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Abstract: With the continuous development of earth observation technology, space-based synthetic
aperture radar (SAR) has become an important source of information for maritime surveillance, and
ship classification in SAR images has also become a hot research direction in the field of maritime
ship monitoring. In recent years, the remote sensing community has proposed several solutions to
the problem of ship object classification in SAR images. However, it is difficult to obtain an adequate
amount of labeled SAR samples for training classifiers, which limits the application of machine
learning, particularly deep learning methods, in SAR image ship object classification. In contrast,
as a real-time automatic tracking system for monitoring ships at sea, a ship automatic identification
system (AIS) can provide a large amount of relatively easy-to-obtain labeled ship samples. Therefore,
to solve the problem of SAR image ship classification and improve the classification performance of
learning models with limited samples, we proposed a SAR image ship classification method based on
multiple classifiers ensemble learning (MCEL) and AIS data transfer learning. The core idea of our
method is to transfer the MCEL model trained on AIS data to SAR image ship classification, which
mainly includes three steps: first, we use the acquired global space-based AIS data to build a dataset
for ship object classification models training; then, the ensemble learning model is constructed by
combining multiple base classifiers; and finally, the trained classification model is transferred to SAR
images for ship type prediction. Experiments show that the proposed method achieves a classification
accuracy of 85.00% for the SAR ship classification, which is better than the performance of each base
classifier. This proves that AIS data transfer learning can effectively solve the problem of SAR ship
classification with limited samples, and has important application value in maritime surveillance.

Keywords: synthetic aperture radar (SAR); automatic identification system (AIS); ship classification;
ensemble learning; transfer learning

1. Introduction

With the continuous development of remote sensing technology, space-based synthetic
aperture radar (SAR) images have become an important source of information for maritime
surveillance. The space-based SAR system uses electromagnetic waves to generate remote
sensing images; therefore, it can eliminate the influence of complex weather and working
time limits and has the characteristics of wide detection coverage. At present, SAR has
been widely used in maritime ship monitoring and environment management, such as
ship classification and recognition, maritime traffic control, oil spill detection, and sea ice
classification [1–6]. In recent years, with the development and application of high-resolution
SAR satellites such as the Gaofen-3, Sentinel-1A/B, and TerraSAR-X satellites, SAR images
with richer object features can be obtained, which greatly promotes the application of SAR
image ship classification in maritime surveillance.

As a key technology in maritime surveillance, SAR image ship classification has always
been a hot and open issue in the field of remote sensing research. Therefore, for the classifi-
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cation of ship objects in SAR images, the remote sensing community has proposed many
solutions, which are mainly divided into two categories: traditional classification methods
based on manual feature extraction, and classification methods based on deep learning.
Among them, the traditional SAR image ship classification methods have mainly been
studied from two aspects: feature selection and classifier design. For example, Xing et al. [7]
proposed to construct a sparse representation dictionary with the ship geometric features
and electromagnetic scattering characteristics and used the sparse representation classifica-
tion (SRC) method to classify ships in TerraSAR-X SAR images. Lang et al. [8] proposed a
joint feature and classifier selection method to improve the performance of ship classifica-
tion in SAR images by integrating the classifier selection strategy into the wrapper feature
selection framework. Xu et al. [9] proposed a distribution shift metric learning (DML-ds)
method by adding an inter-class distribution shift (ICDS) regularization term to distinguish
the distribution differences between different subordinate-level categories, which improved
inter-class separability and compactness, enabling performance for fine-grained ship object
classification in SAR images. Wang et al. [10] proposed a hierarchical ship object classifier
for COSMO-SkyMed SAR data based on the geometric and backscattering characteristics
of ships, which realized classification for bulk carriers, container ships, and oil tankers.
Ji et al. [11] proposed a ship classification method based on classifier combination and
adopted the SVM combination strategy to realize the classification of container ships, oil
tankers, and bulk carriers in TerraSAR-X SAR images. Margarit et al. [12] proposed a ship
classification method for single-pol SAR images based on fuzzy logic (FL), which combined
ship geometric features and radar cross-section (RCS) values. Zhang et al. [13] proposed a
ship classification method based on scattering component analysis for COSMO-SkyMed
SAR images by analyzing the scattering components of the superstructure of different ship
types. Wu et al. [14] proposed a new ship classification model BDA-KELM by combin-
ing two key elements of traditional ship classification methods, i.e., feature selection and
classifier design. This method combined the kernel extreme learning machine (KELM)
and the dragonfly algorithm in binary space (BDA) for automatic feature selection and
searching for the optimal parameter set of the classifier, and has been effectively verified in
TerraSAR-X SAR images. Lang et al. [15] proposed naive geometric features (NGFs) for
ship classification and adopted the multiple kernel learning (MKL) method to learn the
combined weights of different features to improve the ship classification capabilities of
medium-resolution SAR images. Leng et al. [16] proposed a new feature named “Comb”
for high-resolution SAR image ship classification based on the analysis of ship object radar
cross-section (RCS) statistics data related to ship structure. Jiang et al. [17] proposed a ship
classification method for SAR images based on the ship superstructure scattering features.
This method used the proposed ratio of dimensions (Rod) to describe ship structure in
SAR images and classified bulk carriers, container ships, and oil tankers by constructing
feature parameter vectors. It can be seen that there are many SAR image ship classification
methods combined with traditional manual feature extraction. However, most of these SAR
image ship classification methods use a single classifier. As an active sensor, SAR is almost
free from all-weather conditions [18]. Owing to the unique imaging mode and complex
electromagnetic wave scattering process of SAR [19], the image contains a large amount
of object and non-object information and their complex features; thus, a single classifier
trained with the manually extracted shallow features cannot accurately and effectively
express the content in images, and the robustness and generalization performance of single
classification method are relatively poor. Moreover, in addition to geometric features, these
methods often extract electromagnetic scattering characteristics, which affects the efficiency
of maritime ship monitoring to a certain extent.

In recent years, with the rise of data-driven deep learning technology, many researchers
have attempted to develop SAR image ship classification algorithms based on convolutional
neural networks (CNNs). Compared with traditional manual feature extraction methods,
CNNs can automatically learn more nonlinear hierarchical deep features directly from a
large number of training samples, which injects powerful vitality into the SAR image ship
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classification. He et al. [20] proposed a densely connected triplet CNN framework based
on advanced densely connected convolutional networks (DenseNets), and combined the
Fisher discrimination regularization term and deep metric learning for ship classification in
medium-resolution SAR images. Lu et al. [21] applied CNNs to SAR ship classification and
adopted data augmentation and transfer learning methods to solve the model overfitting
problem that frequently occurs in training on small datasets. Zhang et al. [22] proposed
a polarization fusion network with geometric feature embedding (PFGFE-Net) for SAR
image ship classification by combining dual-polarization features and geometric features.
The PFGFE-Net can effectively solve the problems of insufficient polarization utilization
and traditional feature abandonment. Sharifzadeh et al. [23] proposed a neural network
model based on the hybrid of CNN and multi-layer perceptron (CNN-MLP) for image clas-
sification, which improved the accuracy of SAR image ship classification. Dong et al. [24]
proposed a ship classification framework for high-resolution SAR images based on a deep
residual network (ResNet) and trained the model with three different fine-tuning strategies
to achieve fine-grained ship classification. Bentes et al. [25] proposed a full workflow for
SAR image maritime object detection and classification on TerraSAR-X high-resolution
images and used CNN to classify five maritime classes. Xu et al. [26] proposed a SAR ship
classification method based on a multi-scale convolutional neural network (MS-CNN), and
employed the multi-scale feature fusion to enhance the feature expression ability through
three steps, namely flattening, integrating, and classifying. Wu et al. [27] proposed a joint
convolutional neural network framework for small-scale ship objects classification in SAR
images by combining a generator and a classifier. Specifically, the generator was used
to reconstruct small-scale low-resolution images to large-scale super-resolution images
and the classifier was used for SAR image ship classification. Zeng et al. [28] proposed
a CNN method based on a hybrid channel feature loss function for dual-polarized SAR
image ship classification that can further classify ships into eight accurate categories by
utilizing the polarization characteristics of different channels. Huang et al. [29] proposed a
group squeeze excitation sparsely connected convolutional networks (GSESCNNs) for SAR
image object classification by combining sparsely connected convolutional networks and
group squeeze excitation module, and proved the effectiveness of this method by using
moving and stationary target acquisition and recognition (MSTAR) SAR images. Although
CNNs can effectively avoid the tedious manual feature extraction process, they require
the use of massive samples to automatically learn the characteristics of different types
of ships. In practical applications, it is relatively difficult to build a ship object dataset
of SAR images. In addition, to obtain better classification performance, a more complex
deep convolution neural network model is usually needed, which requires more time and
computational power.

In contrast, the automatic identification system (AIS) can provide a large number of
relatively easy-to-obtain labeled ship samples, which provides an effective solution for
SAR ship object classification research with limited samples. AIS is a real-time tracking
and self-reporting system for ships sailing around the world that can identify and locate
maritime ships through communications between nearby ships, and space-based and
shore-based stations. AIS adopts open broadcast technology; therefore, it can periodically
broadcast rich ship information, including static information (such as ship identity, size,
and type), dynamic information (such as ship position, speed, and heading), and voyage-
related information (such as ship draught and destination), allowing us to classify ships
in detail. Since 2002, the International Maritime Organization (IMO) has mandated that
international navigation ships with 300 gross tonnage and upwards and all passenger ships
must be equipped with AIS equipment; especially with the development and application
of space-based AIS technology, the spatial-temporal data we obtained for ships has grown
rapidly. AIS plays an important role in maritime surveillance and has been widely used for
ship identification and tracking, ship collision avoidance, anomaly detection, marine traffic
control, and trade analysis [30–34]. At present, some studies have attempted to transfer
AIS data to SAR image ship classification. For example, Snapir et al. [35] used AIS data to
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train a random forest classifier and then transferred the trained model to SAR images for
classifying fishing and non-fishing ships. Lang et al. [36] proposed an improved multi-class
adaptive support vector machine (A-SVM) method, which significantly improved the
classification performance of traditional methods through transfer learning between the
AIS data and SAR image. Rodger et al. [37] used the transfer learning method to apply
AIS data to ship classification in SAR images and proposed a classification-aided data
association technique to improve the accuracy of SAR and AIS data association in dense
shipping environments. It can be seen that there are relatively few studies on applying
AIS data to SAR image ship classification, and the classification performance still needs
to be improved. In addition, the remote sensing community also applies AIS data to
other research activities in the SAR field, such as the development and verification of SAR
image ship object detection and recognition algorithms, construction of SAR image open
benchmark datasets, and synthesis of the AIS data and SAR images for maritime ship
monitoring and control [38–41].

Through the above analysis, we can find that most existing SAR image ship classifi-
cation and recognition methods use a single classifier, which does not fully consider the
learning ability of different classifiers for ship features. However, in the SAR ship classifi-
cation task, a single classifier cannot fully distinguish the differences between the sample
attributes, resulting in a poor generalization of the model. In addition, ship classification
in SAR images based on deep learning methods requires a large number of samples for
training models. Therefore, to solve the problem of ship classification in SAR images with
limited samples, we proposed a method of ship classification in space-based SAR images
based on multiple classifiers ensemble learning and AIS data transfer learning, which is
used to classify four types of ships at sea: cargo ships, tanker ships, fishing ships, and
passenger ships. Experimental results show that the classification performance of our
method is better than those of various base classifiers, which proves the feasibility and
effectiveness of the method in improving the classification performance of SAR ships. The
main contributions of this paper are as follows:

(i) Considering the differences in the learning ability of different classifiers, this paper
proposed an ensemble learning method that combines the classification probability
strategy and successfully applies it to AIS data-aided SAR image ship classification.
Our method realizes ship classification in SAR images with limited samples by using
ensemble learning and AIS data transfer learning, which has good application value
in maritime surveillance;

(ii) In this paper, we transferred the ensemble learning model trained on AIS data to
SAR images for ship classification. Therefore, comprehensive feature engineering was
performed on the space-based AIS data and the influence of different ship geometric
features on the model was studied. The superiority of the feature extraction method in
this paper was verified through various benchmark tests, which provided a guarantee
for a more accurate SAR ship classification;

(iii) We conducted a detailed analysis of the received space-based AIS data and adopted
the interquartile range (IQR) and SMOTE methods to solve the problem of outliers
and class imbalance in AIS data to provide high quality samples for model training.
These preprocessing methods could improve the classification performance of the
ensemble learning model.

The remainder of this paper is organized as follows. Section 2 describes the proposed
method, including the AIS data preprocessing, ship feature extraction, and the detailed
implementation of our method. Section 3 presents experimental results and provides a
comprehensive comparison with other classification methods. Finally, Section 4 concludes
the paper and introduces future work.

2. Materials and Methods

This section describes the overall framework of our method for transferring AIS
data to SAR images for high-accuracy ship type prediction, as shown in Figure 1. The
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implementation process of the proposed method mainly includes three steps. First, the AIS
data is preprocessed, including data cleaning and denoising, outliers removal, and class
imbalance processing, and then ship feature extraction is performed on the preprocessed
AIS data to build the AIS dataset. Second, a random forest (RF) algorithm is adopted as
the ensemble classifier, and four base classifiers (i.e., KNN, SVM, MLP, and XGBoost) are
combined by the learning strategy to construct the multiple classifiers ensemble learning
(MCEL) model, and then the classification model is trained and tested. In this step, the
MCEL model trained on the AIS dataset is transferred to SAR image ship classification. The
detailed process of this step is shown in Section 2.3. Finally, the geometric features of ship
objects in SAR images are extracted and calculated, and the extracted features are input into
the trained MCEL model for ship type prediction to obtain the final classification result.
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2.1. AIS Data Preprocessing and Feature Extraction
2.1.1. AIS Data Preprocessing

The AIS data used in this paper to perform research on the SAR image ship classifica-
tion method are received by the HaiYang-1C (HY-1C) and HaiYang-2B (HY-2B) satellites.
Both satellites are equipped with high-sensitivity AIS receivers that can track and report
global sailing ships. Figure 2 shows a chart drawn using part of the AIS data received by
the HY-1C satellite.

AIS data contains rich ship information, such as ship identity, ship size, ship category,
and ship position. In practical applications, AIS messages can be manually input, and
there is a problem of missing transmission and receiving, which may lead to format errors,
missing fields, data duplication, and other problems in the decoded space-based AIS data.
Therefore, data cleaning and denoising are required. In this paper, data preprocessing
mainly includes deleting the noise data in AIS messages that do not conform to the data
format specification and omit important information. In addition, only one piece of du-
plicate data with the same maritime mobile service identity (MMSI) code was reserved.
Through data preprocessing, reliable AIS data can be obtained for ship classification model
training and testing.
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Figure 2. The chart drawn using part of the AIS data received by the HY-1C satellite.

2.1.2. AIS Data Ship Feature Extraction

The purpose of this paper is to transfer AIS data to SAR images for ship object
classification research, so that the ship features extracted from AIS data can be extracted
from SAR images. AIS data contains 27 types of messages, covering static information,
dynamic information, and voyage-related information of ships sailing around the world.
Among them, only some attribute fields in the messages obtained by AIS receivers are
useful for SAR ship classification, specifically ship type and the attribute fields A, B, C, and
D, reflecting the overall size of ships, which are the distances from the reference point O
used to report the position of the ship to the bow, stern, port, and starboard, respectively,
as shown in Figure 3. In other words, the length and width of ships contained in the AIS
data in this paper are two basic features that can be transferred.
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According to the ship size structure shown in Figure 3, the Length (f 1) and Width (f 2)
of the ship in the AIS data are as follows:{

Length [ f1] = A + B
Width [ f2] = C + D

(1)

Based on the ship Length and Width features, we extracted two types of commonly
used geometric features by feature engineering: the strictly defined geometric features
(SGFs) [7,36,42] and the naive geometric features (NGFs) [15,22,36]. In addition to the
Length and Width, SGFs also include the Perimeter (f 3), Area (f 4), Aspect Ratio (f 5 and f 6), and
Shape Complex (f 7), which can be calculated using Equation (2):
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Perimeter [ f3] = 2× (Length + Width)
Area [ f4] = Length×Width
Aspect Ratio (1) [ f5] = Length/Width
Aspect Ratio (2) [ f6] = Width/Length
Shape Complex [ f7] = (Length + Width)2/(Length×Width)

(2)

Compared to SGFs, NGFs contain a wider range of geometric feature elements. Re-
search results have shown that NGFs can ensure satisfactory classification performance
while reducing the complexity of image processing [22,36]. Inspired by this, we expand
the SGFs, that is, the extracted NGFs include not only features f 1–f 7, but also f 8–f 16 given
by Equation (3) and other features, which focus on different aspects of ship characteristics.
The relevant definitions of the extracted features f 8–f 16 are shown in Equation (3).

f8 = Length−Width
f9 = Length/(Length + Width)
f10 = Width/(Length + Width)
f11 = (Length−Width)/(Length + Width)
f12 = (Length−Width)× (Length + Width)
f13 = Length2/

(
Length2 + Width2)

f14 = Width2/
(

Length2 + Width2)
f15 = (Length×Width)/

(
Length2 + Width2)

f16 = (Length2 −Width2)/
(

Length2 + Width2)
(3)

The message5 in AIS data is used to report the static and voyage-related information of
ships, which contains the detailed ship types. We selected four main types of ships sailing
at sea as the research objects: cargo ships, tanker ships, fishing ships, and passenger ships.
Finally, the data format of the i-th ship in the AIS dataset can be obtained by combining the
ship type, as shown in Equation (4).

Si = [ f i
1, f i

2, f i
3, . . . , f i

16, Typei]
T

(4)

2.1.3. AIS Dataset Built

The static information in the obtained space-based AIS data can be manually input;
therefore, there are some unreasonable anomalous data in the sample set. To ensure the
reliability of the sample data used for training the classification model, we adopted the
interquartile range (IQR) method to remove outliers, which is robust to anomalous data
identification. The specific implementation process is as follows: first, the upper quartile
Qu, the lower quartile Ql, and the interquartile range IQR (the difference between Qu
and Ql, i.e., IQR = Qu − Ql) of the AIS data samples are obtained; then, the data with
the characteristic values outside [Ql − 3IQR, Qu + 3IQR] in the AIS data are regarded as
anomalous values, and the corresponding ship information entries are deleted. This paper
takes the SGFs as an example and draws boxplots before and after removing outliers in
AIS data. Figure 4a,b show the data distribution of passenger ship samples before and after
removing outliers, respectively. Figure 4c,d show the data distribution of the four types
of ships (cargo ships, tanker ships, fishing ships, and passenger ships) before and after
removing outliers.

In addition, due to the imbalanced distribution of various types of ships in AIS data,
most classifier models assume that the samples are balanced, which causes classifiers to
ignore ship types with small sample sizes. Therefore, to overcome the adverse effect of
class imbalance on training classifiers, we adopted the Synthetic Minority Over-sampling
TEchnique (SMOTE) [43] method to reduce the prediction deviation of ship type caused by
class imbalance. The core idea of the SMOTE is to synthesize new minority class samples
by interpolating existing samples. The main flow of the algorithm is as follows:

(i) First, for a minority class with T samples in the training set, calculate the k nearest
neighbors xi(near) of sample xi in the class, where i ∈ {1, 2, . . . , T}, near ∈ {1 , 2, . . . , k};
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(ii) Then, a sample xi(nn) is randomly selected from its k nearest neighbors and a ran-
dom value λ(λ ∈ [0, 1]) is generated to create a new synthetic sample according to
Equation (5):

x̂i = xi + λ ·
(

xi(nn) − xi

)
(5)

(iii) Finally, step (ii) is repeated N times to synthesize N new samples xi(new), where
new ∈ {1, 2, . . . , N}.
Therefore, NT samples can be synthesized for all T samples of the minority class in the

training set by performing the above operations. The pseudocode for the implementation
of SMOTE can be found in [43].

Through the preprocessing steps in this section, the AIS dataset DAIS finally built in
this paper can be expressed as:

DAIS =
{

S1, S2, . . . , Sn
}

(6)
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(c) distribution of original AIS data ship SGFs; and (d) distribution of AIS data ship SGFs after
removing outliers.
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2.2. SAR Image Ship Feature Extraction

Space-based SAR is an active microwave imaging system that is not limited by the
weather and time. However, owing to the interference of sea clutter and the influence of ship
motion, SAR images will be blurred in the azimuth and range directions during imaging,
resulting in “drag” and “cross” phenomena at the edge of the ship’s main area. Therefore,
it is more difficult to extract the geometric features of SAR ships under such imaging
characteristics, which makes it difficult for us to obtain the true contour of a ship, and
greatly affects the classification and recognition performance of ship objects. Researchers
usually use the minimum bounding rectangle (MBR) around a ship to solve the problem of
geometric feature extraction of ship objects in SAR images. Therefore, to accurately extract
the MBR of ships in SAR images, this paper adopted a method for extracting the MBR of
ships that combines the Radon transform and mathematical morphology calculation. The
main process is as follows:

(i) Radon transform was performed on the original SAR image (as shown in Figure 5a) to
obtain the rotation angle of the ship object area and the main axis direction (as shown
in Figure 5b);

(ii) The mathematical morphology calculations were performed on the radon transformed
SAR images to perform operations such as edge “burr” removal and regional fracture
filling on the ships (as shown in Figure 5c);

(iii) This paper extracted the MBR of ship objects from the processed SAR images (see
Figure 5c) and calculated the true length and width of ship objects according to the
length and width of the MBR. Experimental results show that this method can simply
and effectively extract the geometric features of ship objects in SAR images and ensure
reliable classification accuracy.
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Finally, we extract the geometric feature elements of ships in SAR images according
to Equations (2) and (3) in Section 2.1, where the format of the m-th SAR ship sample is
shown in Equation (7):

Sm
SAR = [ f m

SAR1, f m
SAR2, f m

SAR3, . . . , f m
SAR16, Typem

SAR]
T (7)

Figure 6a,b show the length and width distributions of the various types of ships
in the AIS data and SAR images, respectively. It can be seen that the AIS data have a
similar ship feature distribution to SAR data, so it is reasonable to transfer AIS data to SAR
image ship classification, which provides an effective way to solve the problem of SAR ship
classification with limited samples.
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As can be seen from Figure 6, passenger ships and fishing ships are mostly small-
and medium-sized ships, while cargo ships and tanker ships are much larger. In addition,
passenger ships and fishing ships, cargo ships and tanker ships are highly similar in terms
of length and width. Therefore, to accurately predict ship types, this paper conducts
comprehensive feature engineering in Section 2.1.2 to extract new distinguishing features.
The experimental results show that the features extracted in this paper can better distinguish
various types of ships and effectively improve the classification performance of ship objects.

2.3. Multiple Classifiers Ensemble Learning Model Construction

Owing to the differences in feature learning between different classifiers, this paper
proposed a multiple classifiers ensemble learning model to improve the prediction accuracy
of ship objects in SAR images. Multiple classifiers ensemble learning is used to construct
and combine multiple base classifiers to complete the learning task. The MCEL model can
compensate for the shortcomings of each classifier through the advantages of other classi-
fiers to improve the final performance of object classification under uncertain conditions
and can obtain better results than a single classifier. The overall framework of the MCEL
model constructed in this paper is shown in Figure 7. The specific implementation process
is as follows. First, we studied and implemented four types of base classifiers, namely KNN,
SVM, MLP, and XGBoost, and trained and test each model. Then, we designed an ensemble
learning strategy based on the random forest algorithm, which combines the outputs of
the base classifiers and feeds them into the ensemble classifier RF for training. Finally, the
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MCEL model was evaluated. The experimental results show that our method can achieve
better performance than a single classifier and improve the classification accuracy of SAR
ship objects.
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In this paper, we chose classic machine learning methods KNN, SVM, MLP, and
XGBoost as the base classifiers [23,44–46]. These methods are the most commonly used and
effective supervised learning algorithms, and have been widely used in object classification
tasks. Among them, KNN measures the distance between the unknown samples (test
samples) and known samples (training samples), and the mechanism of it is simple and easy
to implement. This paper selected the Euclidean distance to calculate the distance between
two feature vectors and used the KD-tree algorithm to optimize the calculation for the KNN
model. The SVM method can reduce the sample error and maximize the generalization
ability of the model using the structured risk minimization principle. SVM has many unique
advantages in solving nonlinear and high-dimensional pattern recognition problems and
can ensure better classification performance with limited samples. MLP is a classical
forward structure artificial neural network that can solve linear inseparable problems
that cannot be solved by a single-layer perceptron. An MLP consists of an input layer,
an output layer, and one or more hidden layers, and each layer is connected by weight
vectors. We used the ReLU activation function in each hidden layer and the Softmax
function as the output function in the output layer of the MLP to support multi-class
ship classification. XGBoost algorithm is a scalable end-to-end tree boosting system. Its
scalability in all scenarios makes it widely used in many machine learning and data mining
applications. In addition, XGBoost has the advantages of fast learning speed and high
computational efficiency, and can ensure better classification accuracy. It can be seen that
these methods have their characteristics and solve the problem of object classification from
different perspectives, so these models are selected as the base classifiers. The parameter
optimization of each classifier was performed by the grid search method to ensure that the
best performance classification model could be obtained.

After completing the design of the four base classifiers, this paper adopted random
forest [47] as the ensemble classifier. RF is an ensemble learning algorithm that completes
learning tasks by constructing and combining multiple decision trees. Random forest
introduces random feature selection in the training process of decision trees and trains
multiple decision trees from the perspective of sample dimensions and feature dimensions,
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which can significantly reduce the overfitting risk of the model. The training and testing
process of the random forest is simple and fast, and it has the advantages of processing
high-dimensional data and strong generalization ability; therefore, we choose it as the
ensemble classifier for the research of AIS data-aided SAR image ship classification.

When the construction of the base classifiers and ensemble classifier is completed,
the overall process of training the MCEL model in this paper is shown in Figure 7, which
mainly includes the following steps:

(i) First, the dataset D is randomly divided into D1 and D2, and the data set D1 is used
to train and test the four base classifiers, namely KNN, SVM, MLP, and XGBoost, to
generate the learning models with the best performance;

(ii) Then, the dataset D2 is input into the trained base classifiers, and the predicted value
P (the probability that the sample belongs to each class, a vector of 4 × 1) of the base
classifiers is combined with the ship type of D2 to form a new dataset Dnew. The
format of the j-th sample in Dnew is given by Equation (8).

Sj
new = [P1j, P2j, P3j, P4j, Typej]

T
(8)

where, Pij is the prediction result (probability value) of the i-th base classifier (KNN, SVM,
MLP, and XGBoost) on sample j;

(iii) Finally, Dnew is used to train the ensemble learning model, and the trained MCEL
model is transferred to the SAR image test dataset for ship object classification. Exper-
imental results show that our method can improve the performance of SAR image
ship classification.

The pseudocode of the MECL algorithm flow is shown in Algorithm 1.

Algorithm 1. Pseudocode for the MCEL Algorithm

Input: training dataset D1 = {(x11, y11), (x12, y12), . . . ,(x1m, y1m)},
D2 = {(x21, y21), (x22, y22), . . . ,(x1m, y1m)},

Base classifier algorithms: L1 = KNN, L2 = SVM, L3 = MLP, L4 = XGBoost;
Ensemble classifier algorithm: L = RF.

Process:
1: for i = 1, 2, 3, 4 do
2: hi = Li (D1);
3: end for
4: Dnew = Ø;
5: for j = 1,2, . . . ,n do
6: for i = 1, 2, 3, 4 do
7: Pij = hi(x2j);
8: end for
9: Dnew = Dnew∪((P1j, P2j, P3j, P4j), y2j);
10: end for
11: h = L(Dnew);
Output: H(x) = h(h1(x), h2(x), h3(x), h4(x))

3. Experimental Results and Analysis
3.1. Datasets and Experimental Settings

AIS dataset. In this paper, the space-based AIS data received by the HY-1C and HY-2B
satellites were preprocessed and ship features extracted, and 8000 samples, including four
types of ships (cargo ships, tanker ships, fishing ships, and passenger ships), were selected
to build the AIS dataset DAIS, in which the sample sizes of various ships are equivalent. We
selected 100 samples of each type of ship for testing and the rest for classification model
training.

SAR dataset. The SAR image dataset DSAR used in this paper consists of two parts:
one part is the high-resolution SAR ship dataset built by us called HRSAR-Ship, and the
other part comes from the FUSAR-Ship dataset [40]. Among them, the HRSAR-Ship dataset
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comes from high-resolution images received by the Gaofen-3 (GF-3) satellite. The GF-3
satellite is China’s first civil C-band high-resolution quad-polarization SAR satellite, and the
nominal highest resolution of the images is up to 1 m. The GF-3 satellite has 12 observation
modes. The spatial resolution is 1–500 m and the coverage width is 10–650 km in different
application modes. It can realize the general and fine-grained investigation of an object
and has been widely used in maritime surveillance. The imaging mode of the GF-3 satellite
mainly includes the sliding spotlight (SL), ultrafine strip-map (UFS), fine strip-map 1 (FSI),
and fine strip-map 2 (FSII), with corresponding resolutions of 1 m, 3 m, 5 m, and 10 m,
respectively. In this paper, 100 images taken in the SL and UFS imaging modes of the
GF-3 satellite were acquired and processed, and the size ranges of the high-resolution
HRSAR-Ship dataset samples are 512 × 512, 256 × 256, and 128 × 128.

The high-resolution FUSAR-Ship dataset was built from 126 GF-3 satellite images
with the UFS imaging mode and covered various ports, coasts, rivers, islands, and offshore
scenes. The FUSAR-Ship dataset contains maritime target chips of many categories, includ-
ing 15 main ship categories, 98 ship sub-categories, and many non-ship objects, which are
suitable for vessel detection and classification on complex sea surfaces. In our experiment,
by screening and processing the HRSAR-Ship and FUSAR-Ship datasets, 400 sample chips
of four types of ships were obtained to build the SAR dataset DSAR, of which 200 were
used for testing, and the rest were used for classification model training together with
AIS dataset. Figure 8 shows ship samples of the DSAR dataset. All experiments were
programmed in a python3.8 environment under Windows 10.
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3.2. Evaluation Metrics

After completing the training of the MCEL model, it is important to choose appropriate
performance evaluation metrics for machine learning methods. The most commonly used
method to evaluate the performance of ship object classifiers is to adopt a confusion matrix
for analysis, as shown in Table 1. The confusion matrix is also known as the error matrix,
which can reflect the relevant information between the classification results and ground
truth categories and is the basis for analyzing various evaluation metrics. In this paper, we
selected the four most commonly used metrics to quantitatively evaluate the performance
of our SAR image ship classification algorithm, including the Accuracy, Precision, Recall,
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and F1-Score. Based on the confusion matrix given in Table 1, the evaluation metrics are
given by Equation (9).

Accuracy = TP+TN
TP+FN+FP+TN

Precison = TP
TP+FP

Recall = TP
TP+FN

F1 − Score = 2×Recall×Precision
Recall+Precision

(9)

where, TP, TN, FP, and FN are the number of true positive, true negative, false positive,
and false negative ship objects, respectively.

Table 1. Confusion matrix.

Actual Class
Predicted Class

Positive Negative

Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

3.3. Method Validation and Result Analysis
3.3.1. Experimental Results of the Base Classifiers and MCEL Model

The MCEL model proposed in this paper used KNN, SVM, MLP, and XGBoost as
the base classifiers and random forest as the ensemble classifier. This section verifies the
proposed method on the AIS test set and SAR test set.

To verify the effectiveness of the MCEL model and extracted NGFs, we first conducted
experiments on the AIS test set. After completing the parameter settings for each classifier,
we used the training set to train the base classifiers and MCEL model. The performance
of the classifiers was evaluated using the metrics given by Equation (9) and the statistical
results of model accuracy were listed in Table 2. By analyzing the experimental results
of all classifiers, we find that the MCEL model in this paper has lower omission and mis-
classification errors than the base classifiers such as KNN and SVM. Moreover, compared
to the classifiers trained using the SGFs, the NGFs can further improve the accuracy of
classification models. Figure 9 shows the visualization results of the accuracy of each
classifier. It can be seen that the MECL model shows the best performance under different
features, and the ship classification accuracy is up to 87.25% when the NGFs are used for
training. This shows that the multiple classifiers ensemble learning strategy and NGFs are
effective methods for improving the performance of classification methods and can greatly
improve the prediction ability of the final model. It also shows that the feature learning
abilities of different classifiers can complement each other.

Table 2. Ship classification accuracy of different methods on the AIS test set.

Vessel Features
Methods

KNN SVM MLP XGBoost RF MCEL

SGFs 74.75% 74.25% 75.50% 78.50% 78.75% 85.50%
NGFs 76.00% 75.75% 76.25% 80.25% 79.75% 87.25%

For ship object classification, a confusion matrix can be used to evaluate the advan-
tages and disadvantages of different classification methods. The diagonal elements of the
confusion matrix represent the correctly classified samples. Figure 10 shows the confusion
matrix of the AIS test dataset ship classification when the MCEL model adopts the SGFs
and NGFs. It can be seen that the introduction of the NGFs can reduce ship omission
and misclassification errors, and improve the performance of classification methods. In
addition, during the experiment, we find that passenger ships and fishing ships are more
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likely to be confused than cargo ships and tanker ships. This is mainly because these two
types of ships have similar size characteristics and can even be converted into each other
in function.
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Furthermore, Table 3 shows a detailed performance comparison of different classifica-
tion methods for various types of ships when the NGFs are adopted, including Accuracy,
Recall, and F1-Score. It can be observed that the performance of the base classifiers differs in
evaluation metrics. The MCEL model can integrate the advantages of each base classifier
and achieve a better performance than the base classifiers, which shows that the proposed
method has obvious advantages for ship classification. As the harmonic average of the
accuracy and recall rates, the F1-Score can comprehensively reflect the performance of the
classifiers. Figure 11 shows the F1-Score of the different classification methods for the four
types of ships. It can be found that the MCEL model achieves the highest F1-Score for
passenger ships, cargo ships, tanker ships, and fishing ships, reaching 82.52%, 91.92%,
90.82%, and 84.00%, respectively. The experimental results show that the MCEL model
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proposed and the NGFs used in this paper can effectively improve the comprehensive
classification performance of ships, which lays a foundation for subsequent SAR ship
classification experiments.

Table 3. The detailed experimental results of different classification methods on the AIS test set using
the NGFs.

Methods Vessel Types
Evaluation Metrics

Precision Recall F1-Score Sample Size

KNN

Passenger 66.67% 56.00% 60.87% 100
Cargo 86.14% 87.00% 86.57% 100
Tanker 87.10% 81.00% 83.94% 100
Fishing 65.57% 80.00% 72.07% 100

SVM

Passenger 65.17% 58.00% 61.38% 100
Cargo 86.00% 86.00% 86.00% 100
Tanker 85.71% 78.00% 81.67% 100
Fishing 67.50% 81.00% 73.64% 100

MLP

Passenger 68.93% 71.00% 69.95% 100
Cargo 74.19% 92.00% 82.14% 100
Tanker 90.79% 69.00% 78.41% 100
Fishing 75.26% 73.00% 74.11% 100

XGBoost

Passenger 72.73% 72.00% 72.36% 100
Cargo 86.27% 88.00% 87.13% 100
Tanker 87.37% 83.00% 85.13% 100
Fishing 75.00% 78.00% 76.47% 100

RF

Passenger 72.73% 64.00% 68.09% 100
Cargo 85.44% 88.00% 86.70% 100
Tanker 89.47% 85.00% 87.18% 100
Fishing 71.93% 82.00% 76.64% 100

MCEL

Passenger 80.19% 85.00% 82.52% 100
Cargo 92.86% 91.00% 91.92% 100
Tanker 92.71% 89.00% 90.82% 100
Fishing 84.00% 84.00% 84.00% 100
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3.3.2. Experimental Results of SAR Ship Classification Based on the MCEL Model and AIS
Data Transfer Learning

To verify the performance of the SAR image ship classification method based on the
MCEL model and AIS data transfer learning (MCEL-TL) proposed in this paper, this section
presents a comprehensive comparison of the SAR test set with and without the AIS data to
participate in the model training. In addition, the experiments in Section 3.3.1 showed that
the NGFs had better performance; therefore, the subsequent experiments were performed
with the NGFs. Table 4 shows the ship classification accuracy of each classifier on the
SAR test set, where SAR-TL represents the statistical results of the object classification
accuracy with the AIS data transfer. Through a longitudinal comparison, it can be seen
that various classification methods combined with the AIS data transfer have different
degrees of improvement than the classification methods trained on the SAR dataset, and the
classification accuracy was improved by 4.5% when the MCEL model was used. Through a
horizontal comparison, we can see that the MCEL method achieves the best performance
in both cases, which again proves the effectiveness of the classification model in this paper.
Figure 12 shows the ship classification accuracy of each classifier on the SAR test set. It can
be seen that the correct classification percentage of each classifier is different. Among them,
the MCEL model combined with the AIS data transfer learning had the best performance in
SAR image ship object classification, with a classification accuracy of 85.00%, which proves
that our method is a very effective ship classification model in SAR images.

Table 4. Ship classification accuracy of each classification method on the SAR test set.

Training Data
Methods

KNN SVM MLP XGBoost RF MCEL

SAR 71. 50% 70.50% 72.50% 74.50% 75.50% 80.50%
SAR-TL 74.50% 73.50% 75.00% 78.50% 79.00% 85.00%
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Figure 12. Ship classification accuracy of each classification method on the SAR test set.

Table 5 provided detailed information on the performance comparison of the MCEL
model with different training sets, where the MCEL-TL represents the MCEL model trained
using the AIS dataset. It can be concluded from Table 5 that the MCEL-TL method has
the best classification performance for the four types of ships in SAR images when the
AIS dataset participates in the model training and has a great improvement in Precision,
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Recall, and F1-Score. In addition, to visually compare the misclassification of the four
types of ships by various methods, Figure 13 shows the confusion matrix of each classifier
with different training sets. Through an analysis of the experimental results of each
classification model, it was found that the MCEL-TL method can significantly reduce the
misclassification of various types of ships compared with the other classification method.
However, the similarity in the spatial distribution of ship geometric features still confuses
sample classification, such as passenger ships and fishing ships, cargo ships and tanker
ships. These experimental results demonstrate that it is feasible to transfer AIS data to SAR
images for ship classification, which can ensure good classification performance.

Table 5. SAR ship classification performance of the MECL with different training samples.

Methods Vessel Types
Evaluation Metrics

Precision Recall F1-Score Sample Size

MCEL

Passenger 82.00% 82.00% 82.00% 50
Cargo 76.79% 86.00% 81.13% 50
Tanker 84.78% 78.00% 81.25% 50
Fishing 79.17% 76.00% 77.55% 50

MCEL-TL

Passenger 83.02% 88.00% 85.44% 50
Cargo 82.14% 92.00% 86.79% 50
Tanker 90.91% 80.00% 85.11% 50
Fishing 85.11% 80.00% 82.48% 50
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(a) Confusion matrix of the MCEL model and (b) confusion matrix of the MCEL-TL model.

Table 6 further presents the detailed experimental results of each classification method
in the case of AIS data transfer, and Figure 14 shows the F1-Score of each classification
method for the four types of ships. It can be seen from Table 6 and Figure 14 that the
proposed method is significantly better than base classifiers in terms of various evalua-
tion metrics. This is because the ensemble learning method can synthesize the learning
characteristics of base classifiers, and the AIS data transfer learning can enrich the ship
feature space, so it can reduce the confusion between various types of ships and improve
the classification performance of SAR image ship objects. The experiments fully verify the
effectiveness of the multiple classifiers ensemble learning model and the AIS data transfer
learning method constructed in this paper for SAR image ship classification.
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Table 6. The ship classification results of each classification method on the SAR test set with AIS data
transfer.

Methods Vessel Types
Evaluation Metrics

Precision Recall F1-Score Sample Size

KNN-TL

Passenger 74.14% 86.00% 79.63% 50
Cargo 81.40% 70.00% 75.27% 50
Tanker 67.24% 78.00% 72.22% 50
Fishing 78.05% 64.00% 70.33% 50

SVM-TL

Passenger 69.09% 76.00% 72.38% 50
Cargo 70.31% 90.00% 78.95% 50
Tanker 85.71% 72.00% 78.26% 50
Fishing 71.79% 56.00% 62.92% 50

MLP-TL

Passenger 75.00% 78.00% 76.47% 50
Cargo 74.51% 76.00% 75.25% 50
Tanker 77.36% 82.00% 79.61% 50
Fishing 72.73% 64.00% 68.09% 50

XGBoost-TL

Passenger 79.25% 84.00% 81.56% 50
Cargo 75.44% 86.00% 80.37% 50
Tanker 78.72% 74.00% 76.29% 50
Fishing 81.40% 70.00% 75.27% 50

RF-TL

Passenger 82.69% 86.00% 84.31% 50
Cargo 76.47% 78.00% 77.23% 50
Tanker 73.58% 78.00% 75.73% 50
Fishing 84.09% 74.00% 78.72% 50

MCEL-TL

Passenger 83.02% 88.00% 85.44% 50
Cargo 82.14% 92.00% 86.79% 50
Tanker 90.91% 80.00% 85.11% 50
Fishing 85.11% 80.00% 82.48% 50
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Through the above experiments and analysis, the effectiveness of our method for SAR
image ship classification was fully verified. However, this method also has some limitations,
that is, the classification performance of the ensemble learning method depends mainly
on its base classifiers, or the selected base classifiers determine the classification ability of
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the ensemble learning method to a certain extent. Therefore, the classification performance
of the ensemble learning method is expected to be further improved by introducing new
base classifiers and ensemble strategies in subsequent studies. In addition, to solve the
misclassification of different types of ships, the electromagnetic scattering characteristics
of SAR image ships can be introduced as auxiliary features. In conclusion, the following
observations can be made:

(i) The NGFs extracted in this paper enrich the ship feature space, which can effectively
improve the performance of classifiers compared with the SGFs;

(ii) The experimental results on the AIS and SAR test sets show that the MCEL model
constructed in this paper is better than that of each base classifier, and the classification
accuracy is improved by approximately 5–11% compared with the base classifiers;

(iii) Experiments show that it is feasible to transfer AIS data to SAR images for ship
classification, and the classification accuracy obtained is approximately 4% higher
than that of the classification method trained with the SAR dataset, which provides
an effective solution for SAR ship classification with limited samples;

(iv) Owing to the similar spatial distribution of the geometric features of different types of
ships, classification confusion can easily occur, such as passenger ships and fishing
ships. The AIS data transfer can effectively solve the problem of SAR image ship
misclassification. To further reduce classification confusion, SAR ship electromagnetic
scattering characteristics can be extracted as auxiliary features;

(v) This paper adopts the multiple classifiers ensemble learning to solve the problem
of ship classification, which increases the complexity of the system. In addition,
compared with the single classifier, the time cost of this method is relatively high.

4. Conclusions

In this paper, we proposed a SAR image ship classification method based on multiple
classifiers ensemble learning and AIS data transfer learning. By combining the advan-
tages of different classifiers and the transferability of AIS data, our method effectively
solved the problem of SAR image ship classification with limited training samples. We
conducted a large number of comparative experiments on the AIS and SAR test sets, and
the experimental results showed that our method achieved a better performance than
the base classifiers, which fully proves the feasibility and effectiveness of our method. In
addition, the experiments also demonstrated that the extracted NGFs were effective and
could achieve a higher classification accuracy by making full use of the different geometric
features of ships.

In future work, it will be necessary to further study the reliability and combination
strategies of different classifiers and consider the addition of object electromagnetic scatter-
ing characteristics for SAR ship classification. In addition, we will extend the method to
the classification of more ship types.
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