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Abstract: Most high-performance semantic segmentation networks are based on complicated deep
convolutional neural networks, leading to severe latency in real-time detection. However, the state-
of-the-art semantic segmentation networks with low complexity are still far from detecting objects
accurately. In this paper, we propose a real-time semantic segmentation network, RecepNet, which
balances accuracy and inference speed well. Our network adopts a bilateral architecture (including a
detail path, a semantic path and a bilateral aggregation module). We devise a lightweight baseline
network for the semantic path to gather rich semantic and spatial information. We also propose a
detail stage pattern to store optimized high-resolution information after removing redundancy. Mean-
while, the effective feature-extraction structures are designed to reduce computational complexity.
RecepNet achieves an accuracy of 78.65% mIoU (mean intersection over union) on the Cityscapes
dataset in the multi-scale crop and flip evaluation. Its algorithm complexity is 52.12 GMACs (giga
multiply–accumulate operations) and its inference speed on an RTX 3090 GPU is 50.12 fps. Moreover,
we successfully applied RecepNet for blue-green algae real-time detection. We made and published
a dataset consisting of aerial images of water surface with blue-green algae, on which RecepNet
achieved 82.12% mIoU. To the best of our knowledge, our dataset is the world’s first public dataset of
blue-green algae for semantic segmentation.

Keywords: semantic segmentation; deep learning; real time; blue-green algae detection

1. Introduction

Semantic segmentation is a computer vision task that assigns pixel-level labels to
images. It is widely used in scene understanding [1], automotive driving [2] and video
surveillance [3]. These applications require real-time interaction, so they have a strong
demand for inference speed and accuracy.

Generally, to achieve superior accuracy, most semantic segmentation networks rely
on complex baseline deep convolutional neural networks (DCNNs) [4] such as VGG [4],
ResNet [5] and Xception [6]. These baseline networks usually consist of hundreds of layers
and expand the input into thousands of channels. Therefore, they have high computa-
tional complexity and memory burden, leading to poor inference speed. For example,
deeplabv3+ [6] takes more than one second to infer on a high-resolution image, even
using a high-performance GPU. Due to the increasing demand for real-time detection, fast
semantic segmentation methods are beginning to develop, such as Enet [7] and SegNet [8].
These methods can serve for real-time inference with low latency. However, their accuracy
is unsatisfactory because the features are not fully learned. Therefore, making a good
trade-off between two seemingly contradictory terms—accuracy and speed—is a critical
and challenging problem. Recently, with the rapid development of semantic segmentation,
many state-of-the-art works have made great efforts on effective models and backbone
architectures, trying to increase the accuracy while keeping the complexity cost as small as
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possible. Traditionally, an encoder–decoder backbone uses a top-down structure and lateral
connections to recover spatial features that are destroyed in the downsampling process [9].
However, numerous connections in the structure bring a heavy memory burden. The bilat-
eral architecture is proposed in the bilateral segmentation network (BiSeNetV2) [10], with
one path storing spatial details and another gathering categorical semantics. BiSeNetV2
uses a lightweight network in the semantic path for real-time inference. However, it is still
far behind in terms of detection accuracy.

We observed that enlarging the receptive field of the network is critical to improving
accuracy. Generally, the receptive field refers to the sub-region size of the image involved
in the convolutional operation, and a larger receptive field provides more contextual
information. However, feature representation needs not only semantic information, but
also spatial information, which is stored in image channels when the image size is shrunk.
Therefore, in the feature-extraction process, it is essential to enlarge the receptive field in
both semantic and spatial dimensions.

To pursue better accuracy while maintaining low complexity, we propose a network
with a large receptive field (RecepNet) for real-time semantic segmentation. In RecepNet,
we adopt a bilateral segmentation backbone, which consists of a detail path storing spatial
information, a semantic path extracting semantic information, an aggregation module
integrating the two paths and a training booster to enhance the features in the training
phases. For the semantic path, we designed lightweight baseline networks consisting of
gather–expand–search (GES) layers. This mainly consists of two bottlenecks: a gather-
and-expansion bottleneck to downsample with a large spatial receptive field and search-
space bottlenecks to search for contextual information in a large receptive field. Efficient
convolution operations are used to reduce the complexity. For the stages in the detail path,
we designed a detail stage pattern: a fast downsample to preserve useful information in
the spatial dimension and then further optimize semantic feature representation.

Our contributions are summarized as follows:

• We propose an effective stem block. It is used in both the detail path and semantic
path for fast downsampling while expanding channels flexibly;

• Gather–expand–search (GES) layer, a lightweight downsampling network, is proposed
for the semantic path to achieve fast and robust feature extraction. It obtains rich
spatial and semantic information by gathering the semantic features, expanding to
large dimensions, and searching for multi-resolution features;

• We design a detail stage pattern. It cleans the redundant information, reserves the high-
resolution information in the spatial dimension, and improves feature representation;

• A novel training boosting strategy is devised. It improves accuracy by strengthening
and recalibrating features in the training phases.

Our network achieves impressive results on the benchmark dataset, Cityscapes. The ac-
curacy of the multi-scale crop and flip evaluation is 78.65% mIoU (mean intersection
over union), and the algorithm complexity is 52.12 GMACs (giga multiply–accumulate
operations). Compared with BiSeNetV2, our network improves the accuracy signifi-
cantly (+4% mIoU) with a minor increase in complexity (+0.4 GMACs); compared with
Deeplabv3+, our network reduces the complexity significantly (−3.4 GMACs), though the
accuracy is slightly brought down (−1% mIoU). Experimental results show that RecepNet
can infer more than 50 images per second on an RTX3090 graphics card, which can process
live video in real-time.

We also apply RecepNet on massive UAV photos to automatically detect blue-green
algae on a lake surface to monitor its outbreak. We created a blue-green algae set with
1305 images, which, to the best of our knowledge, is the first public blue-green algae set
for semantic segmentation. In the work, experimental results show that our algorithm can
obtain an 82.12% mIoU.
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2. Literature Review

Traditional semantic segmentation methods utilize hand-crafted features, such as
the threshold selection [11], random forest [12], boosting [13] and super-pixel [14]. How-
ever, the performance of these methods is far from satisfactory. In recent years, semantic
segmentation has achieved significant advances by applying DCNNs [15].

2.1. High-Performance Semantic Segmentation

The predecessor of applying DCNNs in semantic segmentation is the fully con-
volutional network (FCN) [16]. It removes the last fully-connected layers in a DCNN.
The later semantic segmentation methods keep improving based on the FCN. These suc-
cessors mainly can be categorized into three types of architectures: (a) dilation backbone;
(b) encoder–decoder backbone; (c) bilateral segmentation backbone. Their structures are
shown in Figure 1 [10].

Figure 1. Three types of backbone. (a), Dilation Backbone; (b), Encoder-Decoder Backbone; (c), Bilat-
eral Segmentation Backbone. Graph from Changqian Yu, BiSeNet V2: Bilateral Network with Guided
Aggregation for Real-time Semantic Segmentation [10].

The originator of the dilation backbone is DeepLab [17], which designs the atrous
convolution. It limits the downsampling rate to 16 and applies Atrous convolution to extract
features further. This design can preserve high-resolution features and expand the receptive
field of the network. DeepLabv2 [18] further develops the atrous spatial pyramid pooling
(ASPP) module. It has multiple parallel branches with different atrous rates to integrate
multi-resolution features. Meanwhile, PSPNet [19] also applies pyramid pooling on the
dilation backbone. Some methods also combine with attention mechanisms to capture
long-range semantic information, such as self-attention [20] and channel attention [21].

The representative work of encoder–decoder backbones is U-Net [22]. It adopts a
top-down architecture to downsample (encoder) and utilizes lateral connections to recover
high-resolution features (decoder). The development of the encoder–decoder backbone
includes RefineNet [9], which proposed multi-path refinement, DFN [23], which embeds
channel attention module to help with recovering features, and HRNet [24], which designs
multi-branches to retain high-resolution features. Some algorithms also adopt conditional
random fields (CRF) [25] to optimize the accuracy of object boundaries.

The third type of backbone is the bilateral segmentation backbone, which is proposed
by bilateral segmentation network (BiSeNetV2) [10]. This kind of architecture consists of
two pathways; one is responsible for reserving spatial details (high-resolution features) and
the other is for extracting categorical semantics (low-resolution features). The two types
of output features are integrated at the end of the network. This design leads to effective
real-time semantic segmentation with high accuracy.
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2.2. Real-Time Semantic Segmentation

Real-time inference requires a network response with high-quality results as fast as
possible. In recent years, many works have made progress in increasing the inference speed.
Enet [7] takes the lead in making significant progress in real-time semantic segmentation.
It constructs a lightweight network from the script, adapting the encoder–decoder architec-
ture. On the base of Enet, ESPNet [26] using spatial pyramid module and ERFNet [27] using
residual connections further improve the accuracy with similar speed. Later on, ICNet [28]
simplifies the PSPNet [19] and combines a cascade framework, achieving a good accuracy
for high-resolution images. However, ICNet has poor performance for low-resolution
images. LEDNet [29], an encoder–decoder-based network, introduces channel split and
shuffle to accelerate inference speed. Recently, BiSeNetV2 proposed a bilateral architecture
to balance accuracy and speed.

Additionally, some lightweight structures are proposed to reduce the complexity of the
network, such as MobileNet [30] and ShuffleNet [31]. Recently, FasterSeg [32] devised zoomed
convolution to optimize the convolution operation, which consists of bilinear downsampling,
standard convolution and bilinear upsampling. According to [32], the zoomed convolution
reduces 40% latency and 75% FLOP of standard convolution, which performs better than group
convolution (i.e., depth-wise convolution) and atrous convolution.

BeSeNetV2 proposed a two-pathway architecture that significantly improves the
performance of real-time semantic segmentation. In the BiSeNetV2, two different branches
are responsible for spatial detail information and categorical segmentation information,
respectively [10]. There are mainly three parts in this structure. (i) The detail branch uses
wide channels to encode rich spatial information. Meanwhile, the detail branch adopts a
shallow structure, since a deep network with wide channels brings heavy computation
complexity and memory overload. This branch mainly follows the VGG nets. The output
feature map of the detail branch is 1/8 of the original input with 128 channels. (ii) The
semantic branch uses deep layers and a large receptive field to generate high-level features.
To realize real-time recognition, this branch uses a lightweight network. (iii) The detail
branch has low-level feature output, while the semantic branch has high-level. The bilateral
guided aggregation layer is designed to merge these different scale feature representations,
allowing them to communicate efficiently.

3. Methodology

In this paper, we proposed a new semantic segmentation network: RecepNet. Recep-
Net aims to increase accuracy while reducing complexity. The overall structure and blocks
are illustrated in detail in Figure 2 and Tables 1 and 2.
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Figure 2. Overall architecture of RecepNet.
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Table 1. Illustration of instantiation of the Detail Branch Each layer contains one or more operations
(SepConv: depth-wise separable convolution). Each operation (opr) has a kernel size k, stride s,
output channels c and a downsampling rate.

Stage opr k s c Downsampling
Rate

Stem 3 2 32Stage 1 SepConv 3 1 32 2

Stem 3 2 64
SepConv 3 1 64Stage 2

Conv 3 1 64
4

Stem 3 2 128
SepConv 3 1 128

Detail Path

Stage 3
Conv 3 1 128

8

Table 2. Illustration of instantiation of the Semantic Branch. Each layer contains one or more
operations (GES: gather–expand–search layer; GE: gather-and-expand bottleneck; SS: search-space
bottleneck; CE: context embedded block; Fusion: feature fusion block). Each operation (opr) has a
kernel size k, stride s, output channels c and a downsampling rate.

Stage opr k s c Downsampling
Rate

Layer 1 Stem 3 2 8 2
Layer 2 Stem 3 2 16 4

GE 3 2 32Layer 3 SS 3 1 32 8

GE 3 2 64Layer 4 SS 3 1 64 16

GE 3 2 128
SS 3 1 128
SS 3 1 128
SS 3 1 128

Layer 5

CE 3 1 128

32

Semantic Path

GES

Feature Fusion Fusion - - 128 16

3.1. Overview
3.1.1. Core Concept of RecepNet

Enlarging the receptive field when extracting features is crucial to improving accuracy.
Generally, the receptive field refers to the subregion’s size on the image involved in the
convolutional computation. A large receptive field can provide rich semantic information
for feature representation. For example, we can enlarge the receptive field by integrating
multi-resolution feature maps. However, for the accuracy of feature representation, the
perception ability of spatial information is also essential. The “receptive field” for spatial
information is also expected to be enlarged. We can expand the feature map to a higher
dimension to achieve this. Enlarging the receptive field for both semantic and spatial
information is a crucial concept for RecepNet. In addition, as RecepNet is a real-time
network, low latency is another essential criterion for its performance. Therefore, in each
component design of RecepNet, we proposed several approaches to reduce the complexity.

3.1.2. Overall Structure

RecepNet adopts BiSeNetV2’s two-pathway architecture. It consists of (1) a semantic
path for contextual information, including stem block, gather–expand–search (GES) layers,
and context embedded (CE) block; (2) a detail path for spatial information that is composited
of a stem block and other convolution operations; (3) a bilateral guided aggregation module
to fuse two paths’ outputs; and (4) a training booster strategy to recalibrate the feature
representation in the training phases.
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3.1.3. Block Design

The two paths consist of various blocks to achieve a large receptive field in both
the semantic dimension and spatial dimension, and keep low complexity simultaneously.
These well-designed blocks shown in Figure 2 include (1) a stem block, responsible for fast
downsampling in both detail path and semantic path, and (2) a gather–expand–search (GES)
layer, which is the lightweight downsampling network of Semantic Path. It obtains rich
spatial and semantic information by gathering the semantic features, expanding to large
dimensions, and searching for multi-resolution features. The GES layer mainly consists of
a gather-and-expansion (GE) bottleneck for downsampling and search-space bottlenecks
(SS) to search for semantics. The gather-and-expansion bottleneck enlarges the spatial
receptive field, while the search-space bottlenecks enlarge the semantic receptive field.
The cooperation of two bottlenecks improves the accuracy of feature representation and
reduces complexity. (3) A feature fusion block is at the end of the GES layer. It fuses the
outputs of the last two layers of the semantic path to enhance the feature representation
ability. (4) Finally, there is the context-embedding (CE) block. We adopt the CE block
in BiSeNetV2 directly to remedy global information in Layer 5 of the GES layer (with a
downsampling rate of 32).

The upper path is the detail path and the bottom path is the semantic path. The detail
path consists of Stages 1, 2 and 3. The semantic path consists of Layers 1, 2, 3, 4 and 5, and
a fusion layer. Especially, Layers 3, 4 and 5 and the fusion layer constitute the gather–
expand–search (GES) layer. The outputs of two paths are aggregated using bilateral guided
aggregation. The network blocks are shown in the legend. Stem denotes stem block; Extract
in Detail denotes feature-extraction operations in the detail path; GE denotes gather-and-
expansion bottleneck; SS denotes search-space bottleneck; CE denotes context-embedding
block; Fusion denotes feature fusion flock; Aggregation denotes bilateral aggregation
module. Additionally, Seg head is the booster training strategy used in the training phases.
Note that in 1/{2, 4, 8, 16, 32}, the denominators denote the downsampling rate and ×8, 16,
32, 64, 128 denote the output channels.

3.2. Stem Block

The stem block aims to quickly downsample the input feature map by 1/2 while
increasing the number of channels. Inspired by Enet [7], we combine two downsampling
methods. As shown in Figure 3, the left branch is two successive 3 × 3 convolutions. The
first one (stride of 2) shrinks the image size while expanding the channels to the num-
ber of output channels, and the second one strengthens the feature representation. Each
convolution operation is only followed by a batch normalization because an activation
function here will reduce the accuracy. The right branch is a 3 × 3 MaxPooling, extracting
the maximum value of the input feature map and discarding invalid information. The Max-
Pooling operation does not change the image channels. The outputs of the two branches
are concatenated and a standard 3 × 3 convolution (equipped with batch normalization
and ReLU) is used to reduce the image to the desired dimension.

The stem block plays the role of fast downsampling with a rate of 2 in both the detail
path and the semantic branch. In the detail path, the stem block performs at the beginning
of each stage. In the semantic branch, the first two stages are two successive stem blocks.
The design of the stem block makes the dimensional expansion very flexible. It can expand
the image to arbitrary suitable dimensions to meet different requirements. The detail path
maintains spatial information with wide channels; therefore, the stem block in its first stage
expands the channels from 3 to 32. The semantic branch needs narrow channels to reduce
computational workload; therefore, the stem block in its first stage expands the channels
slightly from 3 to 8. In other cases, the stem block doubles the number of channels.
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3×3 Max Pooling
 (stride = 2)

Batch Normalization

Batch Normalization 
Relu

3×3 Convolution
(strid = 2)

3×3 Convolution

3×3 Convolution

(H×W×Cin)

(H/2×W/2×Cout)

Batch Normalization

(H/2×W/2×Cin)

(H/2×W/2×Cout)

(H/2×W/2×Cout)

(H/2×W/2×Cin+out)

Figure 3. Stem block. Notation: “3 × 3” in operation blocks denotes the operation’s kernel size; stride
denotes the times of downsampling; the (H × W × C) label beneath each operation refers to the size
of the output feature map (image); H: height, W:width, C: channel, while Cin denotes input channel
and Cout denotes output channel.

3.3. Semantic Path

The semantic path is responsible for capturing semantic features of low resolution.
We use deep structure and shallow channels to extract contextual feature representation.
Since real-time detection requires the model to predict with low latency, we designed a
lightweight network, shown in Figure 4.

1. Layer 1 is a stem block we have introduced above. It shrinks the feature map size
with a downsampling rate of 2 and enlarges the spatial slightly from 3 to 8 channels.
With this layer, redundant information can be removed before complex computations;

2. Layer 2 is as same as Layer 1, but it expands the channels from 8 to 16. The downsam-
pling rate is 4;

3. Gather–expand–search (GES) layers: Layers 3, 4, and 5, as well as the feature fusion
layer constitute the GES layer. It mainly consists of a gather-and-expansion bottleneck
and search-space bottlenecks. The gather-and-expansion bottleneck gathers feature
representation by downsampling and storing spatial information by expanding chan-
nels. In each GES layer, a gather-and-expansion bottleneck is followed by several
search-space bottlenecks. The search-space bottlenecks do not shrink the image size.
They search for multi-resolution feature representations and integrate them. Detailed
information for Layers 3, 4, 5 and the feature fusion layer is as follows:

• Layer 3: gather-and-expansion bottleneck + search-space bottleneck. The image
channel is expanded to 32 and the downsampling rate is 8;

• Layer 4: The structure of Layer 4 is as same as Layer 2. Its output channel is
64 and the downsampling rate is 16;

• Layer 5: gather-and-expansion bottleneck + three search-space bottlenecks. In
this layer, the output channel is 128, and the downsampling rate is 32. In the
case of a high downsampling rate, plenty of search-space operations are par-
ticularly needed for enlarging the receptive field effectively. It can also further
extract feature representation while maintaining the feature map size. In Layer
5, we also add the context-embedding block at the end to embed the global
contextual information;

• The feature fusion layer is used for progressively aggregating the output feature
of Layer 4 (downsampling rate of 16) and Layer 5 (downsampling rate of 32).
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Figure 4. Semantic path. Notation: the (H×W×C) label beneath each layer denotes the layer’s output
feature map height/width/channel; the search-space bottleneck in Layer 5 is repeated three times.
Refer to Tables 1 and 2 for each layer’s detailed operations and parameters.

3.3.1. Gather–Expand–Search (GES) Layers with a Larger Receptive Field

The gather–expand–search (GES) layer is mainly composed of two kinds of bottle-
necks: gather-and-expansion (GE) bottlenecks, which adopt depth-wise convolution and
depth-wise separable convolution, and search-space bottlenecks, which adopt zoomed
convolution. In addition, the GES layer also contains a context-embedding block and a
feature fusion block.

Gather-and-Expansion Bottleneck

The gather-and-expansion (GE) bottleneck was proposed in MobileNetv2 and refined
in BiSeNetv2 [30]. We adopt the design in BeSeNetv2 with improvements. The GE bot-
tleneck aims to downsample the image to shrink the image size by half and double the
dimension. The number of channels does not double directly. It is expanded with a rela-
tively large ratio at first and projected to the desired dimension at the end. Such a design
enables downsampling operations to deal with wide-channel feature maps; thus, abundant
spatial information can be captured. As shown in Figure 5, the GE bottleneck consists of
two branches: a main branch and a residual branch. The effect of each operation in the
bottleneck is explained as follows:

• 3 × 3 standard convolution: The 3 × 3 standard convolution with a stride of 1 at
the beginning plays the role of channel expansion. The channels can be expanded
with arbitrary appropriate ratios, but the experimental results in the BiSeNetv2 paper
proved that the ratio of 6 has the best performance. Therefore, we also retained the
ratio of 6 in our design;

• Depth-wise convolution: Depth-wise convolution performs a 3 × 3 convolution for
each channel, reducing computational complexity significantly. In the original de-
sign in BiSeNetv2, the depth-wise convolution is responsible for channel expansion.
However, in our design, the depth-wise convolution at any position does not change
the number of channels. Our experimental results (in Section 3) proved that it will
make the feature representation more accurate. In the main branch, the depth-wises
convolution has a stride of 2, downsampling the feature map to half of the input;

• Depth-wise separable convolution: This is composed of a depth-wise convolution
followed by a point-wise convolution. The depth-wise convolution conducts con-
volution on each channel separably and then the individual channels are combined
by a point-wise convolution. The point-wise convolution is a 1 × 1 convolution.
The 1 × 1 convolution is flexible for changing dimensions; therefore, it is also used to
project the feature map into a narrower space of twice the input channels. In the main
branch, the depth-wise separable convolution does not shrink image size;
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• Residual branch: The residual branch can restore the input information and protect
the neural network from degradation [33]. In order to fuse with the main branch, the
residual branch needs the same downsampling rate as the main branch. Therefore,
a depth-wise separable convolution with a stride of 2 is performed in the residual
branch. The downsampling operation is performed in the depth-wise convolution.

3×3 Convolution

Depth-wise 
Convolution

(strid = 2)

Depth-wise Separable 
Convolution

3×3 Depth-wise 
Separable Convolution

(strid = 2)

+

Depth-wise 
Convolution

Point-wise 
Convolution

Batch Normalization
Relu

Batch Normalization

Batch 
Normalization

Batch 
Normalization

Batch Normalization

(H×W×C)

(H×W×ratio*C)

(1/2H×1/2W×ratio*C)

(1/2H×1/2W×2C)

(1/2H×1/2W×2C)

Relu
(1/2H×1/2W×2C)

Main Branch Residual Branch

Figure 5. Gather-and-expansion bottleneck. Notation: the dotted area on the left explains the
structure of the depth-wise separable convolution in the main branch. The ratio is 6 in practice.

At the end of the GE bottleneck, two feature maps are added together. Moreover, since
the continuous activation function undermines the feature representation, a ReLU activation
function is performed only when the output feature map is concatenated. In summary, the
GE bottleneck extracts feature representation and shrinks the feature size with fast speed.

Search-Space Bottleneck

The search-space bottleneck aims to improve the accuracy of the result feature map of
stages in the semantic path by enlarging the receptive field. The search-space bottleneck was
first introduced in Auto-DeepLab [34] to optimize resolutions, and FasterSeg [32] designed the
zoomed convolution for the search space. Zoomed convolution reduces 40% of the latency and
doubles the receptive field [32] for a standard convolution. As shown in Figure 6, a zoomed
convolution consists of one bilinear downsampling, one or more 3 × 3 convolutions, and a
bilinear upsampling in sequence. Our design uses multiple parallel branches in the search-
space bottleneck to integrate multi-resolution information. This design enables the search-space
bottleneck to search for abundant information within the space and output a strong feature
representation. In the search-space bottleneck, the size and the number of channels is kept stable.
As shown in Figure 7, the parallel branches include:

• Skip Connection: with this residual branch, more information can be utilized by
subsequent blocks;

• A standard 3 × 3 convolution (with batch normalization and ReLU;.
• A depth-wise separable convolution followed by a standard 3 × 3 convolution. The

structure of the depth-wise separable convolution is explained in the gather-and-
expansion bottleneck;
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• A zoomed convolution followed by a standard 3 × 3 convolution. The zoomed
convolution here has one convolution in the middle (shown in Figure 7);

• Similar to Branch 4, but the zoomed convolution here has two convolutions (shown in
Figure 8).

Bilinear 
Downsampling 3×3 Convolution Bilinear Upsampling

Batch Normalization
Relu

Depth-wise Separable 
Convolution

Figure 6. Zoomed convolution with two convolutions in the middle.

Depth-wise Separable 
Convolution

3×3 Convolution

3×3 Convolution

Zoomed Convolution
(Convolution × 1)

Zoomed Convolution
(Convolution × 2)

3×3 Convolution

3×3 Convolution

Batch Normalization
Relu

Batch Normalization
Relu

Batch Normalization
Relu

Skip Connection

Batch Normalization
Relu

+

Figure 7. Search-space bottleneck.

Bilinear 
Downsampling 3×3 Convolution Bilinear 

UpsamplingBatch Normalization
Relu

Figure 8. Zoomed convolution with one convolution in the middle.

The additional 3 × 3 standard convolution at the end of Branches 3, 4, and 5 is used to
strengthen the feature representation without adding significant cost because the 3 × 3 con-
volution is specially optimized in the CUDNN library [10]. In summary, the search-space
bottleneck improves the accuracy of feature representation by extending the receptive field
(zoomed convolution) and integrating multi-resolution features (parallel branches). Mean-
while, the zoomed convolution improves speed by reducing the convolution parameters.

Context-Embedding Block

The context-embedding block aims to capture high-level contextual information. In the
case of a downsampling rate of 32, as the image size is shrunk to a great extent, a large
receptive field is particularly needed. Therefore, a context-embedding block is added in
the end of Layer 5 of the Semantic Branch. The BiSeNetv2 has a highly effective context-
embedding block. Therefore, we adopt it in our network without modification. As shown in
Figure 9, the context-embedding block consists of a main branch and a residual branch. In
the main branch, the global average pooling provides adequate global information. In the
end, there is also a standard 3 × 3 convolution to strengthen the feature representation.
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3×3 Global Average 
Pooling

1×1 Convolution

+

3×3 Convolution

(H×W×C)

(1×1×C)

Batch Normalization
Relu

Batch Normalization
Relu

(H×W×C)

(1×1×C)

(H×W×C)

Skip Connection

Figure 9. Context-embedding block.

Feature Fusion

The output feature map of Layer 5 has a high-level feature representation with a
downsampling rate of 32. However, its resolution is low level. The spatial information of
its input feature map (the output of Layer 4) is inevitably damaged. This drawback can be
solved by concatenating two outputs with different downsampling rates (32 for Layer 5
and 16 for Layer 4). As a result, the multi-resolution feature maps are integrated and the
receptive field is enlarged.

The structure of the feature fusion block is shown in Figure 10. The feature map of
Layer 5 output is further extracted by a standard 3 × 3 convolution and then upsampled.
It is restored to 16 downsampling rate for fusing with Layer 4’s output. Since the channel
amount of Layer 5’s output (128 channels) is also double that of Layer 4’s output (64 chan-
nels), the concatenated result (192 channels) is triple that of Layer 4’s output. Therefore, a
standard 3 × 3 convolution projects the result into the desired dimension—128 channels,
the same as the result of the detail path.

3.4. Detail Path

The detail path is responsible for low-level details with high resolution, adopting
shallow layers and wide channels. The resulting feature map has a low downsampling rate
of 8 and a wide channel number of 128. As shown in Figure 11, the detail path is composed
of three stages. Each stage adopts a stem block for fast downsampling, shrinking the size to
half and expanding channels. After the stem block, depth-wise separable convolutions are
conducted to further extract feature representation with fast speed. There is also a standard
convolution for feature strengthening in the last two stages.

This design of the detail path ensures redundant information cleaning at the initial
phase and then reserves information in spatial dimension (weight and height dimension).
The convolution operation without ReLU can prevent the continuous activation function
from damaging the feature accuracy. When the semantic path extracts feature representation
but destroys spatial information, the detail path stores the spatial information. Later, these
two kinds of information from two branches will integrate through the bilateral guided
aggregation module.
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3×3 Convolution

Batch Normalization
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Figure 10. Feature fusion block.
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Figure 11. Detail path.

3.5. Bilateral Guided Aggregation

This section is designed for fusing the output feature maps of the detail path and
semantic path. As one is a low-level feature representation and the other is high-level, the
two outputs cannot be merged by concatenation. In the bilateral guided aggregation of
BiSeNetv2, the output of the detail path is downsampled and then merges with the semantic
path. The contextual information from the semantic path guides the feature response during
the downsampling. Meanwhile, the output of the semantic path also merges with the detail
path after upsampling. This upsampling is guided by the spatial information from the
detail path. This design enables the two branches to communicate efficiently.

In our design, we modified the structure of the bilateral guided aggregation of
BiSeNetv2 to make it work more effectively. The output of the semantic branch in BiSeNetv2
is 1/32 of the original image size, while in our network, it is 1/16 of the original image
size. Moreover, the channel width is the same in these two cases. Therefore, if we retain
the feature-extraction operations in the bilateral guided aggregation of BiSeNetv2, too
much computation and parameters will be added. Therefore, in our design, we need to
simplify the bilateral guided aggregation block (shown in Figure 12). Note that the left
branch deals with the output of the detail path, while the right branch deals with that of
the semantic path.
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• Left Branch 1: A depth-wise separable convolution for further gathering feature
representation fast;

• Left Branch 2: Average pooling with a stride of 2 results in a 16 downsampling rate.
Its output will be fused with the output of the semantic path;

• Right Branch 1: The upsampling operation restores the output of the semantic path to
an downsampling rate of 8. Its output will be fused with the output of detail path;

• Right Branch 2: Its structure and effect are as same as Left Branch 1.

Left Branch 1 and Right Branch 1 are multiplied together, and Right Branch 1 and
Right Branch 2 are multiplied together. The result feature map of the Right Branch has
a downsampling rate of 16. Therefore, it needs to be upsampled to a rate of 8. Thus, the
output of the right branch and the left branch can be summed up together.

×

×

Batch Normalization

SigmoidSigmoid

+

(H/16×W/16×C)(H/8×W/8×C)

(H/16×W/16×C)

Depth-wise Separable 
Convolution

3×3 Average Pooling
(strid = 2) Upsampling

Upsampling

3×3 Convolution

(H/8×W/8×C)(H/8×W/8×C) (H/16×W/16×C)

(H/8×W/8×C) (H/16×W/16×C)

(H/8×W/8×C)

(H/8×W/6×C)

(H/8×W/8×C)

Depth-wise Separable 
Convolution

Figure 12. Bilateral guided aggregation.

3.6. Segment Head with Training Boosting Strategy
3.6.1. Segment Head

The segment head is located at the end of the network, where the input image is
downsampled and expanded to high dimensions. Semantic segmentation is a pixel clas-
sification task. Therefore, to compute loss, the output size needs to be recovered to the
initial size, and the number of channels should be equal to the number of label classes. This
is completed by the last two operations in Figure 13. The 1 × 1 convolution projects the
feature map to the N dimension space (N is the number of classes). Then, the feature map
is upsampled to the initial size. The upsampling rate is equal to the downsampling rate of
the feature map.

In the BiSeNetv2, not only the final output of the network is involved in the loss
computation, but also the partial outputs in the semantic path. We inherit this design,
computing the loss for the partial output of Layers 2, 3, 4 and 5 in the semantic path,
reinforcing the learning in the downsampling process. The final feature map is the output
of bilateral guided aggregation (BGA). These loss values will be calculated individually
and summed. The upsampling rates for Layer 2, Layer 3, Layer 4, Layer 5 and BGA are 4, 8,
16, 32, and 8, respectively.
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3×3 Convolution

Batch Normalization
Relu

Upsample

1×1 Convolution

(H×W×Cexp)

(H×W×Cin)
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×
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Excitation Block
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U
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Figure 13. Training boosting strategy.

3.6.2. Training Boosting Strategy

In the segment head, before the 1 × 1 convolution and upsampling, we also designed
a training booster block to improve the quality of feature representation. The training
boosting strategy increases the computation burden slightly in the training phase, but it
can be totally discarded during inference. Therefore, the extra cost of the segment head
does not need to be addressed.

The training booster block consists of a 3 × 3 convolution and a squeeze-and-excitation
(SE) block. The 3 × 3 convolution expands the channels of the feature work to extract
abundant spatial information. Then, the feature representation is further enhanced by the
squeeze-and-excitation (SE) operation [35]. It can achieve feature recalibration, using global
information to emphasize representative features while suppressing weak ones. The input
feature map U first passes a squeeze operation. This is achieved by global average pooling.
Through the squeeze operation, the spatial dimension features are aggregated. Then, an
excitation operation fully extracts channel-wise dependencies. This is achieved by full
connection (FC) followed by an activate function. There are two excitation operations: one
uses ReLU as the activation function, while the other uses Sigmoid. The output is called
scalar, and it then performs channel-wise multiplication with the input U.

4. Experimental Results

To evaluate the effectiveness of RecepNet, we trained and evaluated it with the
benchmark dataset. In this section, we first introduce Cityscapes, the benchmark dataset
we used. Then, we describe the training details. Third, we evaluate the effectiveness of
each component of the network on the same dataset. Alternative plans for the design of the
components will also be introduced and compared. The origin of the bilateral architecture
is BiSeNetv2. Therefore, we compared the performance of each component and the overall
network of our algorithm with BiSeNetv2.

4.1. Benchmark Dataset

Cityscapes [36] is a classical, challenging semantic segmentation dataset that focuses
on urban street scenes from a car’s perspective. This dataset is split into three parts:
2975 for training, 500 for validation and 1525 for testing. In the experiments, we used
finely annotated images in the Cityscapes dataset, which include 19 classes for semantic
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segmentation. Considering its high resolution of 2048 × 1024 pixels, these images are
challenging for real-time semantic segmentation.

4.2. Training Details
4.2.1. General Training Settings

We trained our network from scratch. We adopted the stochastic gradient descent
(SGD) as the optimizer and set the its parameters as weight decay = 5 × 10 −4 and mo-
mentum = 0.9. Referring to BeSiNetv2, we adopted a “poly” learning rate strategy [10].
The initial learning rate was 5 × 10 −3 and it was multiplied by (1 − iter

itersmax
)power for each

iteration with the power of 0.9. iter denotes the current number of iterations. itersmax
denotes the total number of iterations, which we set as 150K. Additionally, we chose 16 as
the batch size.

4.2.2. Cost Function

As for the cost function, we used OhemCELoss (online hard example mining cross-
entropy loss).

4.2.3. Image Augmentation

We also performed augmentation on the image data as follows:

1. Randomly scale the image size. The scale value ranged from 0.25 to 2.0;
2. Randomly horizontally flip the images;
3. Randomly change the color jitter. The brightness was 0.4, the contrast was 0.4 and the

saturation was 0.4.

All images with an original resolution of 2048 × 1024 were cropped to 1024 × 512 for
training. Through image augmentation, the robustness of the network was enhanced.

4.2.4. Inference Details

The images were cropped to 1024 × 512 before inference. Additionally, we adopted
image augmentation during the inference to improve the performance, including scaling
the image size (from 0.25 to 2.0) and horizontally flipping the images. As for the evaluation
metrics, we used the mean intersection over union (% mIoU)—the mean IoU value of
all dataset classes. IoU is a standard performance metric for segmentation problems that
measures the similarity between the predicted region and the ground-truth region in
labels [37]. A higher % mIoU indicates a higher accuracy. Since image augmentation was
conducted, the evaluation contained multi-scale crop evaluation and flip evaluation, which
improved the accuracy to some extent.

We used GMACs (giga multiply–accumulate operations) to measure the computational
cost of the model. The MAC (multiply–accumulate) operation, which is the basic operation
in neural networks, calculates the product of two numbers and adds the result to an
accumulator. We obtained the MAC count of the network by calculating and adding up the
number of MACs in each convolutional layer. A smaller GMACs number indicates lower
computational complexity [38].

4.3. Hardware Support

We built the implementation on PyTorch [39], an open-source machine learning frame-
work for computer vision and language processing developed by Facebook. We trained the
models using one NVIDIA RTX 3090 with CUDA 11. Moreover, we use FP16 precision for
faster computation.

4.4. Component Evaluation

We used an ablation experiment to validate the effectiveness of each component of our
algorithm, including the semantic path, detail path, bilateral guided aggregation layer and
semantic head. We also compared the performance of the network components with those in
BiSeNetv2, since BiSeNetV2 is the origin of the bilateral architecture and consists of these four



Remote Sens. 2022, 14, 5315 16 of 25

components. In the ablation experiment, each individual test network assembled from blocks
was retrained and fine-tuned on the Cityscapes dataset until it reached optimal performance.
Thus, we proved that we make improvements to the overall network and its components.

4.4.1. Semantic Path
Design of Gather-and-Expansion Bottleneck

We referred to the inverted bottleneck (stride = 2) of BiSeNetv2 and improve its struc-
ture. To validate our improvement, we ran the semantic path of BiSeNetv2, but substituted
all inverted bottlenecks (stride = 2) with our gather-and-expansion (GE) bottleneck. The re-
sult in Table 3 shows that our gather-and-expansion bottleneck improved the accuracy
from 65.11% to 65.27%. This is because we used a convolution operation to expand the
image to wide channels before downsampling, which can enlarge the spatial semantic
field. Moreover, the depth-wise separable convolution can keep the number of parameters
relatively small.

Table 3. Performance of gather-and expansion bottleneck.

Network GMACs % mIoU

Semantic branch of BiSeNetv2 4.38 65.11
Semantic branch of BiSeNetv2

(replace inverted
bottleneck (strid = 2) with our

GE bottleneck)

4.40 65.27

Design of Search-Space Bottleneck

To evaluate our design of the search-space bottleneck, we used the network in Figure 14.
Here, for Layers 1 and 2, we still used the stem block in BiSeNetv2 (the stem block will be
evaluated later).

    
Stem Block

 (v2)

 Gather-
and-

Expansion 
Bottleneck

Search 
Space 

Bottleneck

×3
 Gather-

and-
Expansion 
Bottleneck

Search 
Space 

Bottleneck

 Gather-
and-

Expansion 
Bottleneck

Search 
Space 

Bottleneck

Context 
Embedded 

Block
(v2)

(H×W×3)

(1/4H×1/4W×16) (1/8H×1/8W×32) (1/16H×1/16W×64) (1/32H×1/32W×128)

Layer 1&2 Layer 3 Layer 4 Layer 5

Figure 14. Network for search-space bottleneck testing.

The structure of Layers 3, 4 and 5 is the design in RecepNet. The search-space bottle-
neck in Layer 5 repeats three times. We adopt the context-embedding block in BiSeNetv2.
Note that the blocks that are not annotated with “v2” belong to RecepNet.

Firstly, we designed the zoomed convolution, which is used in the search-space
bottleneck. It has a larger receptive field, lower latency and fewer parameters than a
standard convolution operation. The zoomed convolution starts with downsampling and
ends with upsampling, and features are extracted in the middle process. Therefore, we
tried several feature-extraction operations, aiming for better accuracy and lower complexity.
To test the performance of different zoomed convolutions, only a single zoomed convolution
was used in the search-space bottleneck of the test network (Figure 14). The results are
shown in Table 4.
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Table 4. Performance of zoomed convolution with different structures. Notation: conv denotes
convolution; 3 × 3 and 1 × 1 denote kernel size.

Structure of Zoomed Convolution

Network Bilinear
Downsample

Feature-Extraction
Operation Bilinear

Upsample GMACs % mIoU

X 3 × 3 conv X 4.97 60.42
X 3 × 3 conv + 3 × 3conv X 5.67 62.53
X 3 × 3 conv + 1 × 1 conv X 6.33 61.28Network for

search-space
bottleneck testing

X
3 × 3 conv

+ depth-wise
separable convolution

X 5.23 62.50

Considering accuracy and complexity, the structure of a 3 × 3 convolution followed by
a depth-wise separable convolution has the best performance. That is because, although
the accuracy of a depth-wise separable convolution is not as good as that of a standard
convolution, it significantly reduces the algorithm complexity.

Secondly, we designed five parallel branches for the search-space bottleneck. To test
the effectiveness of each branch, we designed a series of ablation experiments for the five
branches. In the experiments, we used the test network in Figure 14. We also compared the
final results in the “Design of Gather-and-Expansion Bottleneck” section.

The results in Table 5 show that the search-space bottleneck increases the accuracy
significantly and simultaneously reduces the complexity. The skip branch can preserve the
contextual information and the four branches with different convolution operations search
for multi-resolution features. The integration of different branches provides the output
with abundant information.

Table 5. Ablation experiments for the search-space bottleneck. Notation: Skip denotes skip connec-
tion; conv denotes convolution; SepConv denotes depth-wise separable convolution; 3 × 3 denotes
kernel size.

Branches of Search-Space Bottleneck

Network Skip 3 × 3 conv SepConv
+ 3 × 3 conv

ZoomedConv
(conv ×1)

+ 3 × 3 conv

ZoomedConv
(conv × 2)

+ 3 × 3 conv

GMACs % mIoU

X X X X 4.21 63.78
X X X X 3.83 67.73
X X X X 3.79 67.96
X X X X 3.77 67.45
X X X X 3.72 67.38

Network for
search-space

bottleneck Testing

X X X X X 4.02 68.21
Semantic path
in BiSeNetv2

4.38 65.11

Design of Feature Fusion

As discussed above, we integrated the outputs of Layer 4 and Layer 5 to obtain multi-
resolution feature maps, enhancing the receptive ability for spatial information. The test
network is shown in Figure 15. The search-space bottleneck adopts the structure with the
best performance in the last section (five parallel branches). The results in Table 6 show
that feature representation is optimized and complexity only increases slightly, and is still
lower than the semantic branch in BiSeNetv2.
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Table 6. Performance of feature fusion.

Network GMACs % mIoU
Network for

feature fusion testing
4.05 69.39

Network for
search-space bottleneck testing

4.02 68.21

Semantic branch of BiSeNetv2
(with our GE bottleneck)

4.38 65.11
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Figure 15. Network for feature fusion testing.

Fusion denotes feature fusion block. The output feature map of Layers 4 and 5 are
fused through this feature fusion block.

4.4.2. Design of Stem Block

To test the design of our stem block, we replaced the BiSeNetv2 stem block in the
last section’s test network (refer Figure 15) with our own design. It then became the
complete semantic path of our RecepNet, shown previously in Figure 4. Table 7 shows that
the new stem block improves accuracy while increasing some costs. This is because the
combination of max pooling and two successive standard convolutions produce effective
feature representation, while the repeated convolutions bring a small burden.

Table 7 also indicates that, compared with the semantic path in BiSeNetv2, the semantic
path in RecepNet makes impressive progress in both accuracy and speed.

Table 7. Performance of stem block.

Network GMACs % mIoU
Semantic path of RecepNet 4.08 69.61
Network for feature fusion

testing 4.05 69.39

Semantic branch of BiSeNetv2 4.38 65.11

4.4.3. Design of Detail Path

To illustrate the effectiveness of our detail path, we compare its performance with
the original detail path in the BiSeNetv2. Table 8 shows that both the network simplicity
and accuracy are considerably improved. The reason for this is that the stem block at the
beginning of each stage completes fast downsampling, and the subsequent depth-wise
separable convolutions enhance the feature representation with a slight cost.
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Table 8. Performance of detail path.

Network GMACs % mIoU

Detail branch of BiSeNetv2 11.72 62.35
Detail b of RecepNet 9.58 65.30

4.4.4. Design of Bilateral Guided Aggregation

Combining the output of the detail path and semantic path, we obtained a complete
network of RecepNet without a training booster strategy. As shown in Table 9, RecepNet
has a considerable advantage in accuracy. However, as discussed in Methodology, the
output of the semantic path in the BiSeNetv2 is 1/32 of the original image size, while in
RecepNet, it is 1/16 of the original image size. This will inevitably increase the computation
in the bilateral guided aggregation because the image size is doubled with such a wide
image channel (128). Luckily, since the complexity of the detail path and the semantic
path in RecepNet is significantly lower than that in the BiSeNetv2 and our bilateral guided
aggregation is simplified, the complexity of the whole network of RecepNet is just a little
larger than that of BiSeNetv2.

Table 9. Comparison of two networks without booster.

Network GMACs % mIoU

BiSeNetv2 without booster 14.83 69.67
RecepNet without booster 15.21 74.81

4.4.5. Design of Training Booster Strategy

Adding the training booster strategy, we can obtain a complete RecepNet. To validate
the efficiency of our newly designed training booster strategy, we first used the training
booster in BiSeNetv2 and, secondly, used our training booster. Then, we compared their
performances. The result is shown in Table 10. Since the training booster strategy will be
discarded in the inference phases, we do not increase complexity in Table 10 when applying
the training booster strategy.

By observing the results, we can conclude that our training booster has better perfor-
mance compared with the original one in BiSeNetv2. The reason for this is that the SE block
plays a vital role in recalibrating the features.

Table 10. Performance of training booster strategy.

Network GMACs % mIoU

RecepNet without booster 15.21 74.81
RecepNet with booster

in BiSeNetV2
15.21 78.03

RecepNet 15.21 78.65
BiSeNetv2 14.83 73.36

4.4.6. Ablation Results Summary

In Table 11, we summarized all the’ performance of all components in RecepNet
in the form of an ablation experiment. To be more convincing, we also compared the
performance of each component with BiSeNetV2. Observing the results, we can see that, for
each component, the accuracy of RecepNet is better than BiSeNetv2. In terms of complexity,
the complexities of the detail path and the semantic path are lower than in BiSeNetv2.
However, after adding the aggregation module, RecepNet has a higher computational
complexity. This is because the output of the semantic path in BiSeNetV2 is downsampled
by 1/32, while in RecepNet it is downsampled by 16. Therefore, the feature map with
a large size and wide channels brings a computational burden. We designed a simple
structure for the aggregation module to minimize the increase of complexity.
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In summary, RecepNet is superior to BiSeNetV2 because it improves the accuracy
significantly (from 73 to 78) at a negligible cost of complexity (just 0.4 GMACs).

Table 11. Component performance and overall performance of RecepNet.

Components GMACs (Complexity) % mIoU (Accuracy)

Detail Semantic Aggregation Booster RecepNet BiSeNetV2 RecepNet BiSeNetV2
X 9.58 11.72 65.30 62.35

X 4.02 4.38 68.21 65.11
X X X 15.21 14.83 74.81 69.67
X X X X 15.21 14.83 78.65 73.36

4.5. Inference Speed

We also tested the network’s inference speed on one RTX 3090 GPU. The inference
speed is measured in frames per second (FPS), which means how many frames can be
processed per second. Please note that FPS depends on GPU performance, while the
% mIoU and GMACs are only related to the algorithm. Generally, an algorithm with lower
GMACs has a higher FPS on the same machine. We chose Deeplabv3+ and BiSeNetV2 as
the comparative networks. That is because the accuracy of DeepLabv3+ has been excellent
in works of recent years and BiSeNetV2 has outstanding speed.

The speed and accuracy of the three networks are shown in Figure 16. Comparing the
results, we can see that RecepNet has an accuracy approximating that of DeepLabV3+, and
its inference speed approximates that of BiSeNetV2. Among the three networks, RecepNet
has the longest projection on the diagonal of the chart. We can thus conclude that as
a high-speed real-time semantic segmentation network, RecepNet also has competitive
performance in accuracy.
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Figure 16. Comparison of three networks. Axis x denotes mIoU. A network placed higher in Axis x
shows higher accuracy. Axis y denotes inference speed in FPS; A network placed higher in Axis y
shows faster inference speed.

5. Application in Blue-Green Algae Detection

In recent years, advanced technologies such as soft-computing and machine learning
have been widely used in environment prediction and management, including support
vector regression, (SVR), relevance vector machine (RVM) and multiple recursive nesting
bias correction (MRNBC) [40]. Other methods, including artificial neural network (ANN),
adaptive neuro fuzzy inference system (ANFIS), M5P and random forest (RF), have also
been implemented [41]. Statistical analysis methods, such as the first-order second-moment
statistical method [42], have been used to predict the impact of aquatic organisms on
aquatic ecosystems. An intellectual detection approach for blue-green algae is needed by
water environment treatment industry. Blue-green algae smell musty and their blooms can
produce toxins that are released into the water and lead to livestock deaths [43]. Especially
for blue-green algae blooms in lakes and rivers providing drinking water, the polluted
water can cause human diseases, such as diarrhea and hepatitis [43]. Currently, there are
various prevalent methods for blue-green algae detection, such as analyzing the water
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sample using a PCR-DCG detecting kit [44]. Currently, the outbreak of blue-green algae
can be detected with UAVs. The cameras embedded in UAVs take aerial images of the
water surface; then, the blue-green algae is manually identified on the aerial images of the
water surface. However, this method requires huge labor due to the vast area of natural
waters. To solve this problem, we firstly propose to use UAV to real-time detect blue-green
algae through an embedded computer vision system. It is achieved by making a blue-green
algae dataset using those aerial images and then training our RecepNet on the dataset.

5.1. Blue-Green Algae Dataset

Our blue-green algae dataset is split into a training set and a validation set. The training
set contains 1044 images and the validation set contains 261 images. The dataset link is
available at Data Availability Statement part.

Raw images: The raw data are aerial images of rivers and lakes where blue-green
algae appears. As blue-green algae grow on the water surface, aerial images can be used to
detect its explosion efficiently. However, as the color of both water and blue-green algae is
green, accuracy is challenging in this task. Examples of aerial images of blue-green algae
are shown in Figure 17.

(a) (b) (c)

Figure 17. Raw images and masks in dataset. The first column titled (a) are the original images taken
by UAVs. The second column titled (b) are the labels, with the blue areas representing blue-green
algae. The third column titled (c) are the fused images, in order to clearly present the results; (a), raw
images; (b), masks; (c), blends.
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Image annotation: The blue-green algae area in each image are labeled manually using
LabelMe, a graphical annotation tool of Anaconda. A JSON file is generated for each image
to store annotation information.

Formatting dataset: Before use, the mask for each image should be generated using
the JSON files. We generate masks in the Cityscapes format, which uses single-channel
grayscale labels. The grayscale value of the nth class (target) is n [36]. In this task, we just
have a single target: algae. Such mask images cannot be recognized clearly. Therefore, to
present our result, we convert the target area to a blue color and blend the mask image with
a raw image (only for illustration). Figure 17 shows the raw images, masks, and masks
blended with the raw images.

5.2. Network Performance on Blue-Green Algae Dataset

The training configuration is as same as with the Cityscapes dataset. After training
with RecepNet, we tested the model inference performance on the validation set. Compared
with the original BisenetV2, which had an accuracy of 79.51% mIoU on the algae validation
set, our RecepNet achieved 82.12% mIoU, shown in Table 12. Figure 18 shows some
examples of inference. RecepNet had an inference speed of 50.12 FPS on an RTX 3090,
which is much higher than the 30 FPS of cameras, meaning it could easily process all
30 frames per second from a camera video stream. Thus, we conclude that our algorithm
can process semantic segmentation in real time. Additionally, our blue-green algae dataset
is effective.

Table 12. Comparison of RecepNet, BiSeNetv2 and DeepLabv3+’s performance on blue-green
algae detection.

Network % mIoU GAMCs

BiSeNetv2 79.51 51.72
RecepNet 82.12 52.12

DeepLabv3+ 83.36 55.52

(a) (b) (c) (d)

Figure 18. Inference on blue-green algae dataset. The first and third columns titled (a) are the original
images; the second and fourth columns titled (b) are labels, where the dark blue part is the identified
blue-green algae area; (c), raw images; (d), inference results.
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6. Conclusions

This paper proposed a novel real-time semantic segmentation network, RecepNet.
Its detail path uses wide channel convolutional layers to extract and preserve high-resolution
features. The lightweight network gather–expand–search (GES) in the semantic path
searches and gathers rich semantic and spatial information. A bilateral aggregation model
fuses the output of the two paths with a simple structure. Furthermore, a novel training
booster strategy recalibrates and enhances features in the training phases. We proposed
several blocks with low complexity to expand the network’s spatial and semantic receptive
fields, including the stem block, the gather-and-expansion bottleneck and the search-space
bottleneck. Experimental results show that the proposed RecepNet has good performance
in both accuracy and speed on the Cityscapes dataset and blue-green algae dataset. In the
future, we can calculate the area of the detected blue-green algae explosion utilizing the
vision system and depth information.
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