conditions (e.g., floods and droughts), as rainfall is the main input of
the TWSAVRB. Therefore, studying the relationships between the variability of TWSAVRB
and climatic indices helps to reveal the periods of impacts of large-scale climate indices.
This is helpful for understanding the trends in GWSAVFL as well as changes in TWSAVRB un-
der climate influences. In this case, the cross-wavelet transform method was applied to char-
acterize the influences of ENSO, AMO, and AMM events on the changes in TWSAVRB dur-
ing 2003–2016. The cross-wavelet analyses between the monthly TWSAVRB and the monthly
climate teleconnections are presented in Figure 11. The relative phase correlation (with
negative phase pointing left and positive phase pointing right) is expressed by the arrows,
and the contours indicate the 5% significance level against red noise. The energy density is
showed by the color bar.

It can be clearly seen in Figure 11a that ENSO had a statistically significant negative
correlation with the TWSAVRB at the 5% significance level, with a 9–15 month period
signal in 2008–2012. In addition, ENSO and the TWSAVRB had a positive phase correlation
in 2004–2008 and 2012–2015, with 9–13 and 11–13 month period signals, respectively.
These statistically significant positive and negative correlations directly indicate that ENSO
events exert an influence on changes in the TWSAVRB. It is obvious from Figure 11b that
AMO events had a significant positive correlation with the TWSAVRB, with a 9–13 month
period signal in 2004–2008 and 2012–2015. Similarly, Figure 11c indicates a significant
positive correlation between the AMM events and the TWSAVRB, with a 9–13 month signal
period from 2004 to 2015. These statistically significant positive correlations directly indicate
that AMO and AMM events exert an important influence on changes in the TWSAVRB.
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Figure 11. Cross wavelet transforms between TWSAVRB and (a) ENSO, (b) AMO and (c) AMM from
2003 to 2016 in the Volta River Basin. The relative phase relationship is denoted as arrows (with
anti-phase pointing left, in-phase pointing right). The color bar on the right denotes the wavelet energy.

Indeed, the results of the cross wavelet transforms application indicated that global
climate teleconnection indices exert an influence on the TWSAVRB changes. This analysis
revealed three main sub-periods of climate impacts, which are: 2004–2008, 2008–2012
and 2012–2016. It was observed that significant correlations of ENSO and AMO with
the TWSAVRB generally fell within these periods. The observed correlation zones of
ENSO agree with strong La Niña (https://ggweather.com/enso/oni.htm, accessed on 10
January 2022) episodes (e.g., 2007–2008 and 2010–2011) and a strong El Niño (https://
ggweather.com/enso/oni.htm, accessed on 10 January 2022) episode in 2014–2015. Strong
El Niño episodes commonly lead to extreme dry events, whereas strong La Niña episodes
usually lead to severe wet conditions in this region. The positive (negative) correlation
between ENSO and the TWSAVRB (see Figure 11a) corresponds with decreasing (increasing)
TWSAVRB (Figure 2) and GWSAVFL (Figure 10c). For instance, positive and negative
correlations were found between ENSO and the TWSAVRB in 2004–2008 and 2008–2012,
respectively; when the TWSAVRB decreased and increased from 2004 to 2006 and 2006 to
2011, respectively (Figure 2). The linear trends in the TWSAVRB and GWSAVFL changes
under severe climate influences were also estimated. Results revealed that the TWSAVRB
and the GWSAVFL increased from 2006 to 2010 at a rate of 2.90 cm/year and 3.75 cm/year,
respectively. In addition, changes in the TWSAVRB and GWSAVFL, respectively, presented
negative trends of −1.25 cm/year and −1.75 cm/year from 2011 to 2016. It can be assumed
that the strong episodes of La Niña in 2007–2010, and El Niño in 2014–2015 have impacted
the changes in the TWSAVRB and GWSAVFL.

Furthermore, a time lag range of 0–120 months was applied to investigate the link among
the interannual time series of ENSO, TWSAVRB and GWSAVFL from 2007 to 2016, to better
understand how changes in the TWSAVRB and GWSAVFL were affected by severe ENSO
episodes (Figure 12). The interannual time series were obtained by removing the linear trend
from the long-term time series. Figure 12 indicates that the maximum correlation coeffi-
cient between the TWSAVRB and strong ENSO events was −0.71, with a lag of 3 months.
The maximum correlation coefficient between the GWSAVFL and strong ENSO episodes
was −0.78, with a lag of about 6 months. The interannual time series in the TWSAVRB and
GWSAVFL have a maximum correlation coefficient of 0.97, with a lag of 0 month. It has
been reported that precipitation patterns and hydro-meteorological conditions are largely
influenced by the large-scale ocean-land-atmospheric interchanges and global climate telecon-
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nections (e.g., ENSO), which then control the TWSA changes within the VRB [12,13,17,24–26].
As found in Section 4.1, precipitation and the TWSAVRB had almost the same annual am-
plitudes of about 9–10 cm, which peaked around June and September, respectively. That
suggests a delay of 3 months between their annual amplitude’s peaks. The same time lag can
be observed among the interannual changes of strong ENSO events and TWSAVRB. The strong
correlation coefficients among the strong ENSO, and interannual variabilities of TWSAVRB
and GWSAVFL suggests that the severe ENSO events affected the TWSAVRB and GWSAVFL
interannual changes through precipitation. Ndehedehe et al. [18] investigated terrestrial water
storage changes in Western Africa’s basins under the global climate teleconnections influences,
and found out that GRACE-based terrestrial water storage changes seem to be more related
to ENSO events over the VRB. For instance, the La Niña strong events in 2007–2008 and
2010–2011, were retrieved among the temporal evolutions of their estimated Standardized Pre-
cipitation Index with 6-month timescales, during which severe wet conditions were observed
in 2010, accompanied by a significant amplitude of terrestrial water storage within the VRB.
This suggests that the ENSO events affected the precipitation patterns with a lag of 6 months
over the VRB. A recent study by Li and Rodell [66] showed that the groundwater drought
index presented a better correlation with the 6-month timescales Standardized Precipitation
Index within a shallow aquifer, suggesting that the groundwater storage changes respond to
the shorter term of precipitation changes. According to these observations, it can be concluded
that the effect of strong ENSO events on the GWSAVFL interannual variability within the basin
is short-term, with a lag of 6 months.

Figure 12. Correlations among the interannual changes of ENSO, TWSAVRB and GWSAVFL from 2007 to
2016. The interannual time series were obtained by removing the linear trend from the long-term time
series. The linear trends were estimated using the least square fitting approach while the long-term time
series were derived by applying the seasonal and trend decomposition using loess (STL) algorithm.

5.2. Surface Vegetation Dynamics from NDVI as Proxy for Infrastructure Influences on Water
Storage Changes

Ndehedehe et al. [51] investigated hydrological influences on vegetation dynamics
within West Africa catchments using Global Inventory Modelling and Mapping Studies
(GIMMS) based on NDVI and GRACE-derived terrestrial water storage from 2002 to
2013. Their results revealed a stronger association between temporal GIMMS-derived
NDVI and GRACE-derived terrestrial water storage than that widely reported between
NDVI and precipitation, suggesting that West Africa vegetation dynamics were controlled
by terrestrial water storage. As found in Section 4.5, the GWSAVFL are the main water
component in the GRACE-derived TWSAVRB within the VRB. Therefore, it can be suspected
that surface vegetation dynamics in this area are also controlled by the GWSAVFL. A recent
study by Bhanja et al. [50] revealed that NDVI might be employed as a suitable groundwater
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storage changes indicator in areas with shallow aquifer and natural vegetation such as
the VRB (or Volta Fractured Land).

Indeed, the Lake Volta and Bui reservoir impoundments during periods of heavy and
constant rain will increase shallow aquifers recharge within Volta Fractured Land. In other
words, the water impoundments behind the Akosombo and Bui dams during the strong
and constant rain season will increase the long-term groundwater storage, which could
have long-term effects on the surface vegetation. Therefore, seasonal, and long-term (linear
+ interannual) variations of the TWSAVFL, GWSAVFL, precipitation and NDVI estimated
using the STL method (see Section 3.4) are presented in Figures 13 and 14, respectively. It is
worth recalling that the NDVI and precipitation anomalies were estimated using the same
baseline (2004–2009) as the GRACE data.

Figure 13. Cumulative monthly seasonal variations of (a) water storage from TWSAVFL (blue curve) and
GWSAVFL (dashed blue curve), and NDVI (red curve); (b) precipitation from 2003 to 2016. The seasonal
components were estimated using the STL method.

Figure 14. Monthly long-term variations of (a) water storage from TWSAVFL (blue curve) and GWSAVFL

(dashed blue curve), and NDVI (red curve); (b) precipitation from 2003 to 2016. The long-term (linear +
interannual) components were obtained using the STL method. Derived linear Trends using least square
fitting approach are presented as line or dashed line.



Remote Sens. 2022, 14, 5319 22 of 26

As seen in Figure 13a, cumulative seasonal changes in GWSAVFL were generally similar
to those of TWSAVFL with a strong correlation coefficient of 0.99. In addition, it seems that
the NDVI seasonal changes were associated with the seasonal variations of both TWSAVFL
and GWSAVFL (Figure 13a) with relative correlation coefficients of 0.58 and 0.52, respectively.
However, a strong correlation coefficient of 0.90 was found between cumulative seasonal
changes of NDVI and precipitation, indicating that seasonal changes in NDVI were highly
associated with the seasonal variations of precipitation (Figure 13a,b). It can be concluded
that precipitation, TWSAVFL, and GWSAVFL control the seasonal changes in NDVI, while
precipitation is the highest factor influencing the seasonal variations in NDVI.

Obviously, long-term variations in the GWSAVFL were generally like those of TWSAVFL
(Figure 14a), with a strong correlation coefficient of 0.98. Figure 14a shows that changes
in both the TWSAVFL and GWSAVFL increased in recent years, while the precipitation
and NDVI decreased (Figure 14a,b). Indeed, the monthly long-term variations of both
the TWSAVFL and GWSAVFL increased and reached their maximum, respectively, in 2011,
before decreasing after 2011. Apart from its maximum value in 2003, the monthly long-
term changes in NDVI reached its second highest and minimum values in 2013 and 2015,
respectively. In addition, Figure 14a indicates that long-term changes in NDVI significantly
increased over 2012, while the precipitation decreased in recent years. Furthermore, a slight
increase was also observed in the monthly long-term variations of both the TWSAVFL and
GWSAVFL over 2012. It is worth recalling that contrary to the TWSAVFL and GWSAVFL,
the NDVI time series were not filtered. This suggests that filtering significantly suppressed
signals in the GRACE-derived TWSAVFL and GWSAVFL. As found in Section 4.3, water
storage decreased around Lake Volta, while it significantly increased around Bui reservoir
in 2012. The observed signals over the surrounding area of Bui Reservoir were mainly
because of water impoundment caused by the Bui reservoir operation. Obviously, the Bui
reservoir water impoundment was reflected in the NDVI changes. One can assume that
the increase of NDVI signals in 2012 could be related to the Bui Reservoir operation.

We note that the surface water storage could not directly affect the surface vegetation
unless through recharge. Indeed, recharge of local and shallow aquifers such as in Volta
Fractured Land is largely controlled by infiltration from the new reservoir water impound-
ment, the precipitation and surface-water/river interchange [35]. Therefore, analyzing
the relationship between the long-term changes in NDVI, TWSAVFL and GWSAVFL could
help to better understand how water storages affect the surface vegetations changes in this
area. Obviously, there is no significant association between long-term changes in precipi-
tation and NDVI, as the cumulative long-term variations of both NDVI and precipitation
have a poor correlation coefficient of 0.33. However, cumulative long-term variations of
both TWSAVFL and NDVI present a relatively strong correlation coefficient of 0.70, sug-
gesting that NDVI long-term changes were associated with the long-term variations of
the TWSAVFL. In addition, cumulative long-term variations of both the GWSAVFL and
NDVI present a relative correlation coefficient of 0.67, indicating that the NDVI long-term
changes were also associated with the long-term variations of GWSAVFL.

6. Conclusions

The operation of Bui reservoir and the recent climate changes have significantly in-
fluenced the water storage changes within Volta River Basin. The influence of the largest
manmade lake (Lake Volta, with about 8500 km2 area) in Volta River Basin, in West Africa
has largely been reported by previous studies. For instance, it is reported that Lake Volta
contributed ~41% to the observed Volta River Basin’s TWSA in 2002–2014. Recent studies
revealed that water storage changes in the ~400 km2 reservoir can be detected by GRACE
satellites. The implementation of Bui reservoir with about 400 km2 area has occurred during
the GRACE mission and therefore could be monitored from space. For the first time, this study
applied GRACE and global hydrology model data to investigate the influence of the Bui reser-
voir operation on water storage variations within Volta River Basin. The WaterGAP model
(WGHM) was selected because it does not include water storage in the Bui reservoir. In ad-
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dition, variation in groundwater storage was also estimated by combining GRACE-derived
TWSA, radar altimetry records and Landsat images derived Lake Volta and Bui reservoir
SWSA, and GLDAS simulated SMSA data from 2002 to 2016. Results showed that TWSA
increased (1.30 ± 0.23 cm/year) and decreased (−0.82 ± 0.27 cm/year), respectively, during
2002–2011 and 2011–2016 within Volta River Basin, matching previous TWSA investigations
in this area. It revealed that the multi-year averages of monthly GRACE-derived TWSA
changes in 2011–2016 displayed an overall increasing trend, indicating storage increase in re-
gional hydrology, while the Lake Volta water storage changes decreased. The GRACE minus
WGHM residuals display an increasing trend in Volta River Basin water storage during the Bui
reservoir operation in 2011–2016. The observed trend compares well with the estimated Bui
reservoir SWSA, indicating that GRACE solutions can retrieve the true amplitude of large mass
changes happening in a concentrated area, e.g., the water impoundment in the Bui reservoir
area, with the help of hydrologic modeling, even though such an area is much smaller than
the resolution of GRACE global solutions. In the spatial domain, the GRACE observations
show significant positive mass changes over the surrounding area of Bui Reservoir because
of Bui reservoir water impoundment. It also revealed that the GWSA was almost stable
from 2002 to 2006, before increasing and decreasing during 2006–2011 and 2012–2016 with
rates of 2.67 ± 0.34 cm/year and −1.80 ± 0.32 cm/year, respectively. The observed trends
in the GRACE-derived TWSA and GWSA changes were generally attributed to the hydro-
meteorological conditions (e.g., floods and droughts). This study revealed that the effects of
strong ENSO events on the GWSA interannual variability within the Volta River Basin are
short-term, with a lag of 6 months.

Furthermore, the contributions of water components within the Volta River Basin
were estimated to be ~12% (being ~37% of previous results), ~62%, and ~26%, for SWSA,
GWSA and SMSA, respectively. This suggests that the GWSA is the main water component
within Volta River Basin. Temporal dynamics analysis revealed that changes in the TWSA
and GWSA depend on both seasonal and interannual variabilities. The water storage
changes influences on the surface vegetation dynamics within Lake Volta and Bui reservoir
catchments were also investigated in this study using MODIS-derived NDVI. Results re-
vealed that the seasonal changes in NDVI were associated with the seasonal variations of
both TWSA and GWSA with relative correlation coefficients of 0.58 and 0.52, respectively.
A strong correlation coefficient of 0.90 was found between NDVI and precipitation cumula-
tive seasonal changes, indicating that seasonal changes in NDVI were highly associated
with the seasonal variations of precipitation. It also revealed that there was no significant
association between precipitation and long-term changes in the NDVI, as the cumulative
long-term variations of both NDVI and precipitation had a poor correlation coefficient of
0.33. However, cumulative long-term variations of both TWSA and NDVI had a relatively
good correlation coefficient of 0.70, suggesting that long-term changes in NDVI were as-
sociated with the long-term variations of TWSA. In addition, the cumulative long-term
variations of both GWSA and NDVI present a relative correlation coefficient of 0.67, indi-
cating that the NDVI long-term changes were also associated with the long-term variations
of GWSA.

Though this study used different remote sensing datasets to present the influences of
Bui Reservoir operation on terrestrial water storage variation in the Volta River Basin, it was
slightly limited by scarcity of consistent in situ observations. This included groundwater
level and reservoir water level records. More robust techniques such as machine learning
algorithms could provide more insights into the present findings, and hence, will be
the focus of our future studies.
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