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Abstract: Ship detection in synthetic aperture radar (SAR) images is a significant and challenging 

task. However, most existing deep learning-based SAR ship detection approaches are confined to 

single-polarization SAR images and fail to leverage dual-polarization characteristics, which 

increases the difficulty of further improving the detection performance. One problem that requires 

a solution is how to make full use of the dual-polarization characteristics and how to excavate 

polarization features using the ship detection network. To tackle the problem, we propose a group-

wise feature enhancement-and-fusion network with dual-polarization feature enrichment (GWFEF-

Net) for better dual-polarization SAR ship detection. GWFEF-Net offers four contributions: (1) dual-

polarization feature enrichment (DFE) for enriching the feature library and suppressing clutter 

interferences to facilitate feature extraction; (2) group-wise feature enhancement (GFE) for 

enhancing each polarization semantic feature to highlight each polarization feature region; (3) 

group-wise feature fusion (GFF) for fusing multi-scale polarization features to realize polarization 

features’ group-wise information interaction; (4) hybrid pooling channel attention (HPCA) for 

channel modeling to balance each polarization feature’s contribution. We conduct sufficient 

ablation studies to verify the effectiveness of each contribution. Extensive experiments on the 

Sentinel-1 dual-polarization SAR ship dataset demonstrate the superior performance of GWFEF-

Net, with 94.18% in average precision (AP), compared with the other ten competitive methods. 

Specifically, GWFEF-Net can yield a 2.51% AP improvement compared with the second-best 

method. 
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1. Introduction 

Synthetic aperture radar (SAR) plays an essential role in the remote sensing (RS) 

field. Its all-day and all-weather capabilities make it widely applied in both military and 

civil fields [1–4]. Specifically, ship detection in SAR images attracts increased attention 

due to its application in marine monitoring, shipping management, shipwreck rescue and 

illegal vessel control [5–8]. Thus, it is of great significance to obtain accurate ship detection 

results. 

Recently, with the great breakthrough of deep learning (DL) in the computer vision 

(CV) field, ship detection in SAR images based on convolutional neural networks (CNNs) 

has attracted an increasing amount of attention. For instance, Mao et al. [9] proposed a 

lightweight network with an efficient low-cost regression subnetwork for SAR ship 

detection. Dai et al. [10] proposed a fusion feature extractor network and a refined 

detection network for the problem of multi-scale ship detection in complex background. 

Zhang et al. [11] presented a lightweight network for SAR ship detection, where the 

depth-wise separable convolution was adopted for lightening the model and three other 
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mechanisms were proposed to compensate for the accuracy. Zhao et al. [12] proposed a 

two-stage SAR ship detector with a receptive field block (RFB) and a convolutional block 

attention module (CBAM) for the multi-scale ship detection problem. Pan et al. [13] used 

a multi-stage RBox detector for arbitrary-oriented ship detection in SAR images. Fu et al. 

[14] offered an anchor-free CNN composed of a feature-balanced pyramid and a feature 

refinement network to tackle the multi-scale SAR ship detection problem. Zhang et al. [15] 

proposed a lightweight SAR ship detector, where a feature fusion module, a feature 

enhancement module and a scale share feature pyramid module were adopted to 

guarantee its detection performance. Zhang et al. [16] constructed a hyper-light deep 

learning network to reach high-accuracy and high-speed ship detection in which five 

contributions are offered, i.e., a multi-receptive-field module, a dilated convolution 

module, a channel and spatial attention module, a feature fusion module and a feature 

pyramid module. Han et al. [17] explored the training of a ship detector from scratch, and 

they established a CNN-based SAR ship detection model with a multi-size convolution 

module and a feature-reused module to verify the methodology’s effectiveness. Geng et 

al. [18] proposed a ship detection method where a traditional island filter and a threshold 

segmentation method were integrated into a CNN model. The above studies have 

presented promising results in SAR ship detection. However, they all ignore the rich 

information in the dual-polarization SAR features (i.e., VV polarization features, VH 

polarization features and polarization coherence features) that have great potential to help 

achieve better SAR ship detection performance. 

There are a few CNN-based researchers focusing on ship detection in multi-

polarization SAR images [19–22]. Fan et al. [19] offered a semantic segmentation method 

for complex scene ship detection. However, in their compact polarimetric (CP) SAR 

images, only two types of polarization features are used, without considering their 

polarization coherence features, so their input data do not contain enough SAR 

polarization information. Jin et al. [20] proposed a pixel-level detector for small-scale ship 

detection and verified the effectiveness of the network on PolSAR images. Fan et al. [21] 

aimed to solve the multi-scale ship detection problem and carried out experiments on 

PolSAR images. They first established a deep convolutional neural network (DCNN)-

based sea–coast–ship classifier for ship region extraction, and then proposed a modified 

Faster-RCNN for ship detection. Hu et al. [22] constructed pseudo-color SAR images 

composed of rich dual-polarization features and proposed a weakly supervised method 

for ship detection. However, these works [20–22] all neglect to enhance and fuse different 

polarization characteristics but directly feed them into the network without any 

distinguished treatment, which fails to fully mine the respective characteristics from 

different channels. All in all, the above pixel-level ship detection studies [19,20] and object-

level ship detection studies [21,22] all monotonously utilize polarimetric SAR images to 

verify their respective tasks, without fully excavating polarization SAR features and 

considering such information when optimizing their network structures. 

To tackle the above problems, in this paper, we propose a novel group-wise feature 

enhancement-and-fusion network with dual-polarization feature enrichment (GWFEF-

Net) for better dual-polarization SAR ship detection. We introduce four contributions to 

guarantee the performance of GWFEF-Net, i.e., (1) a dual-polarization feature enrichment 

(DFE) proposed for enriching the dual-polarization feature library and suppressing clutter 

interferences to facilitate the subsequent feature extraction, (2) a group-wise feature 

enhancement (GFE) designed for autonomously enhancing the various polarization 

semantic features to highlight various polarization regions, (3) a group-wise feature 

fusion (GFF) designed for obtaining fused multi-scale polarization features to realize 

polarization features’ group-wise information interaction, (4) a hybrid pooling channel 

attention (HPCA) proposed for channel modeling to equalize each polarization feature’s 

contribution. We also conduct sufficient ablation experiments to verify the effectiveness 

of each contribution. Finally, extensive experimental results on the Sentinel-1 dual-

polarization SAR ship dataset demonstrate the superior dual-polarization SAR ship 
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detection performance of GWFEF-Net, with 94.18% in average precision (AP), compared 

with the other ten competitive methods. Moreover, it can offer a 4% AP improvement over 

the baseline Faster R-CNN and a 2.51% AP improvement compared with the second-best 

method. 

Our main contributions are as follows: 

1. We design a novel two-stage deep learning network named “GWFEF-Net” for better 

dual-polarization SAR ship detection. 

2. To achieve the excellent detection performance of GWFEF-Net, we (1) propose DFE 

to facilitate subsequent feature extraction; (2) design GFE to highlight each 

polarization semantic feature region; (3) design GFF to realize polarization features’ 

group-wise information interaction; and (4) propose HPCA to balance each 

polarization feature’s contribution. 

3. GWFEF-Net achieves state-of-the-art detection accuracy with AP of up to 94.18% on 

the Sentinel-1 dual-polarization SAR ship dataset, compared with the other ten 

competitive methods. 

The remaining materials are arranged as follows. Section 2 introduces the materials 

and methods. Section 3 describes the experimental details. Section 4 shows the 

quantitative and qualitative experimental results. Section 5 presents ablation studies on 

four contributions. Section 6 discusses the whole framework. Finally, Section 7 provides 

the conclusion of the work. 

2. Methodology 

GWFEF-Net is established based on the mainstream two-stage detector, i.e., Faster R-

CNN [23]. Generally speaking, two-stage detectors have superior accuracy performance 

over one-stage ones [24], so we choose the former as our baseline. Figure 1 shows the 

network structure of GWFEF-Net. The raw Faster R-CNN contains a backbone network, 

a region proposal network (RPN) and a detection subnetwork [25]. DFE is proposed as a 

preprocessing technology. The GFE, GFF and HPCA are inserted into the detection 

subnetwork for better polarization feature enhancement and fusion. 

 

Figure 1. The network structure of GWFEF-Net. DFE denotes the dual-polarization feature 

enrichment, which is treated as a pre-processing tool. GFE denotes the group-wise feature 

enhancement. GFF denotes the group-wise feature fusion. HPCA denotes the hybrid pooling 

channel attention, which is injected into GFF. The mainstream ResNet50 is used as our backbone 

network. For convenience, the detection results are displayed in the form of pseudo-color images. 

Firstly, GWFEF-Net preprocesses the input dual-polarization SAR images by the 

proposed DFE to enrich the dual-polarization features. The details will be introduced in 

Section 2.1. Then, GWFEF-Net uses a backbone network to extract ship features from dual-

polarization SAR images. Without losing generality, we use the mainstream ResNet50 [26] 

as our backbone network. Then, an RPN is used for the extraction of regions of interest 

(i.e., regions containing ships). Afterward, a RoIAlign [27] layer is used to map the 

generated proposed regions by the RPN to the feature maps of the backbone network for 

subsequent classification and regression in the detection subnetwork. Finally, feature 

maps generated by the RoIAlign are input into a detection subnetwork for the final 

prediction, and the final ship detection results are obtained. 

Dual-Polarization SAR
RPN

GFE
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Backbone Network ROIAlign

Detection Results
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Note that in the detection subnetwork, the proposed GFE, GFF and HPCA are 

inserted, which are used for better polarization feature enhancement and fusion. 

Specifically, for better polarization feature enhancement, we insert the GFE into the 

detection subnetwork. It is used to highlight each polarization semantic feature region by 

means of enhancing each polarization semantic feature, which will be introduced in detail 

in Section 2.2. For better polarization feature fusion, we then insert the GFF after the GFE. 

It is used to realize polarization features’ multi-scale information interaction by means of 

fusing multi-scale polarization features, whose details will be introduced in Section 2.3. 

In addition, HPCA is inserted in the GFF to balance each polarization feature’s 

contribution by channel modeling. It will be introduced in detail in Section 2.4. 

The motivation for the core idea of GWFEF-Net can be summarized as follows. 

(1) It has already been demonstrated that dual-polarization features play an important 

role in improving the detection accuracy of traditional SAR ship detection methods. 

Inspired by this, employing such features is also likely to improve the performance 

of DL-based methods in SAR ship detection tasks. However, most of the CNN-based 

SAR ship detection methods only utilize single-polarization features as the input of 

networks, ignoring the dual-polarization characteristics with rich structural 

information of ships. Though a few researchers have tried to utilize polarimetric SAR 

images to verify their respective ship detection tasks, their networks are not 

especially designed for the polarimetric characteristics and no special treatments, 

such as enhancement and fusion, have been applied for different polarization 

features. Hence, it is of great significance to study how to fully excavate polarization 

SAR features in a CNN-based network. 

(2) To address the above problems, we propose a group-wise feature enhancement-and-

fusion network with dual-polarization feature enrichment (GWFEF-Net) to improve 

the SAR ship detection performance. Specifically, four contributions (i.e., DFE, GFE, 

GFF and HPCA) are proposed in GWFEF-Net. DFE enables the enrichment of the 

feature library with more abundant ship polarization information to facilitate the 

subsequent feature extraction; GFE adopts group-wise features to learn and enhance 

the semantic representation of various polarization features so as to highlight various 

target ship regions; GFF performs information interaction between polarization 

features and multi-scale ship features, which is helpful to extract more abundant 

information of polarization features and multi-scale ships; HPCA is designed for 

channel modeling to further balance the contribution of each polarization feature. 

Next, we will introduce the DFE, GFE, GFF and HPCA in detail in the following sub-

sections. 

2.1. Dual-Polarization Feature Enrichment (DFE) 

As for the Sentinel-1 satellite product, it contains two polarization modes of VV 

polarization and VH polarization. However, the coherence polarization feature is also 

useful for identifying ships [28]. Inspired by the work [28], we introduce the coherence 

polarization feature to characterize ship feature relationships in different polarization 

channels, which can enrich the dual-polarization feature library and suppress clutter 

interference to further improve the follow-up detection performance. For brevity, we call 

the above process the dual-polarization feature enrichment (DFE). 

We will describe the feature types mentioned above in detail. 

(1) VV feature: In the VV polarization image, a ship often has strong backscattering 

values in the sea background, which means that the outline and texture of the ship are 

relatively clear [29,30]. Thus, VV features are widely utilized for SAR ship detection. 

(2) VH feature: In the VH polarization image, a ship often has lower backscattering 

values in the sea background, and the sea clutter is lower than the instrument noise level. 

However, the signal-to-noise-ratio (SNR) of VH is higher than that of VV [31,32]. Thus, 

VH features are also applicable to SAR ship detection. 
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(3) CVV-VH feature: Considering the dual-polarization characteristic in the Sentinel-1 

satellite product, a polarization covariance matrix C2 is obtained by the following formula 

[33]: 

𝐶2 = [
|𝑆𝑣ℎ|2

|𝑆𝑣𝑣𝑆𝑣ℎ
∗|

|𝑆𝑣ℎ𝑆𝑣𝑣
∗|

|𝑆𝑣𝑣|2
] (1) 

where Svh denotes the VH polarization complex data, Svv denotes the VV polarization 

complex data, |·| denotes the function of the absolute value, * denotes the conjugate 

operation. The polarization coherence feature is defined by 

𝐶VV−VH = |𝑆𝑣ℎ𝑆𝑣𝑣
∗| = |𝑆𝑣𝑣𝑆𝑣ℎ

∗| (2) 

CVV-VH can effectively represent the dual-polarization channel correlation. In the dual-

polarization image, the reflection symmetry effect of the sea scene is significant. In other 

words, the CVV-VH polarization value can be very low in an image with sea clutter, because 

the image meets the reflection symmetry; conversely, it can be very high in an image with 

artificial objects, such as a ship, because the image does not meet the reflection symmetry. 

In short, the ship-to-clutter-ratio of CVV-VH features is higher than that of the other two 

features, that is, the clutter interference can be suppressed with CVV-VH features. Thus, CVV-

VH features have the potential to improve SAR ship detection. 

Briefly speaking, first, we enrich the existing VV features and VH features according 

to formula (2), and we can obtain the generated CVV-VH features. Then, the amplitude 

values of VV, VH and CVV-VH polarization complex data are integrated into the R, G, B 

channels of the pseudo-color images, so we can obtain resulting images with less sidelobe 

and clutter interference. DFE can be described as in Figure 2. 

 

(a) 

 

(b) 

Figure 2. (a) The internal implementation details of the DFE, where VV, VH and CVV-VH, respectively, 

represent the amplitude value of the VV feature, VH feature and dual-polarization feature. (b) The 

input and output images of DFE, where the left of “→” denotes the input image before DFE, and 

the right of “→” denotes the output image after DFE. Note that the resulted pseudo-color image has 

VV, VH and CVV-VH channels. Obviously, the pseudo-color image can reduce sidelobe and noise 

interference and clarify the skeleton of landing ships. 

VV VH

VV

VH

VV

VH
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To summarize, DFE introduces the CVV-VH feature into the feature library 

characterizing feature relations in different polarization channels. Moreover, it provides 

richer polarization information and suppresses clutter interferences, therefore facilitating 

subsequent feature extraction. In our subsequent implementation, in order to make full 

use of the polarization features provided by DFE, we insert the proposed GFE, GFF and 

HPCA into the detection subnetwork for better dual-polarization SAR ship detection. 

2.2. Group-Wise Feature Enhancement (GFE) 

Group-wise features are widely used in the CV community and can adaptively learn 

semantic representations of different interested entities. Thus far, a large number of 

scholars from the SAR ship detection field have devoted themselves to researching single-

channel polarization SAR images [9–17]. However, they ignore the exploration of multi-

polarization characteristics and further adoption of group-wise features to learn the 

semantic representation of various polarization features. Thus, different from the former 

ship detection networks, which are designed for single-polarization SAR images, 

considering the polarization semantic feature differences of different channels, we adopt 

group-wise features to autonomously enhance the learned semantic representations of 

various polarization features. 

Specifically, we attempt to conduct feature grouping enhancement along the channel 

dimension, which is inspired by Sabour et al. [34] and Li et al. [35]. Thus, we propose the 

GFE to obtain enhanced semantic information for each SAR polarization feature. First, 

considering that the output data preprocessed by the DFE is composed of three 

polarization channels, i.e., VV feature, VH feature and CVV-VH feature, we use a group 

convolution to enrich the polarization features (i.e., the number of feature channels is 

tripled). Then, we group-wise enhance the spatial information of the three polarization 

features in the channel dimension. Finally, we can obtain enhanced semantic features of 

each SAR polarization feature. 

Figure 3 shows the detailed structure of the GFE. In the detection subnetwork, first, 

the feature map Fin ∈ RW × H ×C is input, where W, H and C represent the height, width and 

channel of the input feature map, respectively. In our implementation, W and H are equal 

to 7, and C is equal to 256. Its channel is expanded three times to obtain richer SAR 

polarization features (i.e., VV feature, VH feature and CVV-VH polarization). Specifically, 

we obtain three group feature maps along the channel dimension through the following 

operation: 

𝑭𝑖 = GC(𝑭𝑖𝑛), 𝑖 = 1,2,3 (3) 

where GC(·) is the group convolution operation and Fi is the i-th group feature maps. Note 

that i = 1, 2, 3, which keeps the same as the number of polarization features (i.e., VV 

polarization, VH polarization and CVV-VH feature). 

Because the noise distribution in each polarization image is inconsistent [35], it is 

necessary to enhance the polarization feature in the group space for highlighting each 

polarization semantic feature region. Without loss of generality, we first examine a certain 

group feature map, namely F1 = {f1, …, fm}, m = 256. The global pooling operation (i.e., 

global average pooling and global max pooling) is conducted to extract the global 

semantic feature g of the group polarization feature map F1. The operation can be 

described by 

𝐠 = GP(𝑭1) =
1

𝑚
∑ 𝒇𝑖

𝑚

𝑖=1
 (4) 

Then, the corresponding importance coefficient ci is obtained by conducting a dot 

product between the global semantic feature g and local feature fi. The operation formula 

is defined by 

𝑐𝑖 = 𝐠 ∙ 𝒇𝑖 (5) 



Remote Sens. 2022, 14, 5276 7 of 24 
 

 

Subsequently, in order to reduce the coefficient deviation caused by the various ship 

samples (i.e., inshore ones and offshore ones), we conduct the following normalization 

operations: 

 

Figure 3. Illustration of the proposed GFE. It expands the original features into three groups of 

features, and then processes the polarization features of each group in parallel. Finally, it obtains 

the enhanced polarization semantic feature representation. 

𝜇𝑐 =
1

𝑚
∑ 𝑐𝑖

𝑚

𝑖
 (6) 

σ𝑐
2 =

1

𝑚
∑ (𝑐𝑖 − 𝜇𝑐)2

𝑚

𝑖
 (7) 

𝑐̂𝑖 =
𝑐𝑖 − 𝜇𝑐

𝜎𝑐 + 𝜀
 (8) 

where ε (i.e., 1 × 10−5) is a constant added for numerical stability, which follows the work 

[35]. 

Finally, to obtain the final enhanced polarization feature, the original feature fi is 

weighted by the corresponding importance coefficient ci via a sigmoid function σ(·): 

𝒇𝑖
′ = 𝒇𝑖 ∙ 𝜎(𝑐𝑖) (9) 

Thus, we can obtain the polarization feature group 𝑭1
′ , i.e., 𝑭1

′  = {𝒇1
′ , …, 𝒇𝑚

′ }, m = 

256. In this way, we can obtain all three resulted polarization feature groups 𝑭′ , i.e., 𝑭′  

= {𝑭1
′ , 𝑭2

′ , 𝑭3
′ }. The enhanced features can highlight each polarization semantic feature 

region so as to enhance the meaningful ship target area and better focus on the interested 

ship targets. To summarize, the network will detect more meaningful ships and suppress 

useless clutter interferences with the help of the GFE, which will greatly improve the 

detection performance of GWFEF-Net. 

2.3. Group-Wise Feature Fusion (GFF) 

It is important for enhancing the represented capability of object detection CNNs to 

obtain the fused features from different scales. Most existing methods in the SAR ship 

detection field attempt to fuse the multi-scale features in the layer-wise dimension [36,37]. 

The former work [36] aims to fuse the high-layer feature maps and low-layer feature maps 

to achieve enhanced multi-scale semantic features. The latter [37] aims to transmit the 
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Normalization

Sigmoid

Group Conv

Global Pooling

Normalization
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location information of the shallow layer to the deep layer to achieve enhanced multi-scale 

spatial features. Different from the above works that fuse features from different 

resolutions, considering various polarization semantic representations of different 

channels, we aim to obtain the fused multi-scale polarization features in the channel 

group-wise level. In other words, we tend to achieve multi-scale polarization feature 

interaction at a channel group-wise dimension besides other existing dimensions, i.e., 

depth [38], width and cardinality [39]. In addition, our inspiration is derived from the 

works of Gao et al. [40], Lin et al. [41] and Ezegedy et al. [42], which are recommended to 

the readers. 

We have obtained each enhanced polarization semantic feature group from Section 

2.2; to further utilize the advantages of all polarization features, the information 

interaction between different polarization features should be considered. Thus, a group-

wise features fusion (GFF) is proposed. Firstly, this can increase the range of receptive 

fields of each polarization feature group. Secondly, it can fuse the different polarization 

feature groups. The above factors all guarantee the extraction capability of multi-scale 

polarization features and the excellent information interaction capability of the GFF. 

Figure 4 shows the detailed structure of the GFF. Note that, after the GFE, we obtain 

three feature map groups, denoted by 𝑭𝑖
′, where i ∈ {1, 2, 3}. Each feature group 𝑭𝑖

′ has 

the same height, width size and channel amount compared with the original input feature 

map Fin ∈ RW × H ×C in Section 2.2. In addition, in order to balance each polarization feature’s 

contribution, a HPCA is inserted in the GFF, which will be described in detail in Section 

2.4. 

 

Figure 4. The detailed structure of the GFF. It increases the range of receptive fields of each 

polarization feature group by 3 × 3 convolution and then fuses the different polarization feature 

groups. ⨁ denotes the channel-wise summation and 3 × 3 conv denotes the 3 × 3 convolution 

operation. In addition, in order to balance each polarization feature’s contribution, a HPCA is 

inserted in the GFF, which will be described in detail in Section 2.4. 

We conduct a 3 × 3 convolution operation for each feature map group and feed the 

results into the next group. In this way, we can obtain the fused polarization feature group 

with a larger range of receptive fields. 

In short, the above can be described by 

𝑭𝑖
′′ = {

𝐶𝑜𝑛𝑣3 × 3(𝑭𝑖
′), 𝑖 = 1

𝐶𝑜𝑛𝑣3 × 3(𝑭𝑖
′ + 𝑭𝑖−1

′′ ), 𝑖 = 2,3
 (10) 

3×3 conv

3×3 conv

HPBA

HPBA

3×3 conv

HPBA
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Note that each 3 × 3 convolution operation Conv3×3() could receive polarization 

information from multi-group features {𝑭𝑗
′′’, j ≤ i}. In addition, each instance of conducting 

a 3 × 3 convolution operation Conv3×3() on 𝑭𝑗
′  can provide an output with a larger 

receptive field than 𝑭𝑗
′. 

In this way, we can obtain all fused multi-scale polarization features 𝑭′′ , i.e., 𝑭′′  = 

{𝑭1
′′, 𝑭2

′′, 𝑭3
′′}. In short, GFF can offer excellent information interaction from polarization 

features and multi-scale ship features, which is helpful to extract more abundant 

information about ships. Thus, GWFEF-Net can detect more multi-scale ships with the 

help of the GFE and the final detection performance will be improved. 

2.4. Hybrid Pooling Channel Attention (HPCA) 

Attention mechanisms have been widely applied in the CV community and can 

enhance valuable features and improve the expression ability of a CNN through spatial 

or channel-wise information. Considering the polarization semantic feature differences of 

different channels, we attempt to balance each polarization feature’s contribution at the 

channel-wise dimension to achieve a better polarization feature fusion. Thus, in our 

implementation, we choose to use the channel attention mechanism to better obtain 

reasonable channel modeling during the feature fusion described in Section 2.3. There 

have been a few attempts [43,44] to incorporate channel attention processing into CNNs 

to obtain the importance of each channel. However, the above channel attention models 

are all extracted through the global average pooling operation, which could be suboptimal 

[45], so we utilize both global average pooling and global max pooling operations to 

achieve channel attention. 

Thus, we propose a hybrid pooling channel attention (HPCA), which is inserted in 

the GFF of Section 2.3 to obtain the channel importance for balancing each polarization 

feature’s contribution. Figure 5 illustrates the detailed implementation of the HPCA. 

Then, we will further describe the principle of the HPCA. 

 

Figure 5. The principle of the HPCA. GAP denotes the global average pooling, GMP denotes the 

global max pooling, FC denotes the fully connected layer, ReLU denotes the Rectified Linear Unit 

activation layer, Sigmoid denotes the Sigmoid activation layer, ⨁ denotes the channel-wise 

summation, and ⨀ denotes the channel-wise multiplication. In our implementation, the reduction 

ratio r is set to 16, which is the same as in the reference [43]. 
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Different from the SE module [43], there are two parallel branches in the HPCA. 

Specifically, given the input feature map X ∈ RW × H ×C, in the first branch, we first conduct 

the global average pooling operation of each channel to obtain the feature map with the 

global receptive field; then, two full connection layers with excitation functions are used 

to predict the channel importance. In the second branch, we first conduct the global max 

pooling operation of each channel to obtain the feature map with the global receptive field; 

then, two full connection layers with excitation functions are used to predict the channel 

importance weight. Next, we add the importance weight of the two branches to obtain the 

final channel importance coefficient. Finally, the importance coefficient is applied to the 

corresponding channels to construct the correlation between channels. 

The above steps can be described as follows: 

𝒀 = 𝑿⨀𝑾 (11) 

where X denotes the balanced polarization feature map, Y denotes the input feature map, 

⨀ denotes the channel-wise multiplication, and W denotes the channel importance 

coefficient, i.e., 

𝑾 = 𝑓𝑒𝑛𝑐𝑜𝑑𝑒(𝐺𝐴𝑃(𝑿))⨁𝑓𝑒𝑛𝑐𝑜𝑑𝑒(𝐺𝑀𝑃(𝑿)) (12) 

where GAP denotes the global average pooling, GMP denotes the global max pooling, ⨁ 

denotes the channel-wise summation, and fencode denotes the channel encoder that can assist 

in the non-linearity and generality of the model, where two full connection layers with 

non-linearity excitation functions are adopted. 

Finally, we can obtain finer channel information, in which each polarization feature’s 

contribution is more balanced. By inserting HPCA into each polarization feature group, 

the network can learn the contribution of each polarization feature adaptively in the 

process of group-wise feature fusion. Therefore, HPCA can equalize the contribution of 

each group polarization feature, so as to improve the expression ability of the network. 

3. Experiments 

We use a Personal Computer (PC) with a GPU model of NVIDIA RTX3090, CPU 

model of i7-10700K and memory size of 32G for the whole experiment. We adopt Pytorch 

[46] and MMDetection [47] based on the Python 3.8 language as the deep learning 

framework. We also use CUDA11.1 in our experiments to call the GPU for training 

acceleration. 

3.1. Dataset 

The dual-polarimetric SAR ship detection dataset (DSSDD) [22] is used in our work. 

Moreover, note that DSSDD, with dual-polarization images, is a unique public dataset 

meeting our research demands. Thus, we utilize DSSDD to verify the effectiveness of 

GWFEF-Net in dual-polarization SAR ship images. Table 1 shows the details of DSSDD. 

Table 1. The details of DSSDD. 

Key Value 

Location Shanghai, the Suez Canal, etc. 

Sensors Sentinel-1 

Polarization VV, VH 

Sensor Mode IW 

Incident Angle (°) 29.1~46.0 

Resolution (m) 2.3 × 14.0 

Swath (km) 250 

Number of Images 50 

From Table 1, there are 50 large images from different places (Shanghai, the Suez 

Canal, etc.). Considering the limited computing power of the GPU, we crop the original 

image into sub-images of 256 pixels × 256 pixels with a 50-pixel overlap, which is in line 
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with Hu et al. [22]. After the above operation, we obtain 1236 sub-images with 3540 ship 

targets. Finally, the ratio of the training set to the test set is 7:3, which is the same as in Hu 

et al. [22]. 

3.2. Experimental Details 

We train GWFEF-Net for 12 epochs using the stochastic gradient descent (SGD) 

optimizer [48]. The network input size is 256 pixels × 256 pixels. We set the learning rate 

as 0.008, the momentum as 0.9 and the weight decay as 0.0001. The learning rate is reduced 

by 10 times at each 8th and 11th epoch. Moreover, due to the limited GPU capability, we 

set the batch size as 4. To accelerate convergence, we load the pre-training weights of 

ResNet-50 on ImageNet [49]. Other hyperparameters not mentioned are consistent with 

Faster R-CNN. During the inference, the Intersection Over Union (IOU) threshold of non-

maximum suppression (NMS) [50] is set as 0.30. 

3.3. Evaluation Indices 

Precision (P) is defined by 

𝑃 =
#𝑇𝑃

#𝑇𝑃 + #𝐹𝑃
× 100% (13) 

where # denotes the amount, TP denotes the true positives (i.e., the prediction and label 

are both ships), and FP denotes the false positives (i.e., the prediction is a ship but the label 

is the background). 

Recall (R) is defined by 

𝑅 =
#𝑇𝑃

#𝑇𝑃 + #𝐹𝑁
× 100% (14) 

where FN denotes the false negatives (i.e., the prediction is the background but the label 

is a ship). 

F1 can effectively reflect the balance between precision and recall, and is defined by 

𝐹1 = 2 ×
𝑅 × 𝑃

𝑅 + 𝑃
 (15) 

The average precision (AP) is defined by 

𝐴𝑃 = ∫ 𝑃(𝑅)
1

0

⋅ 𝑑𝑅 (16) 

where P denotes the precision, and R denotes the recall. As AP can more comprehensively 

reflect the detection performance of a detector under different confidence thresholds, we 

take the AP as the core evaluation index in the paper. 

4. Results 

4.1. Quantitative Results 

Table 2 shows the quantitative results of GWFEF-Net on the DSSDD. In Table 2, we 

present our quantitative results by gradually adding each contribution to the baseline 

Faster R-CNN. In addition, we also conduct adequate ablation studies to verify the gain 

in GWFEF-Net of each contribution, which will be introduced in Section 5. 
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Table 2. The quantitative results of GWFEF-Net on the DSSDD. GT: the number of ground truths; 

TP: the number of true positives, where the higher the better; FP: the number of false positives, 

where the lower the better; FN: the number of false negatives, where the lower the better; P: 

precision, where the higher the better; R: recall, where the higher the better; F1: F1-score, where the 

higher the better; AP: average precision, the core evaluation index, where the higher the better. The 

best model is marked in bold. 

DFE 1 GFE 2 GFF 3 HPCA 4 GT TP FP FN P (%) R (%) F1 (%) AP (%) 

- - - - 1203 1102 137 101 88.94 91.60 90.25 90.18 

✓    1203 1112 124 91 89.97 92.44 91.18 91.10 

✓ ✓   1203 1123 108 80 91.23 93.35 92.28 92.30 

✓ ✓ ✓  1203 1130 106 73 91.42 93.93 92.66 93.04 
✓ ✓ ✓ ✓ 1203 1142 94 61 92.39 94.93 93.64 94.18 

DFE 1 denotes the dual-polarization feature enrichment. GFE 2 denotes the group-wise feature 

enhancement. GFF 3 denotes the group-wise feature fusion. HPCA 4 denotes the hybrid pooling 

channel attention. 

From Table 2, one can conclude the following. 

1. The detection accuracy presents a gradual upward trend by gradually adding each 

contribution on the baseline Faster R-CNN. Apparently, GWFEF-Net offers a huge 

AP improvement (i.e., from initial 90.18% to final 94.18%), up to a 4% increment. 

Moreover, GWFEF-Net offers a perceptible F1 improvement (i.e., from initial 90.25% 

to final 93.64%), up to a ~3.4% increment. Other accuracy indexes have also been 

improved more or less, which fully proves the excellent detection performance of the 

proposed GWFEF-Net. 

2. DFE increases both the AP index and the F1 index by ~0.9%. It can improve the recall 

rate (i.e., from 91.60% to 92.44% with recall) and the detection rate (i.e., from 88.94% 

to 89.97% with precision), i.e., it can provide more complete and more accurate 

detection results, owing to its capability of enriching the feature library and 

suppressing clutter interferences. As mentioned in Section 2.1, DFE can provide 

richer polarization information and meanwhile suppresses clutter interferences, 

therefore facilitating subsequent feature extraction. Thus, DFE will greatly improve 

the detection recall and detection rate of GWFEF-Net. 

3. GFE increases the AP index by 1.2% and the F1 index by 1.1%. It is useful for detecting 

more actual ships (the number of true positives is increased by 11) and decreasing 

false alarms (the number of false positives is decreased by 16) owing to its capability 

of group-wise feature enhancement. As mentioned in Section 2.2, the enhanced 

features can highlight each polarization semantic feature region so as to enhance the 

meaningful ship target area. In this way, the network will detect more meaningful 

ships and suppress useless clutter interferences with the help of the GFE, which will 

greatly improve the detection performance of GWFEF-Net. 

4. GFF increases the AP index by ~0.7% and the F1 index marginally. It is still useful 

because it can provide more true ships (the number of missed detections is decreased 

by 7) and suppress some false alarms (that is, two false alarms can be suppressed by 

the GFF), owing to its capability of group-wise feature fusion. As mentioned in 

Section 2.3, the GFF can offer excellent information interaction from polarization 

features and multi-scale ship features, which is helpful to extract richer information 

about ships. Finally, it can obtain a better detection recall capability and detect more 

multi-scale ships. 

5. HPCA increases the AP index by ~1.1% and the F1 index by ~1.0%. It can improve 

the detection rate (i.e., from 91.42% to 92.39% with precision) and the recall rate (i.e., 

from 93.93% to 94.93% with recall), owing to its excellent capability of channel 

modeling. As mentioned in Section 2.4, by inserting HPCA into GWFEF-Net, we can 

obtain finer channel information, in which each polarization feature’s contribution is 

more balanced. In other words, by inserting HPCA into each polarization feature 

group, the network can learn the contribution of each polarization feature adaptively 
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in the process of group-wise feature fusion. Therefore, HPCA can adaptively equalize 

the contribution of each polarization feature, so as to improve the final detection 

performance of the network. 

6. In short, each contribution has different degrees of gain for the network. In addition, 

the detection accuracy presents a gradual upward trend by gradually adding each 

contribution. Finally, GWFEF-Net, equipped with the above contributions, can 

achieve superior polarimetric SAR ship detection performance. 

Table 3 shows the performance comparisons of GWFEF-Net with the other ten 

competitive models. In Table 3, this paper mainly chooses the Faster R-CNN [23], Cascade 

R-CNN [51], Dynamic R-CNN [52], Double-Head R-CNN [53], MobileNetv2+SSD [54,55], 

FreeAnchor [56], ATSS [57], FCOS [58], Fan et al. [21] and Hu et al. [22] for comparison. 

They all load the pre-training model on the backbone network and are trained on the 

DSSDD, and their implementation details are consistent with the original paper. It is 

worth noting that we select the mainstream one-stage detectors (i.e., MobileNetv2+SSD, 

FreeAnchor, ATSS and FCOS), the mainstream two-stage detectors (i.e., Faster R-CNN, 

Cascade R-CNN, Dynamic R-CNN and Double-Head R-CNN) in the CV field and typical 

polarimetric SAR ship detectors (i.e., Fan et al. [21] and Hu et al. [22]) for comparison. 

Table 3. The performance comparisons of GWFEF-Net with the other ten competitive models. The 

best and second-best model are, respectively, marked in bold and underlined. 

Method GT TP FP FN P (%) R (%) F1 (%) AP (%) 

Faster R-CNN [23] 1203 1102 137 101 88.94 91.60 90.25 90.18 

Cascade R-CNN [51] 1203 1102 94 101 92.14 91.60 91.87 90.66 

Dynamic R-CNN [52] 1203 1106 93 97 92.24 91.94 92.09 91.02 

Double-Head R-CNN [53] 1203 1116 100 87 91.78 92.77 92.27 91.67 

MobileNetv2+SSD [54,55] 1203 1119 992 84 53.01 93.02 67.53 88.78 

FreeAnchor [56] 1203 1122 433 81 72.15 93.27 81.36 90.72 

ATSS [57] 1203 1021 64 182 94.10 84.87 89.25 83.62 

FCOS [58] 1203 1006 137 197 88.01 83.62 85.76 80.99 

Fan et al. [21] 1203 1092 168 111 86.67 90.77 88.67 89.71 

Hu et al. [22] 1203 1126 98 77 91.99 93.60 92.79 91.54 

GWFEF-Net 1203 1142 94 61 92.39 94.93 93.64 94.18 

From Table 3, one can conclude the following. 

1. GWFEF-Net achieves the best polarization SAR ship detection performance with the 

highest accuracy index (whether the AP index or the F1 index). Specifically, GWFEF-

Net can achieve a 2.51% improvement in AP compared with the second-best method 

(i.e., Double-Head R-CNN). It is worth noting that Double-Head R-CNN generates 

far more missed detections than GWFEF-Net (i.e., from 87 to 61). Therefore, the recall 

rate of Double-Head R-CNN is lower than that of GWFEF-Net (i.e., from 92.77% to 

94.93%). The above reveals the excellent polarization SAR ship detection 

performance of GWFEF-Net. 

2. GWFEF-Net can achieve a 4% improvement in AP (i.e., from 90.18% to 94.18%), a 

~3.4% improvement in F1 (i.e., from 90.25% to 93.64%), a ~3.3% improvement in R 

(i.e., from 91.60% to 94.93%) and a ~3.5% improvement in P (i.e., from 88.94% to 

92.39%) compared with the baseline Faster R-CNN. All the above benefit from the 

four contributions mentioned before. 

3. ATSS offers the highest P (i.e., 94.10%), but it has a rather low recall rate (i.e., its 

84.87% R << GWFEF-Net’s 94.93% R), which leads to a large number of missed 

detections (i.e., its 182 false negatives >> GWFEF-Net’s 61 false negatives). In 

addition, its detection accuracy is also not ideal—that is, its overall accuracy indexes 
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are rather low (i.e., its 83.62% AP << GWFEF-Net’s 94.18% AP and its 89.25% F1 < 

GWFEF-Net’s 93.64% F1). 

4. Due to the failure to mine the respective polarization characteristics of different 

channels, the accuracies of the typical polarimetric SAR ship detectors [21,22] are 

undesirable. In particular, Fan et al. [21] only achieve an inferior dual-polarization 

SAR ship detection result, i.e., its 111 false negatives > GWFEF-Net’s 61 false 

negatives and its 168 false positives > GWFEF-Net’s 94 false positives. Similarly, Hu 

et al. [22] show an observably higher number of false negatives while maintaining 

similar false positive numbers, i.e., its 77 false negatives > GWFEF-Net’s 61 false 

negatives. 

Figure 6 shows the precision–recall (P–R) curves of different models. As shown in 

Figure 6, compared with other curves, the GWFEF-Net curve is always at the top, which 

intuitively shows that GWFEF-Net achieves the best detection performance. 

 

Figure 6. The precision–recall (P–R) curves of eleven state-of-the-art models. 

In addition, to avoid the impact of data fluctuation, we also conduct another 

quantitative experiment. Table 4 shows the comparison of the quantitative evaluation 

indices with the other ten competitive models, where ten optimal results of each method 

are used to obtain the mean and standard deviation. From Table 4, compared with other 

methods, GWFEF-Net is still the best, which further demonstrates the superior detection 

performance of GWFEF-Net. 

Table 4. The comparison of the mean and standard deviation with the other ten competitive models. 

The best and second-best model are, respectively, marked in bold and underlined. 

Method P (%) R (%) F1 (%) AP (%) 

Faster R-CNN [23] 89.55 ± 0.32 91.94 ± 0.15 90.73 ± 0.20 90.53 ± 0.18 

Cascade R-CNN [51] 92.13 ± 1.99 91.90 ± 0.80 92.00 ± 0.82 90.91 ± 0.71 

Dynamic R-CNN [52] 92.94 ± 0.45 91.95 ± 0.45 92.44 ± 0.24 91.07 ± 0.46 

Double-Head R-CNN [53] 91.35 ± 0.76 92.88 ± 0.36 92.10 ± 0.42 91.62 ± 0.38 

MobileNetv2+SSD [54,55] 52.86 ± 3.24 91.94 ± 0.62 67.07 ± 2.65 87.30 ± 0.74 

FreeAnchor [56] 72.03 ± 1.60 93.26 ± 0.45 81.27 ± 0.98 90.80 ± 0.52 

ATSS [57] 94.20 ± 1.49 84.01 ± 1.32 88.80 ± 0.46 82.83 ± 1.07 

FCOS [58] 94.08 ± 2.80 82.33 ± 1.31 87.79 ± 1.50 80.85 ± 1.53 

Fan et al. [21] 79.61 ± 6.15 91.70 ± 1.25 85.06 ± 3.31 90.09 ± 1.05 
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Hu et al. [22] 92.09 ± 0.64 93.34 ± 0.36 92.71 ± 0.42 91.30 ± 0.60 

GWFEF-Net 91.33 ± 0.55 95.01 ± 0.17 93.13 ± 0.26 94.20 ± 0.19 

Moreover, we also provide both the training time and testing time of all methods to 

objectively judge the time efficiency of all models. Table 5 shows the comparison of the 

training and testing time with the other ten competitive models. From Tables 3 and 5, 

compared with the second-best model (i.e., Double-Head R-CNN), GWFEF-Net decreases 

the training time by ~626 s and testing time by ~7 s, but shows a ~2.5% improvement in 

AP. Thus, although GWFEF-Net is not optimal in terms of time efficiency, it still shows a 

high cost performance ratio. 

Table 5. The comparison of training and testing time with the other ten competitive models. 

Method Training Time (s) Testing Time (s) 

Faster R-CNN [23] 792.74 7.73 

Cascade R-CNN [51] 1163.88 11.14 

Dynamic R-CNN [52] 823.70 7.68 

Double-Head R-CNN [53] 1891.99 21.19 

MobileNetv2+SSD [54,55] 7852.19 4.90 

FreeAnchor [56] 683.01 6.63 

ATSS [57] 703.60 7.33 

FCOS [58] 645.18 7.20 

Fan et al. [21] 611.74 5.69 

Hu et al. [22] 6614.76 5.14 

GWFEF-Net 1265.81 14.16 

4.2. Qualitative Results 

Figure 7 shows the ground truths of different scenes and the qualitative detection 

results of different models (i.e., Faster R-CNN, Cascade R-CNN, Dynamic R-CNN, 

Double-Head R-CNN, MobileNetv2+SSD, FreeAnchor, ATSS, FCOS, Fan et al., Hu et al. 

and GWFEF-Net). Moreover, their score thresholds used for display are all set as 0.5, 

except for those of ATSS and FCOS, which are set as 0 due to their poor performance. 

Here, to sufficiently and intuitively demonstrate the superior dual-polarization ship 

detection performance of GWFEF-Net, we show the qualitative results by exhibiting some 

offshore and inshore scenes. 
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Figure 7. The qualitative detection results of different models. Row (a) shows the ground truth; rows 

(b–l) represent the detection results of Faster R-CNN, Cascade R-CNN, Dynamic R-CNN, Double-

Head R-CNN, MobileNetv2+SSD, FreeAnchor, ATSS, FCOS, Fan et al., Hu et al. and GWFEF-Net, 

respectively. The detection boxes of different models are marked with different colors, and the 

number in the upper left corner represents the detection score. In addition, false alarms are marked 

in the red ellipse and missed detections are marked in the yellow ellipse. 

From Figure 7, one can conclude the following. 

1. GWFEF-Net shows excellent detection ability even in the case of multi-scale ships. 

Taking the second column as an example, all models except GWFEF-Net cannot 

successfully detect the small-scale ship on the image’s left edge. Only GWFEF-Net 

can successfully detect all the multi-scale ships in the image, and provides no 

unexpected false alarms. 

2. GWFEF-Net shows good detection ability even in the case of serious interference 

from shore buildings. Taking the fourth column as an example, most models tend to 

mistakenly detect a wharf building as a ship. In fact, in addition to GWFEF-Net, only 

MobileNetv2+SSD can successfully detect the three ships at the bottom left of the 

image without generating false alarms, but provides a less tight detection frame (i.e., 

the IOU of this detection frame and the ground truth is rather small). 

3. GWFEF-Net has quite high confidence for dual-polarization ships. Taking the ship 

in column 4 as an example (marked in a green inverted triangle), the corresponding 
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confidence of Faster R-CNN is 0.87, the corresponding confidence of Cascade R-CNN 

is 0.57, the corresponding confidence of Dynamic R-CNN is 0.56, the corresponding 

confidence of Double-Head R-CNN is 0.79, the corresponding confidence of 

MobileNetv2+SSD is 0.55, the corresponding confidence of FreeAnchor is 0.84, the 

corresponding confidence of ATSS is 0.40, the corresponding confidence of FCOS is 

0.35, the corresponding confidence of Fan et al. is 0.85, the corresponding confidence 

of Hu et al. is 0.96, and the corresponding confidence of GWFEF-Net is quite 

competitive (i.e., 0.92). Moreover, the confidence values of ATSS and FCOS are rather 

low, so it is unfair to set the score thresholds as 0.50 (if we do so, the two models can 

hardly detect ships). This situation will be solved in the future. 

4. GWFEF-Net achieves the most advanced dual-polarization SAR ship detection 

performance in both offshore and inshore scenes, compared with the other ten 

competitive models. 

5. Ablation Study 

In this section, we describe sufficient ablation experiments on the proposed 

contributions to verify the effectiveness of each contribution. 

5.1. Ablation Study on DFE 

Table 6 shows the ablation study of DFE with GWFEF-Net. In Table 6, “VV” denotes 

the GWFEF-Net detection results on VV polarization data, “VH” denotes the GWFEF-Net 

detection results on VH polarization data, “CVV-VH” denotes the GWFEF-Net detection 

results on coherence polarization data, and “VV+VH+CVV-VH” denotes the GWFEF-Net 

detection results with dual-polarization data (i.e., composed of VV features, VH features 

and CVV-VH features). From Table 6, it is obvious that using dual-polarization information 

from three-channel has a greater gain effect on the network than only using polarization 

information from part of the channels. In other words, the polarization coherence features 

in DFE are useful to improve GWFEF-Net’s detection effect. In particular, using the dual-

polarization data increases the AP index (i.e., ~2.3% higher than only using VV and ~1.2% 

higher than only using VH) and the F1 index (i.e., ~1.3% higher than only using VV and 

~1.3% higher than only using VH). As mentioned in Section 2.1, DFE can cooperatively 

use the information of co-polarization characteristics, cross-polarization characteristics 

and especially coherence-polarization characteristics. It can compensate for the lack of 

single-polarization information, finally provide richer dual-polarization features and 

suppress clutter interferences. In this way, the detection performance of GWFEF-Net can 

be improved. 

Table 6. The ablation study of the DFE. 

Input GT TP FP FN P (%) R (%) F1 (%) AP (%) 

VV 1203 1117 99 86 91.86 92.85 92.35 91.92 

VH 1203 1130 114 73 90.84 93.93 92.36 92.98 

CVV-VH 1203 1113 114 90 90.71 92.52 91.60 91.48 

VV + CVV-VH 1203 1135 111 68 91.09 94.35 92.69 93.34 

VH + CVV-VH 1203 1137 106 66 91.47 94.51 92.97 93.58 

VV + VH 1203 1131 91 72 92.55 94.01 93.28 93.24 

VV + VH + CVV-VH 1203 1142 94 61 92.39 94.93 93.64 94.18 

5.2. Ablation Study on GFE 

Table 7 shows the ablation study of the GFE by removing and retaining it. In Table 7, 

“” denotes GWFEF-Net with the GFE removed (while retaining the other three 

contributions), while “✓” denotes GWFEF-Net with the GFE retained (i.e., our proposed 

model). From Table 7, it can be seen that the GFE increases the AP index by ~1.9% and the 
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F1 index by ~1.4%, owing to its capability of group-wise feature enhancement. As 

mentioned in Section 2.2, the enhanced features can highlight each polarization semantic 

feature region so as to enhance the meaningful ship target area. In this way, the network 

will detect more meaningful ships and suppress useless clutter interferences with the help 

of the GFE, which will greatly improve the detection performance of GWFEF-Net. 

Table 7. The ablation study of the GFE by removing and retaining it. 

GFE GT TP FP FN P (%) R (%) F1 (%) AP (%) 

 1203 1123 110 80 91.08 93.35 92.20 92.27 

✓ 1203 1142 94 61 92.39 94.93 93.64 94.18 

5.3. Ablation Study on GFF 

Table 8 shows the ablation study of the GFF by removing and retaining it. In Table 8, 

“” denotes GWFEF-Net with the GFF removed (while retaining the other three 

contributions), while “✓” denotes GWFEF-Net with the GFF retained (i.e., our proposed 

model). From Table 8, it can be seen that the GFF increases the AP index by ~2.1% and the 

F1 index by 1.2%. It is useful for detecting more true ships, i.e., the number of true 

positives is increased by 23 (that is, GWFEF-Net can effectively decrease missed detections 

with GFF), owing to its capability of fusing multi-polarization features. As mentioned in 

Section 2.3, GFF can offer an excellent information interaction from polarization features 

and multi-scale ship features, which is helpful to extract richer information about ships. 

Finally, more multi-scale ships can be detected and the final detection performance can be 

improved. 

Table 8. The ablation study of the GFF by removing and retaining it. 

GFF GT TP FP FN P (%) R (%) F1 (%) AP (%) 

 1203 1119 99 84 91.87 93.02 92.44 92.06 

✓ 1203 1142 94 61 92.39 94.93 93.64 94.18 

5.4. Ablation Study on HPCA 

Table 9 shows the ablation study of the HPCA by removing and retaining it. In Table 

9, “” denotes GWFEF-Net with the HPCA removed (while retaining the other three 

contributions), while “✓” denotes GWFEF-Net with the HPCA retained (i.e., our 

proposed model). From Table 9, it can be seen that the HPCA can increase the AP index 

by ~1.1% and the F1 index by ~1.0%. It can improve the detection rate by ~1.0% (i.e., from 

91.42% to 92.39% with precision) and the recall rate by ~1.0% (i.e., from 93.93% to 94.93% 

with recall), owing to its capability of channel modeling. As mentioned in Section 2.4, by 

inserting HPCA into GWFEF-Net, we can obtain finer channel information, in which each 

polarization feature’s contribution is more balanced. In other words, by inserting HPCA 

into each polarization feature group, the network can learn the contribution of each 

polarization feature adaptively in the process of group-wise feature fusion. Therefore, 

HPCA can adaptively equalize the contribution of each polarization feature, and finally 

ensure the excellent detection performance of GWFEF-Net. 

Table 9. The ablation study of the HPCA by removing and retaining it. 

HPCA GT TP FP FN P (%) R (%) F1 (%) AP (%) 

 1203 1130 106 73 91.42 93.93 92.66 93.04 

✓ 1203 1142 94 61 92.39 94.93 93.64 94.18 
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6. Discussion 

The above quantitative results, qualitative results and ablation studies fully reveal 

the superior dual-polarization SAR ship detection performance. The proposed four 

contributions (i.e., the DFE, GFE, GFF and HPCA) guarantee the excellent ship detection 

results of GWFEF-Net in dual-polarization SAR images. It can be found that GWFEF-Net 

can ensure very few missed inspections, which is very applicable to some specific 

occasions (e.g., the illegal ship monitoring field, where it is essential not to generate 

missed detections). 

We also discuss the generalization ability of GWFEF-Net by conducting an 

experiment in detecting dual-polarization SAR ships from the Singapore Strait. Note that 

there is no other public dual-polarimetric SAR ship detection dataset, so we choose to 

construct some dual-polarization images from the Singapore Strait ourselves. Moreover, 

these images are not included in the DSSDD dataset used in our paper, and therefore can 

be used to test the generalization performance of GWFEF-Net. The images are from the 

Sentinel-1 satellite, with the incident angle of 27.6°~34.8°, resolution of 2.3 m × 14.0 m and 

swathes of ~250 km. Specifically, in this discussion, the images from Shanghai, the Suez 

Canal, etc., in DSSDD are selected as our training set, and the dual-polarization images 

from the Singapore Strait serve as the test set. Figure 8 shows the detection results of 

GWFEF-Net on the dual-polarization images from the Singapore Strait. From Figure 8, 

GWFEF-Net can successfully detect many ships in both offshore and inshore scenes. 

Specifically, GWFEF-Net can correctly detect most ships except for one inshore ship. The 

above shows the excellent generalization ability of GWFEF-Net. 

   

 

Figure 8. The detection results of GWFEF-Net on the dual-polarization images from the Singapore 

Strait. The score threshold used for displaying is set as 0.5. The missed detection is marked in the 

yellow ellipse. 

In the future, the typical roll-invariant polarimetric feature will be considered due to 

its advantage of robustness for rotation ships [59]; the quad-polarization SAR (QP SAR) 

will be considered because it has the most abundant polarization information [60]; the 

compact polarimetric SAR (CP SAR) will also be considered because it can reach a balance 

between swath width and polarization information [61]. In short, we will explore the SAR 

polarimetric features mentioned above to further improve the ship detection performance. 

In addition, some traditional artificial features with expert knowledge also reflect the 

scattering mechanism of ships. Thus, we will also consider integrating the traditional 

artificial features and polarization features into CNNs to further improve GWFEF-Net’s 

detection performance. 

Our future work is as follows: 

1. We will explore more SAR polarimetric features to further improve GWFEF-Net’s 

detection performance. 

2. We will consider integrating the prior information provided by traditional features 

into CNNs. 
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7. Conclusions 

In this paper, we present a novel two-stage deep learning network named “GWFEF-

Net” for better dual-polarization SAR ship detection. The proposed GWFEF-Net 

introduces novel contributions on four aspects to achieve better detection performance, 

i.e., (1) DFE is used to enrich the feature library and suppress clutter interferences to 

facilitate feature extraction, (2) GFF is used to obtain each enhanced polarization semantic 

feature to highlight each polarization feature region, (3) GFF is used to obtain fused multi-

scale polarization features to realize polarization features’ group-wise information 

interaction, (4) HPCA is used for channel modeling to balance each polarization feature’s 

contribution. Finally, extensive experimental results on the Sentinel-1 dual-polarization 

SAR ship dataset demonstrate the superior dual-polarization SAR ship detection 

performance of GWFEF-Net (94.18% in AP), compared with the other ten competitive 

methods. Specifically, GWFEF-Net can achieve a 4% improvement in AP compared to the 

baseline Faster R-CNN and a 2.51% improvement in AP compared to the second-best 

model. In brief, GWFEF-Net can offer high-quality dual-polarization SAR ship detection 

results, especially ensuring very few missed inspections, which is of great value. 
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