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Abstract: Water availability in lakes must be studied in order to better manage ecosystems within
lake basins and meet economic development needs. Despite being Iran’s largest lake, Lake Urmia’s
water level and surface area have declined dramatically over the past two decades. During the
same period, Lake Van in Turkey maintained a relatively stable water level and surface area. As a
result, comparing factors related to water level and surface area in these lakes, which have similar
geographical and climate conditions but different management policies, can be an appropriate way
to identify the causes of water declines in Lake Urmia. Comparing these variables may help explain
observed differences in lake behavior between 2000 and 2016. Hydrometric and climatic parameters,
as well as the Normalized Difference Vegetation Index (NDVI) and the Normalized Difference
Water Index (NDWI), were used to achieve this goal. Changes in precipitation, temperature, and
evapotranspiration in both lakes show essentially identical trends, but this is not a convincing
explanation for Lake Urmia’s water surface changes. The results revealed that dam construction and
water diversion projects, the expansion of irrigated agriculture, and the lake’s shallow depth in most
parts were the primary causes of Lake Urmia’s shrinkage compared to Lake Van.
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1. Introduction

Lakes cover about 2% of the Earth’s land surface, with the vast majority centered in
the Northern Hemisphere [1]. They provide water resources for anthropological activities,
particularly in arid regions where water scarcity severely limits local development [2].
Lakes also promote species biodiversity by providing various ecosystem services [3]. Water
volume in lakes in primarily arid areas is declining globally [4,5], causing ecological
crises [6]. Human activities and over-extraction of water have increased localized dryness
in many parts of the world, resulting in anthropogenic dryness [7]. Variations in lake level
can impact human activities, coastal structures, and ecosystems [8].

Research in diverse places has been conducted to model and statistically assess vari-
ations in lake water levels. Yin and Yang [9] proposed a method for analyzing changes
in the patterns of water level fluctuation in China’s Lake Baiyangdian. Their findings
demonstrated that the new method’s estimation of water level variations corresponded
to the lake’s level of environmental degradation. Kakahaji et al. [10] predicted water level
changes in Iran’s Lake Urmia using analytical, linear statistics, and intelligent approaches.

According to this study, intelligent approaches are preferable to traditional methods
for modeling water level variations. La Valle et al. [11] looked into the relationship between
Lake Erie water level changes and the El Nino/Southern Oscillation (ENSO). According
to their findings, Lake Erie water levels fluctuated in reaction to the two ENSO phases, El
Nino (warming phase) and La Nina (cold phase) (cooling phase).
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In another study, Ouarda et al. [12] examined variations in water levels in the Great
Lakes between the Canada–U.S. border using the Mann–Kendall (MK) trend test under the
independence, short-term, and long-term persistence hypotheses. For monthly and annual
time series, water levels in Lake St. Clair and Lake Erie showed strong rising tendencies.
In contrast, no significant trends in monthly or yearly water levels were identified in Lake
Superior, Lake Michigan–Huron, or Georgian Bay, whereas annual and certain monthly water
levels increased dramatically in Lake Ontario. Sellinge et al. [13] investigated water level data
from Lake Michigan and Lake Huron to assess seasonal and long-term patterns. Seasonal
trend decomposition utilizing Loess results revealed a 30-year, long-term periodic decline in
water level since about 1900. Over a 3-year time lag, the outputs of a dynamic linear model
were directly associated with precipitation. In Turkey, Ülgen et al. [14] conducted a statistical
investigation of changes in watershed climate and Lake Iznik’s level. The data revealed that the
long-term climate trend at Lake Izink has been toward drier conditions in the past 4700 years.

Lake Urmia (LU) is the world’s second-largest hypersaline lake, with its shores home to
a population of approximately 6 million people. Numerous studies have been conducted to
address issues related to changes in Lake Urmia, using either statistical methods or satellite
image processing. Jalili et al. [15], for example, examined the lake’s water level change in
relation to climate indicators and observed a high association before 1995, when the basin
was heavily dammed. They gradually raised the water level of LU to that of Turkey’s Lake
Van (LV), discovering a negative trend in LU and a positive trend in LV. Shadkam et al. [16]
used a variable infiltration model to explore the impact of climate change and water
resource development on inflow into LU. This study found a 40% decrease in inflow during
a few dry years. AghaKouchak et al. [17] also looked at the change in water level in LU
and discovered that it had dropped by 88% in the past two decades. As a result, according
to these reports, the lake’s water level and surface area have dropped substantially over
the past two decades, as has been widely recorded [7,17,18].

Similarly, other research [19–28] explored the association between water level vari-
ation in LV, Turkey’s largest lake, and climate characteristics. As a result of combining
these complementary methodologies, statistical analysis, and satellite data processing, lake
planning can gain new insight into changes in water level and surface area. Given this, the
primary objectives of this study are to investigate and compare potential factors influencing
water level and surface area changes in LU (Iran) and LV (Turkey) over seventeen years
(2000–2016) using Landsat Enhanced Thematic Mapper (ETM), Landsat Operational Land
Imager (OLI), and Thermal Infrared Sensor (TIRS) images in conjunction with some statisti-
cal methods. The most essential parameters influencing water level and surface area in both
lakes should be identified by comparing geographical and climate circumstances, as well as
basin management practices. Knowing such characteristics is essential for regulating future
lake levels when planning, designing, building, and operating shoreline projects [19].

The rest of this paper is organized as follows. Section 2 demonstrates how to extract
surface area changes and assess water level oscillations using Landsat data and climatic
parameters. Section 3 addresses the impact of evapotranspiration, agricultural growth, dam
construction, and other variables on water level fluctuations. Section 4 closes the paper
with the study’s conclusions and findings.

2. Study Area and Methods
2.1. Study Area—LU

LU is located in northwest Iran. It is the largest lake in the country and one of the
saltiest bodies of water in the world. The basin is delimited to the west by Turkey and to
the southwest by Iraq. The basin’s northern, eastern, and southern boundaries are entirely
within Iran (Figure 1). It has a surface elevation of 1274.1 m above sea level and an average
depth of 2 m. The basin is separated into 14 distinct sub-basins that surround the lake and
range in size from 431 to 11,759 km2. The basin’s elevation ranges from 1270 m above sea
level at the lake’s surface to 3710 m in the Sahand Mountains. Several dams and diversion
projects in the basin regulate river flow, some limiting surface water input into the lake.
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Figure 1. Location of LU in Iran and LV in Turkey and their basins.

2.2. Study Area—LV

LV is the world’s fourth-largest hydrologically closed (terminal) lake in terms of
volume and the world’s largest saline lake in terms of area. It is located in Eastern Turkey
(Figure 1). It has a surface elevation of 1640 m above sea level and a depth of 171 m on
average. LV covers an area of 3755 km2 and has a volume of 607 km3. The LV basin has a
regional climate comparable to the LU basin, with extreme seasonality: frigid winters with
mean temperatures below 0 ◦C from December to February, and warm, dry summers with
mean temperatures above 20 ◦C in July and August. The height of the basin increases from
the lake’s surface to approximately 4000 m at Mount Suphan’s peak.

2.3. Methods

The following are the main steps in this research: (1) gathering precipitation, temper-
ature, lake water levels, dam construction, and hydrometric data; (2) processing satellite
images and extracting water bodies and surface area changes; (3) calculating vegetation
index, water depth, and evapotranspiration; and (4) comparing the results of the preceding
steps within each lake and between the two lakes (Figure 2).
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2.3.1. Data Collection and Analysis
Precipitation

Our data were obtained from different sources. As shown in Figure 3, the precipitation
data were based on the European Union’s (EU) Integrated Project Water and Global Change
(WATCH) [20] with a spatial resolution of 0.5 degrees (55 km). WATCH is a European
Union project that investigates the Earth’s water cycle using land surface models and
general hydrological models to assess the impact of significant hydrological variables [21].
Previous studies in other parts of the world have widely used these datasets to evaluate
the effect of precipitation, evaporation, and hydrological parameters on streamflow [21,22].
Furthermore, long-term precipitation gauge data from eleven LU basin stations were used
to evaluate and validate WATCH data in the basin. As a result, the correlation coefficient
estimated for the two datasets was 0.88%.
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Temperature

We calculated the surface temperature of each lake using Landsat images. Six steps
were taken to accomplish this:

1. Conversion of DN to BT

Lλ is the spectral radiance and was calculated by Equation (1):

Lλ = RM × DNband10/11 + RA (1)

where RM (RADIANCE_MULT_BAND_x) and RA (RADIANCE_ADD_BAND_x) are band-
specific multiplicative rescaling factor and band-specific additive rescaling factor, respectively.
DN (QUANTIZE_CAL_MIN_BAND_x) is the digital number extracted from metadata.

2. Brightness Temperature (BT)

BT is microwave radiation that travels from the top of the Earth’s atmosphere upward.
The conversion process was used to convert the thermal DN values of bands 10 and 11 to
BT. BT for both TIR bands were estimated as follows (Equation (2)):

BT =
K2

Ln( K1
Lλ + 1)

(2)
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where BT = satellite brightness temperature in Kelvin (K), Lλ = spectral radiance at the
sensor, K1 = thermal conversion values (774.89 for band 10 and 480.89 for band 11), and
K2 = thermal conversion values (1321.08 for band 10 and 1201.14 for band 11).

3. Normalized Difference Vegetation Index (NDVI)

NDVI is calculated by Equation (3):

NDVI =
ρNIR − ρRed
ρNIR + ρRed

(3)

where ρNIR and ρRed represent the reflectance of the near-infrared (NIR) (band 5) and red
bands (band 4), respectively. The value of this index ranges from −1 to 1, where a value
closer to 1 indicates vegetation cover and a value closer to −1 represents water or soil.

4. Fractional Vegetation Cover (FVC)

FVC is calculated by the following equation:

FVC =
NDVI − NDVIsoil

NDVIvegatation − NDVIsoil
(4)

where NDVI = Normalized Vegetation Difference Index, NDVIvegetation = NDVI for vegeta-
tion (maximum), and NDVIsoil = NDVI for soil (minimum).

This index has a value ranging from 0 to 1, with a value closer to 1 representing more
vegetation cover and a value closer to 0 representing built-up and bare land (soil). Water
bodies for this index are in the median range (0.3–0.7).

5. Land Surface Emissivity (LSE)

According to Plank’s law [23], before estimating LST, it is necessary to estimate LSE
for more accuracy in the results. Thus, LSE can be calculated based on Equation (5):

LSE = εsoil × (1 − FVC) + εvegatation × FVC (5)

where εsoil and εvegetation are emissivity values of soil and vegetation in the corresponding
bands, respectively.

6. Land Surface Temperature (LST)

LST is obtained based on the following equation [24]

LST =
BT

1 + (λ + BT/(p))
× Lnε (6)

where λ = effective wavelength, p = h × cσ
(
1.438 × 10−2), σ = 1.38 × 10−23, h = 6.626 ×

10−34, c = 2.998 × 108, and ε = emissivity.

Water Level Data

This step’s data were obtained from the Data and Services Center for Continental
Surfaces [25]. The monthly water levels of both lakes are available from 1995 to 2020.

Dam Constriction and Hydrometric Data

These data were obtained from the Iranian Ministry of Energy between 1985 and 2015.
To present the annual time series of daily streamflow, we used the HydroTSM package in
RStudio [26].

2.4. Water Body Extraction

Landsat images from 2000 to 2016 were used to extract water bodies and show changes
in water surface areas in September, with a resolution of 900 m2 and path/row of 168/34,
169/33, and 169/34 for LU, and 170/33, and 171/33 for LV. The primary reasons for
selecting this month are because it is the end of the agricultural season, the end of the
rainy season, and, more importantly, the date when the water level is at its lowest level
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to show the most remarkable surface area changes. Detailed data are shown in Table 1.
Atmospheric correction is a significant part of satellite remotely sensed data pre-processing.
To control sensor, atmospheric, solar, and topographic impacts, these data typically require
pre-processing before analysis. As a result, the images for Landsat 7 were rectified and
the noise was removed. Due to discrepancies in thematic mapper and OLI sensors, the
year 2000’s geometric correction was based on digital elevation model data from the
research areas. As a result, images were georeferenced to the 2000 image from 2001 to 2016.
Eventually, filtered pixels were used to delineate and extract water bodies based on the
Normalized Difference Water Index (NDWI) that is calculated based on Equation (7) [27],

NDWI =
Green − NIR
Green + NIR

(7)

where Green and NIR are values per pixel for the green (0.533–0.59 mm) and near-infrared
(0.851–0.879 mm) bands, respectively. The NDWI ranges from −1 to +1, where <0 represents
no vegetation or water content and >0 represents water content.

Table 1. Landsat image data.

Dataset Date Source Reference Band Number

Landsat 8 OLI * (path/row: 168/34, 169/33,
169/34 and 170/33, 171/33) September 2016 WGS84 3, 5, 10 and 11

- - -
- - -

Landsat 8 OLI * (path/row: 168/34, 169/33,
169/34 and 170/33, 171/33) September 2013 WGS84 3, 5, 10 and 11

Landsat 7 ETM †,* (path/row: 168/34, 169/33,
169/34 and 170/33, 171/33)

September 2012 WGS84 2, 5 and 6

- - - -
- - - -

Landsat 7 ETM †,* (path/row: 168/34, 169/33,
169/34 and 170/33, 171/33)

September 2000 WGS84 2, 5 and 6

† OLI—Operational Land Imager. * Data were collected from U.S. Geological Survey [28]; ETM—Enhanced
Thematic Mapper.

Vegetation Index

Vegetation indices enable reliable geographical and temporal comparisons of vegeta-
tion canopy greenness, a composite feature of leaf area, canopy cover, and structure. MODIS
produced vegetation indices at 8- and 16-day intervals and multiple spatial resolutions.
The Normalized Difference Vegetation Index (NDVI) was employed in this investigation.
The MODIS NDVI dataset was based on a 16-day period with a resolution of 250 m. The
MOD13Q1 product was obtained from [29].

Water Depth

Landsat images from 2000 were used in both lakes to determine relative water depth and
demonstrate its variations. Previous research [30–32] used the green band to estimate water
depth. A correlation study was performed to improve accuracy between the relative water
depth and the reflectance of other bands (blue, green, red, and near-infrared). As a result, for a
single-band model, the green band had the highest correlation coefficient, and for a multi-band
combination model, the red and blue band combination had the highest correlation coefficient.
Table 2 shows the findings. ENVI 5.1 was used to perform all these tasks.

Table 2. Correlation analysis between water depth, band reflectance, and combined bands.

Band Red Green Blue NIR In (Red) In (Green) In (Blue) In (NIR)

Correlation coefficient 0.79 0.93 0.84 0.41 0.83 0.91 0.81 0.087

Combination of bands Ln (red/green) Ln (red/blue) Ln (red/NIR) Ln (blue/green) Ln (blue/NIR) Ln (green/NIR)

Correlation coefficient 0.87 0.92 0.03 0.56 0.311 0.47
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Evapotranspiration

ET was estimated using MODIS at 8- and 16-day intervals at multiple spatial reso-
lutions. In this study, the MODIS ET dataset was based on the 16-day interval with a
resolution of 500 m. The MOD16A2 was collected from [29], named “MODIS/Terra Net
Evapotranspiration 8-Day L4 Global 500 m SIN Grid V006”. Because the most recent update
to these images was in 2014, the ET estimate was calculated from 2000 to 2014.

3. Results
3.1. Analysis of Lake Extents and Water Levels

We analyzed LU and LV aerial changes from 2000 to 2016. Enhanced Thematic Mapper
Plus (ETM+) was used from 2000 to 2012, and Operational Land Imager (OLI) sensor was
used from 2013 to 2016. A series of 85 Landsat images acquired from 2000 to 2016 were
used to investigate changes in the surface area of the lakes. The lake extents for each year,
together with the 17-year trends for each lake, are shown in Figure 4. Generally, the surface
area of LU showed a decreasing trend from 2000 to 2016. In contrast, the surface area of
LV remained relatively constant during the same period. As seen in Figure 4, LU’s largest
decrease in surface area occurred from 2011 to 2014.
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Figure 4. Annual changes in surface area of LU and LV and the trend in surface area change for the
17-year period from 2000 to 2016.

The LU surface area was at its lowest in 2014, about 14% of what it was in 2000. In
comparison, the surface area of LV was relatively steady during this period.

From 2000 to 2016, the maximum water level of LU (1273.8 m) was in 2000, while
the highest in LV (1647.8 m) was in 2007 (Figure 5). The lowest water levels in 2014 were
1270.1 m in LU (a loss of roughly 3.75 m) and 1647.0 m in LV (a loss of approximately 0.8 m)
in 2002. In general, a decreasing tendency in water level (average of around 0.21 m/year)
was recorded for LU. On the other hand, from 2000 to 2016, the overall change in water
level for LV was close to zero or slightly positive (10 cm/year) (Figure 5).

The general decrease in the surface area of LU by the annual maps of the surface area
from 2000 to 2016 is shown in Figure 6, and the rather constant surface area of LV during
the same period is illustrated in Figure 7. As shown in Figure 6, the surface area at the
southern shore of LU was the first to recede, followed by the surface area at the eastern and
then the northern shores. The surface area along the western shore was the least sensitive to
recession. The average surface area of LU from 2000 to 2016 was approximately 3138 km2,
with maximum surface areas of 4666, 4624, and 4496 km2 recorded in 2000 (Figure 6), 2001,
and 2003, respectively. The corresponding average surface area of LV was approximately
3579 km2, with maximum surface areas of 3598, 3590, and 3589 km2 recorded in 2004, 2000,
and 2010, respectively (Figure 7). Minimum water surface areas for LU were approximately
700 and 800 km2 and were recorded in September 2014 (Figure 6) and 2015, respectively.
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3.2. NDVI

NDVI data were utilized to investigate long-term changes in the area of irrigated lands
in both LU and LV basins. The July to August period from 2000 to 2016 was selected to
represent maximum irrigation on farms and minimum vegetation in the remainder of the
basins. Because of the limited timespan of MODIS imagery, the NDVI in 2000 was selected
as a baseline for change detection. Based on our analysis, an increase in NDVI values from
2000 to 2016 was observed in most years in both lake basins (Figure 8). The greatest annual
increase for the LU basin occurred in 2007, with other maxima occurring in 2003, 2004, and
2005. Generally, the satellite images showed an increasing trend in NDVI values from 2000
to 2016 for both basins. However, the increase in NDVI values was greater in the LU basin,
as evidenced by the steeper slope of its linear trend plot relative to that of the LV basin.
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Nonetheless, NDVI levels in the LU basin stabilized from 2012 to 2013, in the LV basin
from 2003 to 2005, and from 2009 to 2011. (Figure 8). Longer-term NDVI data revealed an
increase in both basins, as well as in regions where land use had changed (for example,
greater agricultural growth) (Figure 9).
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3.3. Satellite-Derived Evapotranspiration (ET)

According to MODIS ET, the average ET in the LU and LV basins from 2000 to 2014
was roughly 300 and 294 mm/year, respectively (Figure 10). Maximum annual ET was
calculated to be 346 (2012) and 338 (2011) mm/year, respectively. ET was higher in the
eastern and western areas of the LU basin than in the center, northern, and southern regions,
according to a spatial analysis of ET maps in the LU basin (Figure 11). Lower ET was
recorded exclusively in the southern part of the LV basin. When comparing Figures 10
and 11, it is clear that the difference in average annual precipitation between the two
basins was greater than the difference in annual evapotranspiration. Accordingly, it can be
concluded that evapotranspiration is not the main factor in shrinking the LU.

ET revealed a slightly positive trend in the LU and LV basins (Figure 10), which was closely
associated with other climate parameters such as precipitation and temperature in the basins.
The ET was also correlated with the NDVI maps, so that areas with more vegetation cover in
the basins have higher ET values (Figure 11). This was expected, given that the Leaf Area Index
is the key factor used to calculate MODIS ET. According to ET and NDVI maps, most of the
area in both basins (particularly the LU basin) is vegetated, implying that some of the water is
lost by transpiration rather than solely evaporation from the open water bodies.
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3.4. Spatial Distribution of Water Depth

Figure 12 shows the water depth for both lakes. LV is significantly deeper than LU. The
maximum water depth in a considerable portion of LV is roughly 400 m, but the maximum water
depth for LU only for restricted areas is approximately 9 m. In contrast, the mean depth of LU
in 2000 was approximately 2.2 m, and approximately 172 m for LV. LU’s deepest and shallowest
portions are located in the upper, inner islands, and peripheral areas. These sections of LV are
located on the lake’s western and central sides, as well as its northern and peripheral zones.
Notably, a large part of LU is shallow, while LV shows the opposite. Hence, the evaporation
will be significantly different due to the difference in thermal classification in the lakes.
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3.5. Precipitation and Temperature

The results for precipitation (rain and snow) and temperature in the LU and LV basins
are shown in Figure 13. From 2000 to 2016, the amount of snow in both basins showed a
slightly negative trend, whereas rainfall showed a slightly positive trend. The temperature in
the basins was shown to be associated with these developments. Furthermore, the LV basin
receives more snowfall, rainfall, and total precipitation than the LU basin. Temperatures were
higher in the LU basin (Figure 13), and both basins showed a somewhat positive trend.
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Although the LV basin’s land-to-lake area ratio is lower than that of the LU basin, total
precipitation in the LV basin exceeded that of the LU basin (Figure 14). Furthermore, the
variability of precipitation in the LV basin was greater than in the LU basin. Average annual
precipitation in the area of LV was 500 mm/year in the east of the basin, 580 mm/year in
the south, 850 mm/year in the southwest, and 480 mm/year in the north. In contrast, the
corresponding LU values were 410, 375, 340, and 353 mm/year, respectively.

3.6. Stream Flow and Dam Construction

A time series and trend analysis of the discharge of two major rivers (Zarineh-Roud
and Simineh-Roud) that feed over 50% of the inflow volume into LU [33] was performed on
the eight major rivers in the LU basin. Streamflow typically varies over a wide period and
may respond to seasonal rainfall and upstream water management, such as dam and water
diversion infrastructure. During the 30-year period (1985–2015), the months of peak river
discharge aligned with the spring season due to snow melt (Figure 15), demonstrating that
streamflow in the LU basin is mostly snowfall-driven, supporting the association between
streamflow and snowfall.
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Figure 15. Seasonal hydrographs of the Zarineh-Roud and Simineh-Roud in the LU basin during 1985–2015. 

 

Figure 15. Seasonal hydrographs of the Zarineh-Roud and Simineh-Roud in the LU basin during
1985–2015.



Remote Sens. 2022, 14, 5269 15 of 19

For the 30-year period from 1985 to 2015, a decreasing trend of streamflow was
evident in both the Zarineh-Roud and Simineh-Roud rivers during the spring and summer
seasons (Figure 15). The reason for this trend can be attributed to dam and water diversion
infrastructure construction on these rivers. This result is consistent with the results of
other studies on trends in streamflow in the LU basin [7,16], and dam and water diversion
construction on the main rivers in the LU basin (Figure 16) may account, in part, for the
decreasing water volume and surface area of LU.
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Figure 16. Number of dams constructed and annual stream flow from 1985 to 2016 and surface area
and water level changes from 2000 to 2016 in the LU basin.

According to the Iranian Ministry of Energy, about twenty dams were built on major
rivers in the LU basin between 2000 and 2013 (Figure 16). However, as seen in the graph,
the number of dams built and the annual streamflow for the two main rivers fell from 2000
to 2015 (analogous dam data were not available for the LV basin; however, the water level
in LV remained relatively stable from 2000 to 2016).

4. Discussion

Because Lake Urmia’s water volume has declined significantly over the past 17 years,
comparing its water volume fluctuations with those of another lake with similar climatic
conditions but different policies for managing streamflow within the basins helps to in-
vestigate the underlying causes of this environmental disaster. Thus, this study compared
meteorological indicators and anthropogenic activities in Iran’s Lake Urmia basin to those
in Turkey’s Lake Van basin.

According to a preliminary examination of the Lake Urmia basin streamflow dataset,
the peak streamflow occurred from 1990 to 1995, followed by a decreasing streamflow
trend until 2016. Anthropogenic impacts can be associated with seasonal fluctuations in
streamflow. This study’s streamflow data were used to measure downstream dams and
water diversion structures.

During the 17-year period from 2000 to 2016, some parameters showed similar trends
in the Lake Urmia and Lake Van basins. The NDVI index, for example, increased in both
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basins from 2006 to 2007 and declined in both from 2008 to 2009, with corresponding
increases and declines in evapotranspiration in both basins from 2006 to 2007 and 2008
to 2009. The rainfall records from the 10 gauge stations in the Lake Urmia basin were
analyzed, and there were no differences in annual and seasonal rainfall patterns across
the gauge stations. These findings are consistent with the findings of earlier research
that looked at precipitation patterns in the Lake Urmia basin [7,34,35]. Furthermore, a
review of precipitation data from the EU-WATCH dataset revealed no climate variation
between the Lake Urmia and Lake Van basins. Lake Urmia’s water level decreased from
2000 to 2016, although Lake Van’s remained relatively steady (unchanged). Because both
basins experienced similar precipitation during these 17 years, the main factors causing the
decreasing water level in Lake Urmia were not climatic, which concurs with the conclusion
of dams [36].

Dam construction considerably impacted streamflow variability in the Lake Urmia
basin. Although streamflow regulation data from dam operations were not available for
this study, the presence of dams on major rivers has influenced the hydrological flow
regime variability in the basin. This influence is partly attributed to dam runoff storage
during the wet seasons. Reduced streamflow is evident during the wet seasons from 2000
to 2015 (Figure 15), when twenty dams were built on major rivers in the Lake Urmia basin
(Figure 16). Reduced streamflow during the summer, on the other hand, can be attributed
in part to water diversion for irrigation purposes.

Variance in yearly streamflow in the Zarineh-Rud and Simineh-Rud rivers from 1985
to 2016 was assumed to indicate water level variation in the other major rivers in the Lake
Urmia basin. The results of the annual streamflow analysis in Zarineh-Rud and Simineh-
Rud showed a decreasing trend during these 30 years. The average discharge in the first
five years, compared to the average discharge in the last five years, decreased by 51% and
40% in Zarineh-Rud and Simineh-Roud, respectively. Some of this decrease in discharge
would have been partly due to increased irrigation in both basins. Evaluation of historical
changes in the number of irrigated farms based on MODIS (MOD13Q1) in both the Lake
Urmia and Lake Van basins showed that while the number of irrigated farms in both basins
had increased, the increase was greater in the Lake Urmia basin, in agreement with other
studies in which trends in agricultural development were assessed [7,37–39].

Previous studies have shown a high correlation between increased vegetation due
to the increased area of irrigated farmland and the increase in total evapotranspiration in
the Lake Urmia basin [7,40]. The increased use of river water for farmland irrigation has
negatively influenced input flow into Lake Urmia and water availability throughout the
basin. Moreover, the construction of reservoirs to store water has decreased input flow to
the lake relative to the situation before reservoir construction [16,41].

Water levels in Lake Urmia have decreased from 1985 to 2016, while those in Lake
Van have remained essentially steady. According to the findings of this study, climatic
differences in precipitation and temperature are not likely key drivers of the water level
shift in Lake Urmia. Instead, the declining water level in Lake Urmia is most likely due
to decreased input flow caused by building dams on the principal rivers in the Lake
Urmia basin and water diversion from the rivers directly for irrigation of agriculture or
diversion into reservoirs for further irrigation [35,42]. Although both lakes are terminal
lakes with no considerable water outflow, Lake Urmia has experienced greater water level
and surface area fluctuations than Lake Van because Lake Urmia is much shallower and
has less water capacity. This study’s findings support previous research that identified
cropland expansion and other anthropogenic influences, such as dam construction and
water diversion channels, as the primary causes of LU shrinkage [7,18,43].

5. Conclusions

This study examined changes in water level and surface areas in LU and LV based on
trend analyses and satellite image processing. The annual precipitation, evapotranspiration,
air temperature, NDVI, water depth, water level, and surface area time series of both lakes
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for 2000–2016 and hydrometric data for 1985–2015 were analyzed. Since both lakes are
terminal lakes with no significant water outflow, loss of water from the lakes occurs only
by evaporation. The time series analysis of both LU and LV showed that water level and
surface area only changed significantly in LU.

The decreasing trend of water level and surface area in LU was due to differences in
climatic parameters (such as precipitation, temperature, and evaporation) or changes in
input flow volume due to human activities. Since both the LU and LV basins experienced a
relatively unchanged pattern in climate parameters from 2000 to 2016, it was concluded that
these factors could not explain the decreasing trend in water level and surface area in LU.
Furthermore, since 2000, dam construction and water diversion projects have drastically
expanded in the LU basin. Moreover, an increase in the NDVI indicates the expansion of
irrigated agriculture in the basin over the past two decades. These changes are the main
factors responsible for reducing inflow into LU. Apart from these, regarding the shallow
depth of most parts of LU compared to LV’s depth, a decrease in input flow volume into
the lake would quickly result in an extensive decrease in the water surface area compared
to LV.

To summarize, developing and implementing strategies and regulations in the LU
basin are critical to limiting and minimizing future water level changes. For this purpose,
district officials should employ appropriate measures such as rewarding rules and leg-
islation, water transfer programs, changing farming patterns, novel irrigation systems,
and greenhouse cultivation to reduce water consumption from the lake’s supplying rivers.
Finally, due to some limitations, such as a lack of access to hydrological and climatic data
and the difficulty in applying the same methods to a wide range of factors for both lakes, we
encourage longer-term studies focusing on water resource management and agricultural
policies using field observation data.
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