
Citation: Zhang, L.; Wang, J.; Shen,

Y.; Liang, J.; Chen, Y.; Chen, L.; Zhou,

M. A Deep Learning Based Method

for Railway Overhead Wire

Reconstruction from Airborne LiDAR

Data. Remote Sens. 2022, 14, 5272.

https://doi.org/10.3390/rs14205272

Academic Editors: Belen Riveiro and

Mario Soilán

Received: 14 September 2022

Accepted: 19 October 2022

Published: 21 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

A Deep Learning Based Method for Railway Overhead Wire
Reconstruction from Airborne LiDAR Data
Lele Zhang 1,2 , Jinhu Wang 1,*, Yueqian Shen 3, Jian Liang 4, Yuyu Chen 1,2, Linsheng Chen1 and Mei Zhou 1

1 Key Laboratory of Quantitative Remote Sensing Information Technology, Aerospace Information Research
Institute, Chinese Academy of Sciences, Beijing 100094, China

2 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences,
Beijing 100049, China

3 School of Earth Sciences and Engineering, Hohai University, No.8 Fochengxi Road, Nanjing 211100, China
4 Institute of Software, Chinese Academy of Sciences, No 4, South Fourth Street, Zhong Guan Cun,

Beijing 100190, China
* Correspondence: jinhu.wang@aircas.ac.cn; Tel.: +86-(01)8217-8645

Abstract: Automatically and accurately reconstructing the overhead wires of railway from airborne
laser scanning (ALS) data are an efficient way of railway monitoring to ensure stable and safety
transportation services. However, due to the complex structure of the overhead wires, it is challenging
to extract these wires using the existing methods. This work proposes a workflow for railway
overhead wire reconstruction using deep learning for wire identification collaborating with the
RANdom SAmple Consensus (RANSAC) algorithm for wire reconstruction. First, data augmentation
and ground points down-sampling are performed to facilitate the issues caused by insufficient and
non-uniformity of LiDAR points. Then, a network incorporating with PointNet model is proposed to
segment wires, pylons and ground points. The proposed network is composed of a Geometry Feature
Extraction (GFE) module and a Neighborhood Information Aggregation (NIA) module. These two
modules are introduced to encode and describe the local geometric features. Therefore, the capability
of the model to discriminate geometric details is enhanced. Finally, a wire individualization and
multi-wire fitting algorithm is proposed to reconstruct the overhead wires. A number of experiments
are conducted using ALS point cloud data of railway scenarios. The results show that the accuracy
and MIoU for wire identification are 96.89% and 82.56%, respectively, which demonstrates a better
performance compared to the existing methods. The overall reconstruction accuracy is 96% over the
study area. Furthermore, the presented strategy also demonstrated its applicability to high-voltage
powerline scenarios.

Keywords: airborne LiDAR; neighborhood information; PointNet; wire extraction; wire reconstruction

1. Introduction

Railway systems have been some of the most important public transportations for
decades. The overhead wires of railway, which consist of the catenary and contact wires,
are the pivotal components for power supply to the system. To ensure stable and safety
transportation services, regular monitoring and inspection of the wires are of crucial
importance. Traditionally, in situ manual inspection or image-based automatic techniques
were applied to detect irregularity and defects of the above-mentioned railway facilities [1].
However, those approaches are either labor-intensive or prone to light conditions. Light
Detection and Ranging (LiDAR) integrates Laser Scanner (LS), Global Navigation Satellite
System (GNSS), and Inertial Measurement Unit (IMU), which are able to sample the object
of interest in the form of three-dimensional (3D) point cloud data [2]. Particularly, ALS is
performed by mounting the LiDAR system on an airborne platform. By integrating the
distance value to a spot illuminated by the laser pulse and the position and orientation
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obtained by GNSS/IMU, accurate and versatile 3D information of large scale landscape
can be collected efficiently [3].

ALS has gradually become a popular method in a variety of fields due to its fast data
acquisition capability [4]. Point cloud data collected by ALS have been applied in geological
surveys [5,6], terrain extraction and modeling [7,8], 3D building reconstruction [9,10],
forestry surveys [11,12], precision agriculture [13,14], powerline inspection [15,16], etc.
Since ALS systems are able to acquire 3D shape information accurately and efficiently over
a large scale, ALS point clouds have become the priority data for many related tasks such as
powerline classification, extraction, and reconstruction [17–19]. Many existing methods can
accurately extract the high-voltage powerlines [20–22]. However, most of these methods
use classical models to extract powerlines, and there are few end-to-end methods available
at present. Furthermore, railway overhead wires are more complex than high-voltage
powerlines, which are mainly composed of catenary wires, support structure, and track.
This structure causes the non-uniformity of the number of points in railway ALS point
cloud data [23]. There are few studies on the precise extraction of railway wires from ALS
data, which is still a difficult problem worthy of in-depth study.

Based on the above mentioned issues, this work proposes an automatic wires extraction
algorithm for railway scenario based on ALS point cloud data. The algorithm first segments
a railway corridor point cloud into three categories: wires, pylons, and ground points.
Then, the extracted wire points are employed for reconstruction. The main contributions of
this work are follows:

1. A data augmentation and ground point downsampling method is proposed to allevi-
ate the non-uniformity of the number of points problem;

2. A Geometric Feature Extraction (GFE) module and a Neighbor Information Aggre-
gation (NIA) module are introduced to combine with PointNet [24] to improve the
segmentation accuracy of wires;

3. A wire individualization and multi-wire fitting method is proposed to reconstruct rail-
way overhead wires. Figure 1 shows the applicable scenario of the proposed method.

Figure 1. An applicable scenario of the proposed methodology. (a) point cloud data of a railway
scenario (The points are colorized by height from red to blue); (b) overhead wires are automatically
segmented and reconstructed by the proposed method.

The remaining sections are organized as follows: Related work is presented in Section 2.
Sections 3 and 4 present the details of the proposed algorithm and validation over ALS
point cloud data, respectively. Conclusions are given in Section 5.
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2. Related Work

Generally, powerline detection and extraction methods using point cloud data can
be classified into three categories: (1) model fitting-based methods; (2) clustering-based
methods; and (3) learning-based methods.

2.1. Model Fitting Based Methods

The model fitting method compares the different degrees for variance or covariance
matrices between the fitting model and the observation sample, which mainly consists of
Hough Transformation (HT), Least Square Method (LSM), RANSAC, etc.

A method using HT for powerline extraction from ALS point cloud data was proposed
by Melzer and Briese [25]. First, terrain points were removed using digital elevation models.
Then, a bottom-up HT strategy is applied iteratively to extract the powerlines. The 3D
catenary lines fitting is used to reconstruct the missing powerline. Preliminary results of a
1000 m × 140 m test scan are given.

An approach using LSM for powerline extraction from ALS point cloud data was
proposed by Jing et al. [26]. This method identifies points belonging to a single powerline
based on the spatial distribution characteristics of the closely connected powerline points
on the same powerline. Then, LSM is used to estimate the parameters of the powerline
model, and multiple powerlines are reconstructed. The experimental results show that the
success rate of the proposed method is 97%. However, the algorithm relies on the density of
the raw data. The higher the density of the point cloud, the higher the extraction accuracy.

A method using 3D catenary models for powerline extraction from ALS point cloud
data was proposed by Sohn et al. [27]. Markov Random Fields (MRF) was used for scene
segmentation and accurate position of pylons with airborne urban powerline corridors.
Powerlines are modeled using 3D catenary models. The extraction accuracy is 91.3%.

An algorithm that filters out the horizontal segments containing powerlines and using
2D point density-based thinning to remove trees and buildings was proposed by Yadav and
Chousalkar [28]. Finally, HT is used to extract the powerlines from Mobile Laser Scanning
(MLS) point cloud data. The average correctness and completeness of the urban, suburban,
and rural test sites reached 98.84% and 90.84%.

A method using Principal Component Analysis (PCA) and RANSAC for power-
line extraction from MLS point cloud data was proposed by Lehtomäki et al. [29]. First,
MLS powerline point cloud data are voxelized in rural environments and then PCA and
RANSAC are used to extract powerline and pylon points. Powerline extraction recall and
precision are 93.3% and 93.6%,respectively.

The method based on model fitting has high accuracy in extracting powerlines. How-
ever, the appropriate model needs to be selected in advance, and the extraction accuracy
depends heavily on data quality.

2.2. Clustering Based Methods

A clustering-based method segments a 3D point cloud dataset into different classes or
clusters according to specific criteria. These criteria make use of the similarity of points in
the same cluster as much as possible. The commonly used clustering approaches include
K-means [30], Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [31],
Agglomerative NESting (AGENS) [32], etc.

A method using bottom-up point clustering for powerline extraction from MLS urban
powerline point cloud data was proposed by Cheng et al. [33]. The clustering method
based on the voxel is used to extract the powerline points. A bottom-up point clustering
method is introduced to identify points belonging to a single powerline using 3D line
fitting. The correctness and completeness of the extracted powerlines are 99.1% and
93.9%, respectively.

An approach using Euclidean distance clustering for powerline extraction from MLS
powerline point cloud data was proposed by Guan et al. [34]. Road points are first separated
from non-road points using threshold criteria of elevation difference and slope along the
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scanning trajectory. Powerlines are extracted using a combination of height filters, spatial
density filters, size filters and shape filters. HT and Euclidean distance clustering were
used to extract individual powerlines. The average completeness, correctness, and quality
of the extracted powerlines are 92%, 99%, and 91%.

A method using a distance clustering for powerline extraction from ALS powerline
point cloud data was proposed by Liang et al. [35]. Points on the same powerline will be
close, while points on different powerlines will be far apart. Therefore, a method based
on a distance cluster is used to extract the powerline. The experimental results show
that the extraction accuracy of powerlines can reach more than 95% using this algorithm.
However, this method only considers point distances, ignoring noise points that may have
adverse effects.

Using a clustering-based method is able to effectively extract the powerline points.
However, those methods are sensitive to the parameter settings.

2.3. Machine Learning Based Methods

Learning methods are mainly to train models to learn from data, and then use the
obtained information to improve their performance. Learning methods include Decision
Trees (DT), Random Forests (RF), Support Vector Machines (SVM), deep learning, etc.

Joint-Boost classification and 26 features based on geometry, intensity and multi-return
information were used by Guo et al. [36] to classify the ALS powerlines. There are five
categories classified: buildings, ground, vegetation, powerlines, and pylons. The average
classification accuracy is 96%.

SVM is used by Wang et al. [37] to extract ALS powerline point cloud data. They use
a RANSAC algorithm to construct powerline corridors and extract geometric features by
calculating the oblique cylindrical neighborhood. Finally, SVM is used to obtain the results.
The results show that the proposed method achieves 98%, 98%, and 97% in the extraction
precision, recall, and classification quality of ALS point cloud data in urban areas.

A method using RF for powerline extraction from ALS powerline point cloud data
was proposed by Peng et al. [38]. With comparing methods on powerline classification
for ALS and MLS point cloud data, they found that a classification method consisting
of a multi-scale vertical cylindrical neighborhood, an RF classifier, and a selected core
feature set may be the best solution for balancing classification accuracy and processing
time. The results show that the average precision, recall, and quality are 98%, 95%, and
93%, respectively.

Machine learning-based classification methods still have difficulty ensuring that the
features used for classification contain as much information as possible. In recent years,
deep learning [39] methods have shown superior performance in feature extraction [40,41],
classification [42,43], and segmentation [44,45] of 3D point cloud data, which provides a
new approach for powerline segmentation and extraction. A graph convolution method
combining neighborhood dimensional information and neighborhood geometric informa-
tion aggregation modules is proposed by Li et al. [23] to extract powerlines and pylons
from ALS data. Among them, the F1 score and quality of the powerline are 99.3% and
98.6%, and the pylon scores are 96% and 92.4%. However, this method still has incomplete
pylon extraction results.

High-voltage powerlines with parallel lines are extracted and reconstructed by using
the above methods. However, railway wire extraction is more difficult than high-voltage
lines due to the non-uniformity of the number of points caused by the railway line structure
and the staggered arrangement of wires. At present, there is no automatic extraction
and reconstruction method for railway overhead lines. Existing methods still need to
be improved when extracting railway overhead lines. Table 1 gives the summary of the
above-mentioned methods.
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Table 1. Summary of powerline extraction methods.

Methods Data Characteristic

Model fitting based methods

Melzer and Briese [25] ALS Iteratively bottom-up HT strategy
Jing et al. [26] ALS LSM-Based line fitting
Sohn et al. [27] ALS Integrated HT, eigenvectors, and point density

Yadav and Chousalkar [28] MLS HT-based powerline extraction
Lehtomäki et al. [29] MLS Voxelization, PCA and RANSAC

Clustering based methods

Cheng et al. [33] MLS Bottom-up clustering

Guan et al. [34] MLS Integrates height filters, spatial density filters,
size and shape filters

Liang et al. [35] ALS Euclidean distance-based clustering

Machine Learning based methods

Guo et al. [36] ALS Joint-Boost classification using 26 features
Wang et al. [37] ALS SVM-based extraction
Peng et al. [38] ALS RF-based classification

Li et al. [23] ALS Graph convolution-based identification

Proposed method ALS Deep learning based method for extraction and
RANSAC based wire fitting

3. Methodology

In this section, the methodology on wire extraction and reconstruction is presented.
The proposed method consists of three steps: (1) pre-processing; (2) wire segmentation;
and (3) wire reconstruction. The key steps of this method are shown in Figure 2.

Figure 2. The overall procedure of the proposed method. First, raw data are preprocessed to
obtain training data. Then, training data are fed into the proposed model for wire segmentation.
Consecutively, the segmentation results are used for wire reconstruction.

3.1. Pre-Processing

Due to the scanning mechanism of ALS and the characteristics of wire system, there
are less numbers of points obtained on wires and pylons in comparison with that of the
ground. The non-uniformity of the number of points from the above three categories
will lead to oversegmentation or undersegmentation for ground and wires using a deep
learning network.

To facilitate the issue, a two-step strategy is applied. First, data augmentation is
conducted to ensure sufficient training data. Second, ground points are downsampled to
alleviate too many numbers of points to improve model robustness.
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3.1.1. Data Augmentation

Generally, with more training data, more features can be learned from the deep
learning model [46]. However, there are fewer training data for existing wires. To alleviate
this problem, a data augmentation strategy is introduced. This approach includes three
steps: (1) Training data re-tiling, as shown in Figure 3a. The railway wire data are re-tiled
along the corridor with each tile consisting of two pylons, and there is an overlap between
adjacent tiles. This strategy also ensures the uniformity of the number of points to speed up
network training. (2) Training data segmentation. Segment each tile into three categories:
wire, pylon, and ground points (all other points). (3) Rotation amplification. Except for
the original coordinates, each tile is rotated 90° about the X, Y and Z axis to obtain a new
training sample, as shown in Figure 3b.

(a)

(b)
Figure 3. Data augmentation. (a) training data re-tiling; (b) rotation amplification. The four images
are the visualization of the original tile and the rotated tile on the XOY plane.

3.1.2. Ground Points Downsampling

As mentioned above, ground points usually account for more than 90% of the total
points in ALS point cloud data of wire scenarios [23]. Using non-uniformity data to train the
model will lead to unsatisfactory results. Therefore, the ground points are downsampled.
Thus, the number of ground points and wire points is approximately equivalent. This
procedure includes the following steps: (1) build an Octree of the point cloud; and (2) the
center of gravity of the points in each voxel is calculated to thin the ground points. Figure 4
shows the ground point downsampling process.

Assuming Pi = (xi, yi, zi)
T is a point in a voxel, the center of gravity Pg of all points in

the voxel is:

Pg =
1
n

n

∑
i=1

Pi (1)

Here, n is the number of points in the voxel.
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(a) (b) (c)
Figure 4. Ground point downsampling. (a) original ground point cloud; (b) an Octree space division
of the ground points; (c) downsampling the ground points.

3.2. Wire Segmentation

PointNet [24] is the first deep learning network to directly perform on 3D point clouds.
The network only uses the xyz information of the point, which is effective on the extraction,
classification and segmentation of objects of interest from point cloud data. However, it is
uncertain whether the lack of the local information of the network leads to lower accuracy
of the above-mentioned wire extraction.

In order to segment wires and pylons more accurately and efficiently, we propose a
dual-branch network model, as shown in Figure 5. It consists of three modules: a GFE
module, an NIA module and the PointNet module. The GFE module is designed to extract
local geometric features of point cloud, thereby enriching local geometric information.
However, local feature extraction is still challenging in extracting information in incomplete
data. Thus, an NIA module is proposed to aggregate neighborhood information. The NIA
module extracts the context relationship between the query point and the neighbor points,
which enhances the descriptiveness of the local features of the network. The PointNet
module provides point cloud alignment and rotation-invariant operations. The extracted
local and global features are fed to Multi-Layer Perceptron (MLP) and max pooling to
obtain the global feature of points. Finally, the features obtained by the three modules are
concatenated to form 2048-dimensional features. Then, output each class scores through
MLP. The proposed model is described in detail as follows.

Figure 5. Flowchart of the presented model in this work. The GFE module extracts local geometric
features of point cloud. The NIA module aggregates neighborhood feature information. The PointNet
module outputs each class score through MLP.

3.2.1. GFE Module

The raw point cloud consists of only xyz coordinate values, which may be insufficient
to distinguish between wires and pylons. Inspired by study [47], we find that, in wire scenes,
different classes of objects vary greatly in shapes. Within a certain neighborhood, wires,
pylons, and ground points are approximately linear, spherical, and have a planar structure,
respectively. Therefore, three geometric feature descriptors are chosen: anisotropy, linearity,
and planarity to enrich the local information of points.

Assuming a 3D point cloud set P, each point in P has xyz coordinate information.
Given a query point p ∈ P and radius R, a set of neighborhood points {pi||p− pi| < R} is
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obtained. The three-dimensional structure tensor M of point cloud P in the neighborhood
is defined as follows:

M =
1
n

QTQ (2)

whereas n is number of neighborhood points. Q = (p1 − p, p2 − p, . . . , pn − p)T , M is a
real symmetric matrix, which can be decomposed into M = RIRT , R is a rotational proof,
and I is a symmetric positive definite matrix. The element of I is the eigenvalues of M. The
three eigenvalues are all positive values, represented by λ1, λ2, and λ3, respectively, and
sorted by λ1 ≥ λ2 ≥ λ3. Then, the 3D features are defined as follows:

{A, L, P} =
{
(λ1 − λ2)

λ1
,
(λ2 − λ3)

λ1
,
(λ1 − λ3)

λ1

}
(3)

In case of a linear structure, such as wire points, we observe that λ1 >> λ2, where
a plane structure, such as ground points, λ1 ≈ λ2 >> λ3. For scattered points, such as
pylon points, λ1 ≈ λ2 ≈ λ3. Through those local geometric features, we can enhance
the prior knowledge of the model and improve the model’s ability to recognize objects of
different shapes.

As shown in Figure 6, the radius search algorithm is used to query for n neighbor
points within radius R and calculate the geometric features separately. Then, enter the
PointNet model with the 3D coordinates xyz to obtain the local features of each point. Each
point is represented by a six-dimensional (6D) vector, i.e., P(x, y, z, A, L, P).

Figure 6. Network structure of the GFE module.

3.2.2. NIA Module

The GFE module enriches the input information and encompasses local shape features.
However, it is difficult to completely preserve the geometric information obtained after
MLP. Therefore, a short branch is introduced. It describes local details through MLP
aggregate geometric shallow features. In a certain neighborhood, it is difficult for some
points to have obvious geometric structures, especially at the junctions. Thus, the NIA
module is proposed, which is able to extract the query point and neighboring points context
information. Therefore, enhance the local geometric description capabilities of the model.

As shown in Figure 7, for a query point pq, the query point features Fpq are first
extracted by MLP. Then, the k original neighboring point {pi|i ≤ k} of the query point is
found through the K Nearest Neighbors (KNN) algorithm. The neighbor features Fpi after
MLP are acquired through the index of point. Then, concatenate the query point features
with the adjacent features to obtain the semantic features Fn between points. Thus, the
network can extract the local neighbor information and the context between the query
point and the neighborhood points:

Fn = C(Fp0 , · · · , Fpk ) (4)

Here, C represents the concatenation of data in dimension. Fn denotes the features
with shape N × (16× K).
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Figure 7. Network structure of the NIA module.

3.2.3. Pointnet Module

The structure of PointNet module is shown in Figure 8. Each point in the input point
cloud consists of a 6D feature calculated by the GEF module, i.e., P(x, y, z, A, L, P). Apply
the input transformation and feature transformation to the input point cloud to obtain the
local features of Fl each point. The point features are then aggregated through MLP and
max pooling operations to obtain the global feature Fg of the points:

Fg = max(MLP((x, y, z, A, L, P)) (5)

Here, Fg denotes the global features with shape N × 1024 and max(•) represents
maxpooling operation.

Figure 8. Network structure of the PointNet module.

As is shown in Figure 9, the MLP consists of an input layer, an output layer, and one
or more hidden layers. Generally, the features are input by the input layer. The neurons
in each full connection layer fit the original features and finally output the features by the
output layer. High-level features obtained by MLP include multiple semantic information.
However, the spatial geometric features are lacking. The low-level features obtained by the
hidden layer carry more geometric details. Therefore, on the basis of aggregating local and
global features, the proposed method performs multi-scale feature concatenating on the
results of each layer of MLP.

Figure 9. Multi-layer perception (MLP) structure.
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The final step of the proposed method is concatenating the local and global features of
the point with the neighborhood features of the NIA module to obtain the high-dimension
features of each point:

Fc = C(Fl , Fg, Fn) (6)

Here, Fc denotes the features with shape N × 2048. The proposed method uses the
softmax loss function of the PointNet model:

loss = −∑ yilnai (7)

Here, yi represents the real class, and ai represents the output value of softmax.
Finally, after MLP, the network outputs each class score. The point cloud is segmented

into three types: wire, pylon, and ground point.

3.3. Wire Reconstruction

In this part, candidate wire points need to be further processed to obtain individual
wire. Compared with high-voltage powerline, railway overhead wires are more complex in
structure. As shown in Figure 10a, three catenary wires and one contact wire are illustrated
between the two support rods. However, due to the low density of data obtained by
airborne LiDAR, there are many wire disconnections. Moreover, the distance between the
wires is short. Therefore, it is difficult to identify a single wire using the classical density
clustering method. To facilitate the above issues, a wire identification and multi-wire
fitting algorithm is designed. The algorithm is able to stably identify each wire point and
reconstruct the wire by fitting the quadratic equation. The steps are presented as follows.

Figure 10. Schematic diagram of the structure of the railway overhead wires (a) side view;
(b) top view.

(1) Extraction of original wires span
The wire obtained by segmentation in the previous part is based on the data downsam-

pled from the original data. To ensure the accuracy of wire reconstruction, reverse-mapping
is performed to the original data before reconstruction. In the reverse-mapping process, the
original data point is used as the query point. Kd-tree is constructed to query the nearest
segmented point. The label obtained by model prediction is assigned to the query point to
obtain the wire segmentation result in the original data.

The wires in railway corridors are made up of many spans, and the pylons support
these spans. In the previous step, the complete pylons are extracted. The proposed method
uses the coordinates of the extracted pylons to obtain their 3D bounding boxes. The wire
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points encompassed by the 3D bounding boxes of each span are further considered for
reconstruction. Span extraction reduces the number of points and makes reconstruction of
wires easier.

(2) Wire individualization
As shown in Figure 10a, the contact wire is a 3D straight line, which is on the same

vertical plane as the two catenary wires above. That is, in the top view, the eight wires in
the middle of the complete two support rods are arranged in parallel into four straight
lines, as shown in Figure 10b. Therefore, according to this structural feature of the railway
wires, an individualization and reconstruction method is proposed.

Assuming the span points set {P}, the proposed method obtains the eigenvector ~V1
corresponding to the maximum eigenvector for the midpoint O of the bounding box, and
the direction of the vector is the wire’s direction. Threshold segmentation is performed
based on the distance from the point to the straight line passing through the midpoint,
and the wire points are divided into four clusters: {P1}, {P2}, {P3}and {P4}. In particular,
{P2} and {P3} contain three wires, two catenary wires and one contact wire, respectively.
Since the two types of wires use different reconstruction models, {P2} and {P3} are divided
according to the elevation to extract the contact wires.

(3) Wire reconstruction
After extracting and individualizing wires, the final step is to reconstruct the wire

points for subsequent use (such as 3D measurements). It is approximated that the overhead
wires in each span are nearly catenary-shaped by connecting to the consecutively pylons.
As shown in Figure 10a, S1 and S2 are the two end points that connect the wires in red
color to the pylons. Thus, all the 3D points of the wires are distributed approximately
in a 2D vertical plane, which has the two end points and the corresponding wire points.
The proposed method is based on the RANSAC algorithm for multi-wire fitting. The
reconstruction process is described in Algorithm 1, and {P} is the point cluster identified
in the previous step. As shown in Figure 11, the algorithm first translates {P} to the origin
O of the global coordinate system. Then, rotate {P} about the Z-axis toward the X-axis by
angle θ. Next, three seed points p1, p2, and p3 are randomly selected from {P} to apply the
quadratic model in Equation 8 for wire fitting in the XOZ plane.

z = Ax2 + Bx + C (8)

Here, A, B, C represent the parameters of the fitted catenary wires.
When the distance d from the remaining points to the fitted curve is less than the given

parameter σ, the point is classified as a point on the curve. After t iterations, the model
with the most wire points is taken as the optimal fit. Output the corresponding optimal
parameters Abest, Bbest, Cbest. Next, loop a second curve fit on the remaining points:

z = ax + b (9)

Here, a and b represent the parameters of the fitted contact wires.



Remote Sens. 2022, 14, 5272 12 of 23

Figure 11. Transformation procedures of the point set {P} in the XOY plane.

Algorithm 1 Algorithm for multi-wire fitting.

Iuput: Point set {P} and initial parameter σ, t.
Output: Fitted wires parameter A, B, C and fitted points.

1: function COMPUTEFITTEDWIREPARAMETERS
2: Translate {P} to origin O;
3: Rotate {P} about Z axis by angle θ;
4: for m = 0→ 2 do
5: for n = 0→ t do
6: randomly choose seed points p1, p2, p3;
7: determine A, B, C;
8: calculate the distance d from the raw wire points to z = Ax2 + Bx + C;
9: if d<σ then

10: fitted points number++;
11: end if
12: end for
13: return Abest, Bbest, Cbest corresponding to maximum fitted points number;
14: end for
15: end function

4. Validation

To evaluate the effectiveness of the proposed method, qualitative and quantitative
evaluations are performed using ALS railway point cloud data in this section.

4.1. Data Description

As is shown in Figure 12, the proposed method is tested using the Netherlands ur-
ban railway point cloud data from the AHN3 (Het Actueel Hoogtebestand Nederland)
project [48]. The details of the datasets are listed in Table 2. The whole length is approxi-
mately 7 km with 106 pylons. There are 0.18 million points with a density of 15 pts/m2.
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Figure 12. The railway dataset used by the proposed method.

Table 2. Descriptions of the dataset.

Parameters Value

Length(km) 7
Number of points (million) 0.18

Density (pts/m2) 15
Number of pylons 106

4.2. Operating Environment

The environment used for the experiment of this work is a desktop with a 64-bit Linux
opening system, and the deep learning framework is implemented using PyTorch. The
specifications of the experimental environment are given in Table 3.

Table 3. Specifications of the experimental environment.

Experiment Environment Configurations

Operating System Ubuntu20.04
CPU Inter®Xeon(R)Silver 4210R CPU@2.40GHZ×40
GPU NVIDIA Corporation GV100[TITAN V]
RAM 64GB

VRAM 12GB
Deep Learning Platform PyTorch

Python Python3.6

4.3. Evaluation Methods

In the wire segmentation stage, Mean Intersection over Union (MIoU) and accuracy
(ACC) are used as the evaluation index. ACC represents the percentage of predicted correct
results in the total sample. A lager ACC value indicates less wrong segmentation samples.
However, in case of unbalanced sampling cases, ACC cannot be used as an appropriate
indicator to measure the quality of segmentation results for each specific class of objects.
Therefore, MIoU is employed for the overall evaluation of point cloud segmentation:
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MIoU =
1
k

k

∑
i=1

TP
TP + FP + FN

(10)

ACC =
TP + TN

TP + TN + FP + FN
(11)

where k represents k sample classes. TP (True Positive) denotes the correctly classified
category. FP (False Positive) represents other parts that were incorrectly segmented into
that class. FN (False Negative) means that the class is incorrectly segmented into parts of
other classes. TN (True Negative) represents the other classes that are correctly classified.

In this work, there are three types of classes: wire, pylon, and groundpoint. Taking
wire as an example, TP represents the wire point that is correctly predicted as wire. FP
represents the point that is predicted as wire in the other two categories. FN represents the
wire point that is predicted as pylon or groundpoint. In addition, TN represents the pylon
and groundpoint that are correctly predicted.

In the reconstruction stage, fitting rate and fitting error are used to verify the effec-
tiveness of the multi-wire fitting algorithm. The fitting rate indicates the proportion of the
points involved in the fitting to the total number of points. The fitting error represents the
average distance from the sample points to the fitting line. The lower the fitting error, the
better the fitting effect:

Fitting rate =
N f it

Nraw
(12)

Here, Nraw and N f it represent the number of points extracted by the span and the
number of wire points included in the fitted curve, respectively:

Fitting error =
1
n

n

∑
i=1

ei
d (13)

Here, n and ei
d represent the number of fitting points and the vertical distance from

the point to the fitting wire.

4.4. Parameter Settings

During preprocessing, the raw data are segmented into tiles which contain two pylons
per segment. After three times of rotate amplification, a total of 392 tiles of training data
were obtained. Among them, there are 280 pieces of training data, 60 pieces of test data,
and the rest are validation data.

The proposed method draws on the network parameter settings of PointNet. The
adaptive moment estimation was set with a momentum of 0.9. The initial learning rate
is 0.001 and decreases by half every 20 epochs. The batch size is 40, and the number of
training epochs is 200.

In the railway wires scenario, the non-uniformity of the number of the points dra-
matically reduces the final segmentation accuracy. Therefore, we focus on the effect of the
choice of radius R on the extraction of pylon points when calculating geometric features.
The effect of anisotropy on point cloud segmentation by changing the R value is shown in
Figure 13. Specifically, we set R = 2 m, R = 4 m, or R = 6 m. The figure shows the anisotropy
value of each point in a tile of point cloud data calculated under different radius and its
distribution range. When R = 2 m, there is no obvious effect on the extraction of the pylon;
when R = 4 m, the value of the pylon points is more obvious compared to other points;
when R = 6 m, the anisotropy value of ground points around the pylon and a part of the
wire points are close to the pylon points, which can easily produce error classification.
Thus, the geometric feature extraction radius of the railway overhead wires is set to 4 m.
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Figure 13. The anisotropy value with different neighbourhood radius. (a) anisotropy values with
radius 2, 4, and 6 m; (b–d) are the distributions of anisotropy value with the radius, respectively.

According to the selection of the above R, we found that the number of neighborhood
points at the center point below the R radius is within 2 to 4. Therefore, in the NIA module,
the k of the 3-Nearest Neighbor algorithm is set to 3.

In the wire reconstruction, we choose σ = 0.1, 0.15, 0.2 and t = 50 to fit the railway
overhead wires. As shown in Figure 14, as the σ increases, the average fitting error from the
original single wire to the fitted wire increases gradually. At the same time, however, the
number of fitting points tends to remain unchanged. After comprehensive consideration,
σ = 0.15 and t = 50 are finally selected to fit the wires. All parameters are given in Table 4.

(a) (b)
Figure 14. The influence of the choice of σ on the fitting effect. (a) the average fitting error of a single
wire under different σ; (b) the number of points fitted by a single wire under different σ (1–8 represent
8 wires in a span respectively).
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Table 4. Parameter settings.

Part Parameter Value

Pre-processing
segment standard (contain pylon numbers) 2
rotation amplification 3 times
training data 392 tiles

Segmentation

moment estimation 0.9
learning rate 0.001
batch size 40
epoch 200
R 4 m
k 3

Reconstruction σ 0.15 m
t 50 times

4.5. Pre-Processing Results

After pre-processing, a sample tile of training data is shown in Figure 15. Table 5
gives the comparison of various target points of the tiles of training data after ground
points downsampling.

Figure 15. Training data from different perspectives after preprocessing (red, green and blue points
represent wire, pylon, and ground points, respectively).

Table 5. Comparison of the number of various targets in the original data and after downsampling.

Dataset
Raw Point Clouds Downsampled Results

Line Pylon Ground Total Line Pylon Ground Total

1 564 154 14,655 15,373 564 154 2204 2922
2 1465 637 28,021 30,123 1465 637 4543 6645
3 921 419 18,745 20,085 921 419 1395 2735

4.6. Wire Segmentation
4.6.1. Training Results

As shown in Figure 16, the preprocessed data are trained by the proposed model. As
the training is carried out, the loss of the training set continues to decline. When the number
of iterations reaches 100, the loss trends to convergence. The accuracy in the training set
also stabilized at 100 iterations. It can be seen from the trend of the loss of test set that the
initial loss is around 1.0. With the progress of training, the loss gradually decreased and
tended to converge after 100 rounds. There is no significant difference between training loss



Remote Sens. 2022, 14, 5272 17 of 23

and test loss, which indicates that the model training effect is more effective. The accuracy
of the test set is also rising with the convergence of the model. According to the trend of
the training set loss and the accuracy of the test set, it can be seen that the proposed model
is able to effectively segment the wire.

Figure 16. The trend of the training and test sets loss/accuracy during the model training.

4.6.2. Model Verification

To further verify the effectiveness and robustness of the proposed method, the pro-
posed method is compared with existing segmentation methods, which use PCA to calculate
geometric features. After filtering nearby places, the wire and pylon are classified by setting
reasonable thresholds. The experiment results are also compared with the PointNet method.

Table 6 and Figure 17 show the quantitative and qualitative comparison of different
methods, respectively. The classification accuracy of PCA method of the railway overhead
wires reaches 84.38%, and MIoU reaches 0.6029. As seen from area A and B in Figure 17a
denoted by the rectangles, using the classical segmentation method PCA to segment the
wire will produce a large error, especially at pylon and wire connections. Compared with
the traditional method, the MIoU and ACC of wire segmentation are improved by 22.36%
and 12.51% when using the proposed method. The reason is that the proposed method
extracts more features than the PCA method.

Compared with PointNet, the proposed method also has great advantages. Particularly,
PointNet barely learns the correct features when segmenting wires, resulting in severe
segmentation errors, in area C, D, and E in Figure 17b denoted by the rectangles. On
the contrary, the proposed method improves MIoU and ACC by 38.05% and 22.95%,
respectively. Figure 17c also shows that the objects extracted by the proposed method are
intact. There are only sporadic points misclassifications, as shown in rectangle F. This is
due to the neighborhood points and local geometric information involved in the proposed
method, which enables learning more detailed features.

Table 6. Comparison of the MIoU and ACC of the three different wire segmentation methods.

Dataset
PCA PointNet Proposed method

MIoU ACC MIoU ACC MIoU ACC

Railway 0.6029 0.8438 0.4460 0.7394 0.8265 0.9689
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Figure 17. The results of different wire segmentation methods. The wire, pylon, and ground are
colored with red, green, and blue, respectively. The black dotted frame indicates points that are
classified with error.

4.6.3. Effectiveness of Each Proposed Module

In order to evaluate the effectiveness of the proposed module, a series of ablation
experiments are designed. Table 7 shows the performance changes of the model after adding
different modules. As shown in Table 7, PointNet has a lower precision segmentation effect
in the railway scene.

The GFE module is designed to enrich the input information and provide local geo-
metric features for the network. Table 7 shows that, after introducing the GFE module, the
railway overhead wires, MIoU and ACC, increased by 35.52% and 22.19%, respectively.
This shows that the local geometric features obtained by GFE module can greatly enrich
input features, thereby improving the segmentation accuracy.

As discussed in Section 3, the local geometry provided by the GFE module cannot be
completely retained after MLP. Therefore, the NIA module aims to aggregate neighborhood
information to enhance the ability to describe local features. Table 7 gives comparative
results. It can be seen that, after employing the NIA module, the proposed method has
further improved compared to “PointNet+GFE”. Compared with PointNet, MIoU and
ACC increased by 36.63% and 22.59% in railway extraction. This proves the validity of
adding aggregate neighbor information to the network.

We propose to gather low-level information extracted from the hidden layer in Point-
Net MLP to high-level information, thereby enhancing the details of the points. Com-
pared with PointNet, in the railway extract, MIoU and ACC increased by 38.05% and
22.95%, respectively.

Table 7. The performance of different modules proposed in this work in aspects of MIoU and ACC.

Dataset
PointNet PointNet+GFE PointNet+GFE+NIA PointNet(C)+GFE+NIA

MIoU ACC MIoU ACC MIoU ACC MIoU ACC

Railway 0.4460 0.7394 0.8012 0.9613 0.8123 0.9653 0.8265 0.9689

4.7. Wire Reconstruction

The wire individualization and reconstruction results are shown in Figures 18 and 19.
Figure 18 is the original wire mapping and span extraction process; Figure 19a,b is the wire
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individualization based on the XOY plane; Figure 19e is the fitting result of the wire. The
curve is basically consistent with the original point distribution. As shown in Table 8 and
Figure 20, the average fitting rate of the wire over the three spans is 96.29%. The average
fitting error is 0.053 m. The experimental results show that the method can efficiently
realize the reconstruction of railway overhead wires. As shown in Figure 19e, the omitted
part of the wire is also well rebuilt.

Figure 18. Raw wire reverse mapping and span extraction. (a) wire point cloud after segmentation
by the proposed model; (b) wire segmentation results of the original dataset after reverse mapping;
(c) span extraction results.

Figure 19. Wire individualization and reconstruction. (a) wire points distribution on the XOY plane;
(b) wire individualization based on the XOY plane; (c) side view of (a); (d) side view of (b); (e) wire
reconstruction results.
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Table 8. Fitting rate and fitting error of the railway overhead wires at each span.

Data Set Raw Points Fit Points Fitting Rate (%) Fitting Error (m)

span1 693 667 96.24 0.058
span2 705 681 96.59 0.052
span3 658 632 96.04 0.048

average 685 660 96.31 0.053

Figure 20. Fitting error for eight wires at each span.

4.8. Applicability of High-Voltage Powerline Scenarios
4.8.1. High-Voltage Line Data and Pre-Processing Results

The proposed method is also applicable for powerline extraction in high-voltage line
scenarios. The method is validated using the ALS high-voltage line point cloud data shown
in Figure 21a. Figure 21b is the tile of training data after pre-processing. Different from
the railway data, the distance between the two pylons of the high-voltage line is relatively
large. Moreover, there are relatively many points of one pylon. Therefore, the principle
of each tile of data including one pylon is used for segmentation, and the ground point
downsampling is used to alleviate the effect of the non-uniformity of the points.

(a) (b)
Figure 21. (a) High-voltage powerline scenario; (b) pre-processing result.

4.8.2. Model Verification

The quantitative and qualitative results of the model’s powerline extraction in high-
voltage powerline scenarios are shown in Table 9 and Figure 22, with the extraction accuracy
and MIoU reaching 98.52% and 89.94%, respectively. Figure 22a shows that only sporadi-
cally two pylon points are mis-segmented as powerline points.
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Table 9. MIoU and ACC of the proposed method in a high-voltage powerline scenario.

Dataset
Proposed Method

MIoU ACC

High-voltage 0.8994 0.9852

Figure 22. The results of proposed powerline segmentation methods. The powerline, pylon, and
ground are colored with red, green, and blue, respectively. The black dotted frame indicates points
that are classified by error.

5. Discussion and Conclusions

Experiments show that the proposed method is able to effectively extract, identify,
and reconstruct railway overhead wires. Moreover, the proposed method only uses ALS
point cloud data containing xyz coordinate information, making the proposed method
more widely applicable. The superior results of our method can be attributed to the
following reasons:

1. In the preprocessing step, the proposed data augmentation method effectively solved
the non-uniformity of the number of the points of the ALS railway point cloud data.

2. In the wire segmentation step, the proposed GFE and NIA modules effectively obtain
geometric features and semantic information.

3. In the wire reconstruction step, the proposed wire individualization and multi-wire
fitting method robustly fits the severe omitted railway overhead wires.

This work proposes a new method based on PointNet network for efficient and
accurate extraction of railway overhead wires from ALS point cloud data. First, in the
railway scene, an effective data augmentation and ground points downsampling method
is proposed for the problem of the non-uniformity of the number of the points. Secondly,
based on the PointNet network, a dual branch network method is introduced. The upper
branch uses the local geometric information obtained by the GFE module to extract local
and global features through a PointNet network. The lower branch uses the NIA module
to enhance local neighborhood information. Then, the new point feature is extracted by
MLP based on the point feature combined by the upper and lower branches. Finally, a
wire individualization and multi-wire fitting algorithm is proposed to reconstruct railway
overhead wires. Experiments show that the proposed method can effectively extract railway
overhead wires. The ACC and MIoU of the overhead wires’ segmentation reached 96.98%
and 82.65%, respectively. The fitting rate and fitting error of the multi-wire fitting method
is above 96% and 0.05 m. Last but not the least, the proposed method is also applicable to
automatic high-voltage powerline scenario segmentation.
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