
Citation: Chang, J.; Li, J.; Chen, K.;

Liu, S.; Wang, Y.; Zhong, K.; Xu, D.;

Yao, J. Dithered Depth Imaging for

Single-Photon Lidar at Kilometer

Distances. Remote Sens. 2022, 14, 5304.

https://doi.org/10.3390/rs14215304

Academic Editor: Joaquín

Martínez-Sánchez

Received: 28 September 2022

Accepted: 20 October 2022

Published: 23 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Technical Note

Dithered Depth Imaging for Single-Photon Lidar at
Kilometer Distances
Jiying Chang 1,2, Jining Li 1,2 , Kai Chen 1,2, Shuai Liu 1,2, Yuye Wang 1,2 , Kai Zhong 1,2 , Degang Xu 1,2,*
and Jianquan Yao 1,2

1 Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronics Engineering,
Tianjin University, Tianjin 300072, China

2 Key Laboratory of Opto-Electronic Information Technology (Ministry of Education), Tianjin University,
Tianjin 300072, China

* Correspondence: xudegang@tju.edu.cn

Abstract: Depth imaging using single-photon lidar (SPL) is crucial for long-range imaging and
target recognition. Subtractive-dithered SPL breaks through the range limitation of the coarse
timing resolution of the detector. Considering the weak signals at kilometer distances, we present a
novel imaging method based on blending subtractive dither with a total variation image restoration
algorithm. The spatial correlation is well-considered to obtain more accurate depth profile images
with fewer signal photons. Subsequently, we demonstrate the subtractive dither measurement at
ranges up to 1.8 km using an array of avalanche photodiodes (APDs) operating in the Geiger mode.
Compared with the pixel-wise maximum-likelihood estimation, the proposed method reduces the
depth error, which has great promise for high-depth resolution imaging at long-range imaging.

Keywords: 3D imaging; single-photon lidar; subtractive dither; computational imaging

1. Introduction

Three-dimensional (3D) imaging using the direct time-of-flight (d-ToF) technique is a
topic of great interest to laser ranging and tracking, terrain visualization and vehicle navi-
gation [1–3]. Remarkably, the great potential of SPL has been shown in long-range imaging
and penetration imaging, including imaging through atmospheric obscurants and underwa-
ter depth imaging [4–8]. A traditional scanning and imaging system acquires the returned
signal pixel by pixel, which decreases the imaging frame rates [5]. The continuous scanning
structure and the high-repetition-rate laser pulse shorten the data acquisition time [6,7]. The
single-photon avalanche diode (SPAD) array integrated with timing electronics into pixels
has rapidly developed to increase the frame rates [9–12]. Manipulation without a scanning
structure effectively accelerates the imaging speed because of the massive parallelization
of the data collection [13]. Unfortunately, the space-related fabrication constraints lead
to a trade-off between the number of pixels and temporal resolution, which results in a
coarser timing resolution for SPAD array detectors [14]. An SPAD array typically provides
hundreds of picoseconds of temporal resolution compared with tens of picoseconds for
single-pixel SPAD detectors [15–19]. The depth resolution of SPAD decreases by two orders
of magnitude.

To improve the ranging resolution limited by the temporal quantization of the SPAD
array, dithered SPL (also called the range super-resolution measurement, subtractive dither)
is considered an efficient technique [20]. The main idea is its multiple measurements
with slightly phase-shifted and time-shifted illumination pulses. The sub-bin delay step
is smaller than the time bin of the detectors. The sub-bin delay divided by the time bin
is the up-sampling factor, which determines the number of measurements. At first, the
multiple delay measurements are obtained using different optical path lengths [20]. In this
case, the sub-bin delay step is more refined, but not flexible when implementing a series
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of delays. Then, the electronic delay implementation is adopted, which is more flexible
and widely used [21–24]. Henriksson et al. demonstrate a multiple delay measurement
with an up-sampling factor of 5× to improve the full width at half maximum (FWHM)
of the instrument response function (IRF) from 860 ps to 740 ps [13]. Raghuram et al.
subsequently propose a super-resolving transients by the oversampled measurements
(STORM) technique [14]. This technique obtains a 5× improvement in depth reconstruction
error with an up-sampling factor of 40×. Several IRF models are studied to obtain accurate
depth estimation from multiple delay measurements, such as the estimator based on a
generalized Gaussian (GG) approximation [23]. Next, the exponentially-modified Gaussian
(EMG) model is proposed to incorporate the exponential temporal decay common to
SPADs [24]. Dithered SPL has been demonstrated as an effective method to improve the
ranging resolution. Compared with previous indoor experiments, the research on the
subtractive dither technique at long ranges shows a larger practical value. However, there
are few photons reflected from the target in long-range imaging, which means that other
methods must be considered to enhance the efficiency of the signal photons.

The traditional strategy is to obtain a pixel-wise maximum likelihood estimation
(MLE) and then apply the image denoising algorithm. However, the conventional approach
is ineffective at low light levels and signal-to-noise ratio (SNR) [25]. Bayesian inference
methods also enable high reconstruction accuracy; however, precise prior distributions
and higher computational costs are required [26,27]. Consequently, most computational
imaging algorithms are proposed by exploiting the spatial correlations in real-world scenes.
Kirmani et al. demonstrate a first-photon imaging framework at 1.5 m, and the results
confirm the validity of their computational imaging method [28]. Then, Li et al. experi-
mentally demonstrate the 3D imaging at long-range SPL imaging at over 200 km [5,19].
Unlike previous scanning single-photon imaging, an array-specific algorithm based on the
similarity framework is developed and demonstrated at ranges of approximately 1 m [29].
In conclusion, computational imaging based on the regularized maximum-likelihood 3D
estimation significantly improves signal photon efficiency.

In this research, we develop a range super-resolution photon efficient method (RSPE)
at long range. Specifically, the multiple delay measurement is adopted to reduce the
quantizing error of SPL. However, it is vitally important to improve the efficiency of a
signal photon because of the requirement of massive signal photons from multiple delay
measurements, and the weak signal in long-range imaging. As a result, a regularized
maximum-likelihood 3D estimator effectively reduces the recovery error. Furthermore, we
demonstrate 3D imaging through our SPL system at different distances. The performance
of RSPE is compared with the performance of other methods by using the mean absolute
error (MAE). The results show that the recovery accuracy is improved using RSPE with
fewer signal photons.

2. Method
2.1. Data Processing Method

The depth resolution of SPL generally depends on its temporal quantization resolution.
Firstly, the subtractive dither is adopted to SPL to break through the depth resolution of a
SPAD array. The high-resolution depth estimate is obtained from a series of sub-bin delay
frames. Then, all responses are divided into smooth surface responses and outlier responses
based on the rank-ordered values of neighbors around the response. The outlier response
is substituted using the median of the rank-ordered values. Finally, the smooth surface
response is recovered using sparsity regularization. To summarize, the RSPE (illustrated in
Figure 1 consists of three steps: subtractive dither depth estimation, censoring of photon
data, and depth image restoration.
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Figure 1. Flowchart of RSPE for depth reconstruction.

2.1.1. Subtractive Dither Depth Estimation

Subtractive dither is primarily concerned with the quantization process of a signal’s
amplitude. If the signal is random, i.e., the distance of an unknown target. It results in
an inherent quantization error for d-ToF ranging. The dithering technique is based on the
concept of forcing the quantization error (conditional on a given input T) to be a zero-mean
random variable rather than a deterministic function of T, to reduce the impact of the
quantization error [14]. Following the measurement model of subtractive dither depth
estimation, the photon arrival time x is quantized by a time-to-digital-converter (TDC)
with a coarse temporal resolution [24]. Ambient light is negligible after spectral filtering
and effective denoise processing. The subtractive dithered measurement is equivalent in
distribution to

D = µX + T + W (1)

where T ∼ N (0, σt) is the additive Gaussian noise, and W ∼ U (−∆/2, ∆/2) is the uniform
noise from the subtractive dither. The subtractive dither signal is neglected considering
σt >> ∆. As the contribution of the uniform noise term and the Gaussian noise, the
subtractive dithered measurement D is

D = µX + V (2)

where V is the combination of noise terms. The generalized Gaussian distribution (GGD)
and the exponentially-modified Gaussian distribution (EMGD) are used to model the sum
of Gaussian and uniform noise terms [23,24]. Furthermore, Raghuram et al. have compared
various methods based on the mean, median, and other symmetric linear combinations of
order statistics to estimate mixed noise terms. As shown in Figure 2b, the photon counting
histogram with dithering obtains a finer resolution. Here, the Gaussian distribution is a
reasonable approximation to the dithered histogram rather than the Gamma distribution
and asymmetric generalized Gaussian distribution (AGGD), which is a generalization of
the GGD. The root mean squared error fitted with a Gaussian function decreases from
0.029 to 0.004 ns after a subtractive dither measurement. The photon counting histogram
approximates the Gaussian distribution.
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Figure 2. The photon counting histogram at the pixel of (40,40) without denoising and correction.
(a) without subtractive dither and (b) with subtractive dither.

When the time delay step is τ, the up-sampling factor is defined as ∆/τ. A complete
dithering measurement consists of a series of traditional measurements with discrete delay
steps di ∈ {0, τ, 2τ, . . . , ∆}. Although continuous delay steps are required in the established
model, a large enough set of delay steps can eliminate the effect of discrete delays [24]. The
mean is more suitable considering the computational cost and the dominance of Gaussian
noise. As a result, the target distance µ̂X(i, j) in the pixel (i, j) is estimated through the
pixel-wise estimation from dithered measurements dk(i, j), k = 1, 2, . . . , K as

µ̂X(i, j) =
1
K

K

∑
k=1

dk(i, j). (3)

2.1.2. Censoring of Photon Data

The subtractive-dithered depth estimation image is Xij ∈ Rn×n, where Xij is obtained
from the subtractive dithered depth estimation µ̂X(i, j) by Equation (3). In Section 2.1,
the suspected targets are captured as much as possible. Outliers are eliminated since the
smooth surface responses tend to cluster together. The median of the rank-ordered value
Xr

ij of 8 neighboring pixels for each pixel (i, j) is applied for censoring the smooth surface
responses [30]. The censored responses from the smooth surface are obtained by

Gij =
{
` :
∣∣∣X(`)

ij − Xr
ij

∣∣∣< ω, ` = 1, 2, . . . , kij

}
. (4)

The smooth surface responses Gij are utilized for restoration directly, while others are
replaced by the median of eight neighboring pixels for each pixel.

2.1.3. Depth Image Restoration

For the responses from the smooth surface, the 3D estimation for SPL is usually
described as an inverse deconvolution problem. Then, the sparsity regularization method
is employed because of the sparse prior for natural scenes [27]. Let Z, A ∈ Rn×n denote
the scene’s depth and reflectivity matrix. Aij is the pulse response rate at the pixel (i, j).
Due to the Gm-APD’s counting process, the photon-flux for the pixel (i, j) results from an
inhomogeneous Poisson process λij(x) = ηAijs(x− 2Zij/c) + Bij, where η is the detection
efficiency, c is the speed of light, and Bij ∈ Rn×n is the noise incident (e.g., ambient light,
dark counts) at the Gm-APD detector. Here, a Gaussian approximation is applied to the
IRF. The normalized laser pulse profile is s(x) = a exp(−(x− b)2/2c2) and

∫
s(x)dx = 1,

where the parameters are obtained from fitting the instrument response function. Assuming
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Bij = 0(i, j ∈ Gij) after the censoring of photon data, the detected photon arrivals time Xij
at pixel (i, j) has a probability mass function

f (Xij|Zij) =

∫ Xij
Xij−∆ s(x− 2Zij/c)dx

∑N
Xij ′=1

∫ Xij ′
Xij ′−∆ s(x− 2Zij/c)dx

, Xij = 1, 2, . . . , N. (5)

Through the left-Riemann sums to approximate the integrals, the negative log-likelihood
function can be expressed as [27]

LZ(Zij

∣∣∣Xij) = ‖Xij − 2Zij/c‖2
2. (6)

The depth image is reconstructed by minimizing a regularized optimization problem
with a total variance (TV) norm spatial smoothness constraint

Ẑ = argmin
Z

∑
`∈Gij

LZ(Z
∣∣∣X(`)

ij ) + β · ‖Z‖TV , s.t.Zij > 0. (7)

This problem has been solved efficiently using SPIRAL-TAP [31]. Hence, the recon-
structed depth image is achieved by the TV penalty. Finally, the results are compared with
the ground truth images formed by the reconstructed depth image using thousands of pho-
tons. The MAE are used to quantitatively evaluate the performance of the reconstruction
method, where the MAE are defined by

MAE =
1
n2 ∑n

i=1 ∑n
i=1

∣∣zij − ẑij
∣∣. (8)

2.2. Dithered Single-Photon Lidar Measurement Setup

The experimental SPL system is shown in Figure 3. The scene of interest is illuminated
by a pulsed laser and detected by a SPAD camera. The illumination source is a pulsed
laser at 1064 nm with a pulse width of 10 ns and a repetition frequency of 20 kHz. The
laser power is adjustable, and the maximum is 3.5 W. The detector is a 64 × 64 SPAD
detector (CETC GD5551) with a time jitter of 350 ps, a dark count rate of 8 kHz, and a
timing resolution of 2000 ps, which means the depth resolution is 0.3 m.
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Figure 3. (a) A photograph of our experimental dithered single-photon lidar. (b) The system diagram.

The transceiver system consists of a transmitting lens and a receiving optical system.
The receiver field-of-view of the Lidar system is 0.75◦, and the diameter of the receiver
aperture is 76 mm. A 5 nm narrowband bandpass filter (Transmittance >80% at 1064 nm)
and a low pass filter (Transmittance >91% at 550–1185 nm) are placed between the receiving
lens and the detector to reduce the influence of the ambient light incident. The detector has
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a response wavelength range from 900 nm to 1700 nm. The low pass filter is used because
the blocking wavelength range of the narrow bandpass filter is 1074 nm–1400 nm, which
cannot block light from 1400 nm to 1700 nm.

The external trigger mode is applied because of the requirement of subtractive dither
measurements. The single-photon camera operates in the traditional gating mode, synchro-
nizing with the laser. At this time, the laser and the detector are only functional after being
triggered by an external signal from the signal generator with a repetition rate of 20 kHz.
Once the trigger signal is received, the laser source emits a light pulse with a pulse FWHM
of 10 ns. Then, the laser beam is collimated through the transmitting optical system and
illuminates the object.

To implement the range super-resolution measurement, a Digital Delay/Pulse Genera-
tor (DDG, Stanford Research Systems DG535) is utilized as the external trigger of both the
laser source and the detector. High-precision digital delay control is obtained by adjusting
the DDG (with an accuracy of up to 5 ps) to achieve the sub-bin accuracy—however, the
normal Lidar proceeds without delay between the two channels. The times-of-flight of the
different delays were measured individually to avoid the effect of the response delay from
the trigger signal.

3. Results

The instrument response function is calibrated through a Gaussian approximation
of the photon-counting histogram with a calibration target (a flat PolyVinyl Chloride
board). Extraneous photon detections were suppressed by time-gating near the stand-off
distance, measured by a laser rangefinder. The range super-resolution Lidar incorporates
the delay between the laser and the detector with the delay step as 200 ps. Because the
time resolution of SPAD is 2000 ps, the up-sampling factor is calculated as 10×. A complete
dithering measurement consists of a series of traditional measurements with discrete delay
steps di ∈ {0, 200, 400, . . . , 2000} ps. The measurements are performed with and without
subtractive dither under the same conditions. Before the estimation, we reject the noise
photon based on photon TOF correlation for preprocessing. Specifically, the background
responses are eliminated when the response times exceed the laser pulse width [32]. The
parameter ω is used for censoring the noise signal and the parameter β weights the TV
penalty in the optimization. In our strategy, the ω is twice as large as the time bin to
simplify computations. The β is 0.3 through our parameter optimization tests. Finally, the
performance of RSPE is compared with the traditional pixel-wise maximum-likelihood
estimation and the regularized maximum-likelihood estimation, since they are the standard
depth estimation algorithms in the development stage [27,33].

A validation experiment is performed with an inclined board as a target at a stand-off
distance of about 88 m. The detected photons data are acquired with a laser power of
12 mW, and the SNR is 1.95. The imaging results, using hundreds of photons, are shown
in Figure 4 (independent of the effect of regularization or other denoising approaches).
Dithering improves the signal-to-noise ratio of the echo signal from 1.72 to 1.95 with
the same data acquisition time. Then, the mean and MLE reconstruction algorithms are
compared as follows. When the background noise weakens, MLE reduces to the log-
matched filter [30]. It can be calculated through the correlation between the echo signal
histogram and the calibration signal waveform, which is limited by the bin resolution of the
original signal. As shown in Figure 4b, the quantized depth estimators are apparent. The
dithered measurement achieves a sub-bin resolution because the dither signal is measured
in a finer resolution. When the signal pulse width is larger than the bin resolution, the mean
is also a method that can break through the bin resolution. Unfortunately, its performance
is not excellent, as shown in Figure 4e,f.
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Figure 4. The 3D imaging result of SPL acquired by illuminating an inclined planar target at a distance
of approximately 88 m. (a) The photograph of the target scene. (b) The reconstructed 3D image using
MLE without subtractive dither. (c) The reconstructed 3D image using MLE with subtractive dither.
(d) The ground truth image modeled by four vertices. (e) The reconstructed 3D image using the mean
without subtractive dither. (f) The reconstructed 3D image using the mean with subtractive dither.

It is difficult to obtain an actual depth image because of a lack of higher resolution
imaging systems, especially in long-range imaging. The method of simulating the ground
truth image with more signal photons is usually adopted to prevent a preference for the
ground truth images. As shown in Figure 4d, the ground truth image is modeled by four
vertices, and the MLE with subtractive dither has the greatest performance. Consequently,
the ground truth images of long-range targets have been calculated using MLE with
hundreds of signal photons.

Targets with distinctive features and different distances form the three imaging scenes.
As shown in Figure 5a, scene 1 is an inclined board at ~88 m, scene 2 has stepped surface
features at ~1.3 km, and scene 3 varies in depth along with spatial dimensional at ~1.8 km.
The detected photons data of scene 2 and scene 3 are acquired with a maximum power
of 2.5 W. The sampling factor remains at 10× in all the experiments. The reconstruction
images using the traditional method are shown in Figure 5b, and the imaging results with
RSPE are demonstrated in Figure 5c. The color bars on the right side show the distances
from the target to the detector, calculated from the ToF. Compared with the traditional
MLE method, the RSPE reduces the MAE by 8.3×, 5.3×, and 16.2× with ~6 ppp. The
improvement is more significant at long-range imaging and low SNR, and is related to the
surface features of the target.

Furthermore, the normalized photon count images formed from the sum of all delay
steps are shown in Figure 6, where the signal light level is lower than in the previous
image [24]. The signal photon count increases as the target reflectivity is more substantial.
The SNR is denoted as the number of detected signal pulses divided by the number of noise
pulses. The extraneous noise photon detections were suppressed by strictly time-gating
near the ground truth distance. Moreover, the longer distance of the target results in lower
SNR because of the weaker signal. A weak intensity at the edge of the receiving field of
view is due to the characteristics of the laser beam. For the three scenes, the SNRs are 1.95,
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0.91, and 0.48. The imaging results under different conditions for scene 3 are also compared,
as shown in Figure 7. Under the same signal light level, RSPE improves the MAE by one
order of magnitude, which means a shorter acquisition time for long-distance imaging. In
particular, the MAE is reduced from 1.60 m to 0.05 m using RSPE when the signal level is
95.26 ppp.
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(a) The reconstructed 3D image with the signal photons of 95.26 ppp, (b) The reconstructed 3D image
with the signal photons of 6.14 ppp, and (c) The reconstructed 3D image with the signal photons of
0.78 ppp.

The performance of the depth reconstruction is evaluated using five different methods.
Here, MLE refers to the traditional maximum likelihood estimation, which is a method
for reconstructing depth information by pixel-wise processing photon counting histogram,
similar to a matched filter [34]. The MAEs using different methods at a signal level of
~6 ppp are shown in Table 1. It is demonstrated below in Table 1 that RSPE outperforms
the other methods. RSPE improves the efficiency of signal photons for subtractive dither
imaging. The MAE for MLE and mean are equal when there are few signal photons.
Moreover, the subtractive dither only reduced the MAE by 4.0×, 5.2×, and 16.1× when
comparing the Regularized MLE (the fourth column) and RSPE (the sixth column). The
enhancement is more significant at low SNR.

Table 1. MAE performance of the depth estimates with different methods.

MAE (m)

without Subtractive Dither with Subtractive Dither

Scene MLE Mean TV Regularized MLE RSPE without TV RSPE

scene 1 0.33 0.35 0.16 0.21 0.04
scene 2 1.70 1.70 1.66 0.38 0.32
scene 3 3.40 3.40 3.39 0.26 0.21

4. Discussion

The ground truth image modeled by a mathematical method evaluates the ranging
accuracy due to the lack of high timing resolution SPAD. Then, the recovery accuracy is
analyzed with fewer signal photons. Compared with the higher recovery accuracy of ~mm,
the decimeter accuracy is used because of the limitations of our experimental SPL system
(e.g., system time jitter) [24]. A higher performance system will substantially improve
the recovery accuracy. The depth image restoration algorithm mainly exploits the sparse
prior information of natural images to improve the photon efficiency, which may bring
excessive smoothing for a target with complex features. The application of other prior
information further improves the depth recovery accuracy based on the RSPE. On the other
hand, the system time jitter generally influences the depth recovery accuracy, which could
be estimated from the IRF. However, the broader the IRF, the better the depth resolution, in
some cases. The long pulse width laser beam adopted in this work has been approved to
improve the depth recovery accuracy [29]. Dithered depth imaging with narrow pulses
(less than the bin resolution) still needs to be investigated. Issues with the prior information
and pulse width need to be discussed in the future to enhance the performance of dithered
SPL at long-distance imaging.
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5. Conclusions

We have described an SPL system operating at the wavelength of 1064 nm and demon-
strated an imaging framework called RSPE to obtain high depth accuracy. The high
depth resolution imaging at a distance up to 1.8 km is achieved by adopting a subtrac-
tive dither and penalized MLE. The RSPE is validated through indoor experiments. The
MAE is reduced to approximately 0.06 m, which is below the system ranging resolution of
0.3 m. In outdoor experiments, RSPE improves the depth reconstruction error by at least
5.3× compared with the traditional MLE. Increasing target distance brings depth uncer-
tainty due to few reflected signal photons. Nonetheless, our method recovers depth features
with higher precision through the same laser pulse response rate. The RSPE has overcome
the rough depth resolution limited by the SPAD array with few signal photons, which
paves the way to obtaining accurate depth reconstruction in long-range depth imaging.

Author Contributions: Conceptualization, J.C.; Formal analysis, J.C.; Funding acquisition, Y.W.;
Investigation, J.C.; Methodology, J.C.; Project administration, D.X. and J.Y.; Software, J.C.; Supervision,
J.L. and K.Z.; Validation, K.C. and S.L.; Writing—original draft, J.C.; Writing—review & editing, J.L.
and D.X. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number U1837202, 62175182, and 62011540006.

Data Availability Statement: Data available on request due to restrictions eg privacy or ethical.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Albota, M.; Gurjar, R.; Mangognia, A.; Dumanis, D.; Edwards, B. The Airborne Optical Systems Testbed (AOSTB). In Military

Sensing Symp; MIT Lincoln Laboratory Lexington United States: Lexington, MA, USA, 2017.
2. Clifton, W.E.; Steele, B.; Nelson, G.; Truscott, A.; Itzler, M.; Entwistle, M. Medium altitude airborne geiger-mode mapping lidar

system. In Laser Radar Technology and Applications XX; and Atmospheric Propagation XII; SPIE: Bellingham, WA, USA, 2015; p. 9465.
3. Rapp, J.; Tachella, J.; Altmann, Y.; McLaughlin, S.; Goyal, V.K. Advances in single-photon lidar for autonomous vehicles: Working

principles, challenges, and recent advances. IEEE Signal Process. Mag. 2020, 37, 62–71. [CrossRef]
4. Maccarone, A.; Acconcia, G.; Steinlehner, U.; Labanca, I.; Newborough, D.; Rech, I.; Buller, G. Custom-Technology Single-Photon

Avalanche Diode Linear Detector Array for Underwater Depth Imaging. Sensors 2021, 21, 4850. [CrossRef] [PubMed]
5. Li, Z.-P.; Ye, J.-T.; Huang, X.; Jiang, P.-Y.; Cao, Y.; Hong, Y.; Yu, C.; Zhang, J.; Zhang, Q.; Peng, C.-Z.; et al. Single-photon imaging

over 200 km. Optica 2021, 8, 344. [CrossRef]
6. Shen, G.; Zheng, T.; Li, Z.; Yang, L.; Wu, G. Self-gating single-photon time-of-flight depth imaging with multiple repetition rates.

Opt. Lasers Eng. 2021, 151, 106908. [CrossRef]
7. Shen, G.; Zheng, T.; Li, Z.; Wu, E.; Yang, L.; Tao, Y.; Wang, C.; Wu, G. High-speed airborne single-photon LiDAR with GHz-gated

single-photon detector at 1550 nm. Opt. Laser Technol. 2021, 141, 107109. [CrossRef]
8. Liu, D.; Sun, J.; Gao, S.; Ma, L.; Jiang, P.; Guo, S.; Zhou, X. Single-parameter estimation construction algorithm for Gm-APD ladar

imaging through fog. Opt. Commun. 2020, 482, 126558. [CrossRef]
9. Xu, W.; Zhen, S.; Xiong, H.; Zhao, B.; Liu, Z.; Zhang, Y.; Ke, Z.; Zhang, B. Design of 128× 32 GM-APD array ROIC with multi-echo

detection for single photon 3D LiDAR. Proc. SPIE 2021, 11763, 117634A.
10. Padmanabhan, P.; Zhang, C.; Cazzaniga, M.; Efe, B.; Ximenes, A.R.; Lee, M.-J.; Charbon, E. 7.4 A 256 × 128 3D-Stacked (45 nm)

SPAD FLASH LiDAR with 7-Level Coincidence Detection and Progressive Gating for 100 m Range and 10klux Background Light.
Proc. IEEE Int. Solid-State Circuits Conf. 2021, 64, 111–113.

11. Mizuno, T.; Ikeda, H.; Makino, K.; Tamura, Y.; Suzuki, Y.; Baba, T.; Adachi, S.; Hashi, T.; Mita, M.; Mimasu, Y.; et al. Geiger-mode
three-dimensional image sensor for eye-safe flash LIDAR. IEICE Electron. Express 2020, 17, 20200152. [CrossRef]

12. Jahromi, S.S.; Jansson, J.-P.; Keränen, P.; Avrutin, E.A.; Ryvkin, B.S.; Kostamovaara, J.T. Solid-state block-based pulsed laser
illuminator for single-photon avalanche diode detection-based time-of-flight 3D range imaging. Opt. Eng. 2021, 60, 054105.
[CrossRef]

13. Henriksson, M.; Allard, L.; Jonsson, P. Panoramic single-photon counting 3D lidar. Proc. SPIE 2018, 10796, 1079606.
14. Raghuram, A.; Pediredla, A.; Narasimhan, S.G.; Gkioulekas, I.; Veeraraghavan, A. STORM: Super-resolving Transients by

OveRsampled Measurements. Proc. IEEE Int. Conf. Comput. Photog. 2019, 44–54. [CrossRef]
15. Wu, J.; Qian, Z.; Zhao, Y.; Yu, X.; Zheng, L.; Sun, W. 64 × 64 GM-APD array-based readout integrated circuit for 3D imaging

applications. Sci. China Inf. Sci. 2019, 62, 62407. [CrossRef]
16. Tan, C.; Kong, W.; Huang, G.; Hou, J.; Jia, S.; Chen, T.; Shu, R. Design and Demonstration of a Novel Long-Range Photon-Counting

3D Imaging LiDAR with 32 × 32 Transceivers. Remote Sens. 2022, 14, 2851. [CrossRef]

http://doi.org/10.1109/MSP.2020.2983772
http://doi.org/10.3390/s21144850
http://www.ncbi.nlm.nih.gov/pubmed/34300590
http://doi.org/10.1364/OPTICA.408657
http://doi.org/10.1016/j.optlaseng.2021.106908
http://doi.org/10.1016/j.optlastec.2021.107109
http://doi.org/10.1016/j.optcom.2020.126558
http://doi.org/10.1587/elex.17.20200152
http://doi.org/10.1117/1.OE.60.5.054105
http://doi.org/10.1109/ICCPHOT.2019.8747334
http://doi.org/10.1007/s11432-018-9712-7
http://doi.org/10.3390/rs14122851


Remote Sens. 2022, 14, 5304 11 of 11

17. Yuan, P.; Sudharsanan, R.; Bai, X.; Boisvert, J.; McDonald, P.; Labios, E.; Morris, B.; Nicholson, J.P.; Stuart, G.M.; Danny, H.; et al.
Geiger-mode ladar cameras. Proc. SPIE 2011, 8037, 803712.

18. Pawlikowska, A.M.; Halimi, A.; Lamb, R.A.; Buller, G.S. Single-photon three-dimensional imaging at up to 10 kilometers range.
Opt. Express 2017, 25, 11919–11931. [CrossRef]

19. Li, Z.-P.; Huang, X.; Cao, Y.; Wang, B.; Li, Y.-H.; Jin, W.; Yu, C.; Zhang, J.; Zhang, Q.; Peng, C.-Z.; et al. Single-photon computational
3D imaging at 45 km. Photonics Res. 2020, 8, 1532. [CrossRef]

20. Chen, Z.; Fan, R.; Li, X.; Dong, Z.; Zhou, Z.; Ye, G.; Chen, D. Accuracy improvement of imaging lidar based on time-correlated
single-photon counting using three laser beams. Opt. Commun. 2018, 429, 175–179. [CrossRef]

21. Rapp, J.; Dawson, R.M.A.; Goyal, V.K. Dither-Enhanced Lidar. In Applications of Lasers for Sensing and Free Space Communications;
Optica Publishing Group: Hong Kong, China, 2018; p. JW4A-38.

22. Rapp, J.; Dawson, R.M.A.; Goyal, V.K. Improving Lidar Depth Resolution with Dither. Proc. IEEE Int. Conf. Image Process. 2018,
1553–1557. [CrossRef]

23. Rapp, J.; Dawson, R.M.A.; Goyal, V.K. Estimation From Quantized Gaussian Measurements: When and How to Use Dither. IEEE
Trans. Signal Process. 2019, 67, 3424–3438. [CrossRef]

24. Rapp, J.; Dawson, R.M.A.; Goyal, V.K. Dithered Depth Imaging. Opt. Express 2020, 28, 35143–35157. [CrossRef] [PubMed]
25. Yan, K.; Lifei, L.; Xuejie, D.; Tongyi, Z.; Dongjian, L.; Wei, Z. Photon-limited depth and reflectivity imaging with sparsity

regularization. Opt. Commun. 2017, 392, 25–30. [CrossRef]
26. Altmann, Y.; Ren, X.; McCarthy, A.; Buller, G.S.; McLaughlin, S. Lidar Waveform-Based Analysis of Depth Images Constructed

Using Sparse Single-Photon Data. IEEE Trans. Image Process. 2016, 25, 1935–1946. [CrossRef] [PubMed]
27. Tachella, J.; Altmann, Y.; Marquez, M.; Arguello-Fuentes, H.; Tourneret, J.-Y.; McLaughlin, S. Bayesian 3D Reconstruction of

Subsampled Multispectral Single-Photon Lidar Signals. IEEE Trans. Comput. Imaging 2019, 6, 208–220. [CrossRef]
28. Kirmani, A.; Venkatraman, D.; Shin, D.; Colaço, A.; Wong, F.N.C.; Shapiro, J.H.; Goyal, V.K. First-Photon Imaging. Science 2014,

343, 58–61. [CrossRef]
29. Shin, D.; Xu, F.; Venkatraman, D.; Lussana, R.; Villa, F.; Zappa, F.; Goyal, V.K.; Wong, F.N.C.; Shapiro, J.H. Photon-efficient

imaging with a single-photon camera. Nat. Commun. 2016, 7, 12046. [CrossRef]
30. Shin, D.; Shapiro, J.H.; Goyal, V.K. Single-Photon Depth Imaging Using a Union-of-Subspaces Model. IEEE Signal Process. Lett.

2015, 22, 2254–2258. [CrossRef]
31. Harmany, Z.T.; Marcia, R.F.; Willett, R.M. This is SPIRAL-TAP: Sparse Poisson Intensity Reconstruction ALgorithms—Theory and

Practice. IEEE Trans. Image Process. 2011, 21, 1084–1096. [CrossRef]
32. Huang, P.; He, W.; Gu, G.; Chen, Q. Depth imaging denoising of photon-counting lidar. Appl. Opt. 2019, 58, 4390–4394. [CrossRef]
33. Umasuthan, M.; Wallace, A.; Massa, J.; Buller, G.; Walker, A. Processing time-correlated single photon counting data to acquire

range images. IEE Proc. Vis. Image Signal Process. 1998, 145, 237–243. [CrossRef]
34. Kang, Y.; Li, L.; Li, D.; Liu, D.; Zhang, T.; Zhao, W. Performance analysis of different pixel-wise processing methods for depth

imaging with single photon detection data. J. Mod. Opt. 2019, 66, 976–985. [CrossRef]

http://doi.org/10.1364/OE.25.011919
http://doi.org/10.1364/PRJ.390091
http://doi.org/10.1016/j.optcom.2018.08.017
http://doi.org/10.1109/ICIP.2018.8451528
http://doi.org/10.1109/TSP.2019.2916046
http://doi.org/10.1364/OE.408800
http://www.ncbi.nlm.nih.gov/pubmed/33182966
http://doi.org/10.1016/j.optcom.2017.01.032
http://doi.org/10.1109/TIP.2016.2526784
http://www.ncbi.nlm.nih.gov/pubmed/26886984
http://doi.org/10.1109/TCI.2019.2945204
http://doi.org/10.1126/science.1246775
http://doi.org/10.1038/ncomms12046
http://doi.org/10.1109/LSP.2015.2475274
http://doi.org/10.1109/TIP.2011.2168410
http://doi.org/10.1364/AO.58.004390
http://doi.org/10.1049/ip-vis:19982152
http://doi.org/10.1080/09500340.2019.1596322

	Introduction 
	Method 
	Data Processing Method 
	Subtractive Dither Depth Estimation 
	Censoring of Photon Data 
	Depth Image Restoration 

	Dithered Single-Photon Lidar Measurement Setup 

	Results 
	Discussion 
	Conclusions 
	References

