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Abstract: Space debris detection is vital to space missions and space situation awareness. Convo-
lutional neural networks are introduced to detect space debris due to their excellent performance.
However, noisy labels, caused by false alarms, exist in space debris detection, and cause ambiguous
targets for the training of networks, leading to networks overfitting the noisy labels and losing
the ability to detect space debris. To remedy this challenge, we introduce label-noise learning to
space debris detection and propose a novel label-noise learning paradigm, termed Co-correcting,
to overcome the effects of noisy labels. Co-correcting comprises two identical networks, and the
predictions of these networks serve as auxiliary supervised information to mutually correct the noisy
labels of their peer networks. In this manner, the effect of noisy labels can be mitigated by the mutual
rectification of the two networks. Empirical experiments show that Co-correcting outperforms other
state-of-the-art methods of label-noise learning, such as Co-teaching and JoCoR, in space debris
detection. Even with a high label noise rate, the network trained via Co-correcting can detect space
debris with high detection probability.

Keywords: space debris detection; label-noise learning; weakly supervised learning

1. Introduction
1.1. Background

Space debris is defined as man-made artifacts which are non-functional, comprising
pieces and sections thereof. The ultimate source of space debris is the launch of different
items from Earth. Launchers have grown to be more powerful and, in many circumstances,
send more than one satellite into orbit. Each launch generally puts several tons of material
into orbit. Most space debris is of tiny size, including payload shrouds, adapter rings,
explosive bolts, instrument covers, etc., which are liberated by satellites [1]. Slag particles
formed by solid rocket engines, microscopic paint flakes off surfaces, and thermal insulation
blankets also play a big role in space trash. As for larger-sized debris, most of them are
formed by explosions, including rocket upper stages, auxiliary engines, and satellites.
Kinetic anti-satellite (ASAT) weapon tests also generate significant amounts of space debris,
and even form a dangerous debris field, increasing the risk of collision with satellites [2,3].
By 2019, more than 139 million pieces of space debris had been detected [4].

A handful of enormous space debris would fall from the sky, but it is worth noting
that space debris presents tremendous hazards to space missions. Due to the substantial
comparative velocity of space debris, even with little size, they can release huge amounts
of power after contact with launches. Thus, it is vital to locate space debris to estimate
its motions and prevent collisions with it. Space debris detection is proposed to achieve
this goal.

In Low Earth Orbit (LEO), most space debris is s bigger than 20 cm and can be
observed by radars and optical telescopes. In 2014, the Space Surveillance and Tracking
(SST) Support Framework was established by the European Union to mitigate the risk of
space debris, and European ground-based radar systems were applied for space debris
monitoring [5–7]. However, in Geosynchronous Earth Orbit (GEO), optical telescopes are
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favored for detecting space debris. The debris in GEO has less reflection area owing to its
considerable distance from sensors. In the captured optical images, the space debris merely
covers a few pixels. For example, in a 256× 256 size image, the space debris contains
less than 0.15% pixels [4]. With low reflectance and sparse distribution, space debris
appears small and dim. Instead, stars are luminous and occupy most of the area of images.
Flicker noise and damaged pixels widely exist in the background. As a consequence, the
signal-to-noise ratio (SNR) is incredibly low, even equivalent to 1, leading to difficulties
in detecting debris from background. In short time exposure of telescopes, space debris
has similar optical properties to stars, and is cataloged as stars by mistake. The ambiguous
catalogs cause the noisy labels in space debris detection and pose huge challenge in training
effective networks.

1.2. Related Work

Recently, space debris has attracted a huge amount of research interest, and debris
detection is therefore proposed as preprocessing for the later operation of locating potential
danger and avoiding collision with space debris.

1.2.1. Classical Methods

In original observation, space debris is small and dim. Numerous traditional ap-
proaches have been developed to perform small and dim target detection. In [8], a technique
based on the maximum likelihood ratio is employed to identify space debris.

Three-dimensional matched filter [9,10] and dynamic programming algorithms [11,12]
are also widely utilized in small and dim object detection to cope with low SNR radar or
optical images. These methods achieve great performance in small and dim object detection.
However, in space debris detection, debris and stars have similar optical features, and these
methods cannot separate debris from stars. As a result, more approaches were developed
to remove stars from original observation.

Space debris is much closer than stars to the ground-based optical telescopes. If the
mode of telescopes is set to “staring stars mode”, in the field of telescopes, the stars remains
stable, and the space debris moves with expected motion. In this observation mode, stars
appear point-like, but debris has two different representations, acquired with the different
exposure time. If the exposure time is long enough compared with the velocity of the
debris, the debris appears streak-like; instead, debris becomes point-like. If the mode of
telescopes is set to “staring target mode”, the situation alters. The telescopes track the space
debris with its expected motion. In the field of telescopes, space debris remains stable and
stars keep moving instead. The debris appears point-like, but stars become point-like or
streak-like based on the exposure time.

The different optical patterns of debris and stars make it possible to remove stars in
observation. For example, numerous methods were adopted in Streak-like debris detec-
tion [13–15] and point-like debris detection [16,17]. The setting of telescopes and exposure
time can lead to different representation of stars and debris. These methods need this prior
knowledge and are only applicable to specific observation tasks. In short time exposure, de-
bris and stars share similar features; such methods cannot achieve satisfactory performance.

Star catalogs contain the location of cataloged stars. By matching star catalogs and
observation, the location of stars in observation is acquired, and then these located stars
can be removed [18].

This method faces some challenges. In original observation, we can get the location
of stars by matching star catalogs to images. However, with the location of stars, they
cannot be removed completely without the corresponding shape, leading to residual of
removal. These residuals become the main source of false alarms in debris detection. The
second challenge is that the number of stars in star catalogs does not match it in observation
images. For example, Gaia DR2 is a star catalog published by DPAC (Data Processing
and Analysis Consortium) on 25 April 2018 with around 1.7 billion objects. Some stars in
observation are not cataloged. On the other hand, some cataloged stars may be missed
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by telescopes, due to their weak brightness and flickering. What is most important is
that the procedure of matching stars catalogs and observation is complex. These methods
require prior information of ground-based telescopes, and the procedure of stars matching
is complex.

To get superior performance in background star removal, the classical subtraction
approach has been frequently employed owing to its short time consumption. The purpose
of the subtraction approach is to reduce the interference of stars [19]. In [20–23], a mask is
applied to remove all background stars in the search area. In [24], a detection pipeline is
presented to increase detection ability for faint objects by utilizing filtering and mathemati-
cal morphology. In [25], an optical masking approach named EAOM (effect analysis of the
optical masking) is presented to identify space debris in the GEO region. These presented
approaches adopt inter-frame difference to remove stars and perform well; however, in
an actual engineering context, most stars have the property of flickering and undulating
across successive frames. As a consequence, these stars cannot be totally eliminated by
frame subtraction, and the leftovers comprise the primary component of false alarms.

These classical methods utilize extra prior information to remove stars before space
debris detection. In good light condition and with enough exposure, debris and stars have
different optical features, and these above classical methods can achieve great performance.
However, in short exposure, debris and stars become similar, and stars are hard to remove
from the background.

1.2.2. Machine Learning Methods

To avoid the procedure of star removal and construct a one-stage detection pipeline,
most methods adopt a CNN (Convolutional Neural Network) into space debris detection.
Due to the excellent representation abilities of CNN towards small and dim targets, these
methods achieve great performance in space debris detection. In [26], a technique utilizes
long short term memory (LSTM) networks to obtain high performance in recognizing
and tracking small and dim objects. In [27], a YOLO-based (You Only Look Once [28])
approach is suggested, and the results demonstrate that such method is superior to classical
methods such as Hough transform. In [29], Faster R-CNN with the backbone of ResNet-50 is
implemented to create a detection pipeline. These methods gain substantial performance in
detecting small and dim space debris. Such a performance relies heavily on massive training
samples with highly accurate labeling. In good light condition and enough exposure, debris
and stars have different optical features, and such methods perform well. Instead, these
methods achieve unsatisfactory results when debris and stars share similar features. Once
the dataset contain significant noisy labels, the networks tend to overfit the misleading
direction and output incorrect predictions.

1.2.3. Label-Noise Learning

The outstanding performance of machine learning based methods, e.g., CNN, largely
relies upon the huge size of the dataset and high accuracy of annotation. Nevertheless,
annotating large-scale datasets with high precision is costly and time-consuming [30].
When the light condition is weak and exposure is insufficient, the SNR is low, and space
debris and stars have similar optical properties, the extracted space debris from observation
contains large amount of noisy labels. It requires experts to examine the whole dataset and
select the samples with inaccurate labels (i.e., space debris with the label of stars), which
would cost significant time. Another viable technique is to implement preproceedings
to totally eliminate the influence of stars. However, the pipeline will grow complex, and
additional prior knowledge about space debris and optical telescopes is required. The star
removal methods are introduced to reduce the interference of stars, but the stars cannot be
removed completely.

To minimize the cost of data cleaning, noisy samples serve as a compromise, and
label-noise learning is adopted to utilize the noisy samples to train deep neural networks.
Noisy samples are defined as data with ambiguous labels. For machine learning, the labels
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are supervised information, which is crucial to the networks’ training. Once the labels
include ambiguous annotations, the supervised information becomes untrustworthy. Label-
noise learning (LNL) aims to utilize noisy samples as the training data and avoid networks
overfitting noisy samples. Memorization effects can explain the networks’ unsatisfactory
performance in noisy labels. Latest discoveries reveal that DNN overfits noisy samples
during the late stage of training. However, in the early stage, DNN can recognize clean
samples by itself [31]. In other words, the networks have the capacity to distinguish the
samples with genuine labels at the early stage. However, the networks are degraded by the
noisy labels and lose their corresponding ability.

Many researchers utilize noisy samples as training data to alleviate networks over-
fitting towards noisy labels. Some approaches employ regularization terms to prevent
DNN overfitting towards noisy labels [32,33]. However, regularization bias [34] occurs
in both explicit and implicit regularization. The estimating transition matrix is also a
hotspot in label-noise learning. In this method, the label transition matrix is estimated by
adding a non-linear layer built on top of softmax [35] to simulate the transition process
between clean labels and noisy labels. Unfortunately, it is rather difficult to estimate such a
transition matrix. To reduce complexity, most techniques assume that the transition matrix
is class independent and instance independent [32,36,37]. The instance-dependent matrix
is commonly assumed in most approaches as well [38].

Some representation techniques concentrate on picking reliable samples, e.g., Men-
tornet [39] trains an auxiliary network with the small-loss policy and then the auxiliary
network picks samples for the main network. To prevent error accumulation in DNN,
Co-teaching proposes to employ two similar networks to choose samples for each other [40].
In the early training stage, two networks in Co-teaching can preserve their variety owing to
random initialization of networks’ parameters. However, they will converge to a consensus
with epoch increasing and lose the diverse learning capacity that is fundamental to “Co-
teaching” paradigm. The “Update by disagreement” strategy suggested by Decoupling [41]
can successfully retain the diversity of two identical networks during training. Based
on this, Co-teaching+ combines Co-teaching with the “update by disagreement” strategy
to slow down two networks achieving a consensus [34]. Co-teaching+ first chooses the
examples with different predictions, and then these chosen instances are filtered by the
small-loss policy. As a consequence, only a tiny fraction of examples is employed for
training, and the performance of networks ultimately degenerates owing to inadequate
training samples. For this situation, JoCoR doubts the requirement of the “Disagreement”
policy to label-noise learning. Instead, JoCoR tries to maximize the agreements between
two networks by combining training with Co-regularization [30].

The preceding strategies can successfully avoid networks overfitting towards noisy la-
bels, but none of them are implemented in space debris detection. In this paper, we propose
a new label-noise learning paradigm called “Co-correcting”, and apply “Co-correcting” to
space debris detection, avoiding manual data-cleaning and sophisticated preprocessing. Co-
correcting can correct the noisy labels with auxiliary supervised information, where noisy
labels provide insufficient supervised information, and trained networks can successfully
detect space debris from the background.

1.3. Solution and Contributions of This Paper

If telescopes are used in short time exposure, debris and stars share similar optical
features. In space debris detection, the similarity makes it difficult to detect space debris
from the background. Classical methods utilize star catalogs, prior information of stars and
debris, or inter-frame difference to remove stars in observation images. These star removal
procedures are performed before detecting space debris. The stars cannot be removed
completely, and the procedures of stars removal are complex. To construct a one-stage
pipeline, CNN was adopted to detect debris in observation images without removing
stars. The input image of CNN is the original observation, containing lots of stars. In
fact, the star removal procedures implicitly exist in preparing datasets. In training stage
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of CNN, the networks try to learn the inherent properties of debris and stars, and the
labels are forwarded to networks as the supervision. In other words, the networks need
to know the true category of training samples. The space debris and stars in datasets are
assigned corresponding labels; therefore debris is separated from stars. This procedure
can be accomplished by human labor or other star removal methods. Due to the inherent
similarity between debris and stars, the datasets contain huge amount of noisy labels, and
these noisy labels are hard to clean. Based on these points, we introduce label-noise learning
into space debris detection. Label-noise learning argues that the noisy labels also reflect the
inherent characteristic of debris detection, and utilizes the noisy labels to train networks
according to a specific optimization policy. The star detection and removal procedures
implicitly exist in the optimization of networks.

Given the aforementioned challenges, this study presents a novel label-noise learning
paradigm called “Co-correcting”, and applies “Co-correcting” to space debris detection.
Concretely, Co-correcting adopts two identical networks and mutually corrects the original
targets of noisy labels with the predictions of peer networks. In this way, Co-correcting
can explicitly share supervised information across two networks and correct the noisy
labels using the auxiliary supervised information. In space debris detection, we extract
objects from images as space debris, and random patches from images as background. Note
that the extracted space debris contains noisy labels (e.g., stars labeled as space debris).
Then, the extracted sub-figures serve as training data and are sent to Co-correcting to train
networks. In the inference step, the space debris can be detected by the trained networks.

The main contributions of this article are summarized as follows:

1. We proposed a novel label-noise learning paradigm, termed Co-correcting, to train
networks by directly using the data with noisy labels. Empirical results exhibit the
excellent performance of Co-correcting compared to other state-of-the-art methods in
label-noise learning.

2. We are the first to introduce label-noise learning into space debris detection, and take
noisy samples as a compromise to train networks. In our pipeline, the noisy training
samples are directly sent into Co-correcting, therefore time-consuming manual data
cleaning is avoided.

1.4. Organization of This Article

This paper is organized as follows. Section 2 firstly introduces the mathematical
formulation of space debris and label-noise learning, and then presents the pipeline of our
work, as well as the algorithm steps of our proposed method. In Section 3, we present the
experiment settings and the results with detailed interpretations. In section 4, we discuss
the results and analyze the performance of the methods. Lastly, Section 5 finishes this study
and covers the further applications of the method.

2. Materials and Methods

The original observation comprises space debris, stars, hot pixels, and flicker noise,
which are the forms of interference in space debris detection. In datasets, the training
samples contain noisy labels, caused by ambiguous objects in observation, including stars,
spots caused by cosmic rays, etc. We propose a novel label-noise learning paradigm, Co-
correcting, to utilize the samples with noisy labels to train networks, and the space debris
can be detected by the trained networks.

The whole pipeline is represented in Figure 1. The hot pixels, flicker noise, and uneven
background of the original observation are removed during preprocessing by background
denoising and smoothing. Then, the sub-figures are extracted from the processed images.
The sub-figures extraction includes a threshold method, contour detection, and centroid
location. The extracted sub-figures and the added simulated space debris form the training
dataset. Although the training dataset contains noisy labels, mainly stars, we forward these
samples to Co-correcting to train networks with noisy labels. Finally, the trained networks
are evaluated on the test dataset, and conduct space debris detection in inference stage.



Remote Sens. 2022, 14, 5261 6 of 22

Figure 1. The pipeline of Co-correcting in space debris detection. The original observation images
are processed by background denoise and background smoothing to acquire a clean background.
Then, we extract sub-figures as training dataset. The extracted sub-figures contain plenty noisy
labels. Simulated space debris is added to dataset as positive samples. Then, the dataset with noisy
labels is sent to Co-correcting. The trained models by Co-correcting with noisy labels is evaluated on
test dataset.

In this section, we first introduce the mathematical formulation of space debris detec-
tion and label-noise learning. Then, we thoroughly present the whole pipeline of our work,
including preprocessing and the Co-correcting paradigm.
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2.1. Problem Formulation
2.1.1. Space Debris Detection

Most communication satellites, e.g., television broadcasts, are in geostationary earth
orbit (GEO), and the collisions and explosions of satellites produce a tremendous quantity
of space debris. The altitude of GEO is 36,000 km, resulting in a small and dim observation
of space debris. Optical telescopes are only employed for observation in GEO due to their
great sensitivity over long distances. The final optical image is captured by a charge-couple
device (CCD). The optical images can be modeled as

f (i, j) = D(i, j) + S(i, j) + B(i, j) + n(i, j) (1)

D(i, j) and S(i, j) represent space debris and stars. B(i, j) represents background and n(i, j)
is the CCD dark current noise.

Due to the difference in light condition and CCD channel, B(i, j) is uneven, and
contains hot pixels and flicker noise. To obtain improved performance in space debris
detection, background denoising and background smoothing are essential. The background
denoising seeks to reduce hot pixels and flicker noise. Hot pixels are created by damaged
CCD pixels owing to cosmic radiation. Flicker noise is a single bright spot with only a few
pixels in the image. Hot pixels and flicker noise can be reduced via bilateral filters [42].
Background smoothing seeks to eliminate the uneven background with mathematical
morphology operators.

Debris in GEO remains relative stationary to ground-based telescopes. However, stars
remain relatively stationary to earth due to their infinite distance. In “staring target mode”,
the telescopes remain fixed and in one direction during exposure time. The space debris
keep stable in field of telescopes, and appears point-like. However, stars keep moving with
specific motion in the view field of telescopes, due to rotation of the earth. If exposure
time is sufficient, the trails of stars appear, and stars appear streak-like. In short time
exposure, the trails of stars are subtle, and stars become similar to debris. If the mode of
telescopes is set to “staring star mode”, the telescope moves synchronously with the star
background during the exposure. In the field of telescopes, stars remain stable, and space
debris moves with expected motion. The space debris will appear in trails if the exposure
time is sufficient.

In short time exposure, D(i, j) and S(i, j) share similar optical features, and S(i, j)
becomes the main interference in space debris detection. It is hard to completely remove
S(i, j) from f (i, j). Classical methods try to remove the stars through inter-frame difference
before detecting debris. However, the stars keep flickering in successive frames and are
hard to remove completely. CNN is adopted to detect space debris from the background,
but its performance relies on a large-scale dataset with highly accurate annotation. The
annotation is extremely time-consuming due to the similarity between debris and stars;
therefore, we introduce label-noise learning to avoid label annotating and data cleaning.

2.1.2. Label-Noise Learning

In space debris detection, the issue can be stated as two classifiers with output of
[0, 1]. “1” signifies the space debris and “0” denotes the background. CNN-based methods
assume the dataset D is obtained from clean distribution p(X, Y). X refers to the samples
and Y is the corresponding labels. However, in label-noise learning context, noisy dataset
D̃ is derived from a corrupted distribution p(X, Ỹ), and Ỹ is the noisy label. Assume that
N samples are taken from original observation images and the noisy dataset is denoted
as D̃ = {(xi, ỹi)}N

i=1. xi is i-th observed sample, and ỹi ∈ {0, 1} is the corresponding
noisy label.

Let f (·) indicate the (Bayes) optical hypothesis from x to y in clean data distribution
p(X, Y). In hypothesis space H, the f (·) can be parameterized by θ and signified as
fθ(·). The purpose is to search for optimal fθ(·) in hypothesis space H. In label-noise
learning, the f (·) can be parameterized by θ∗, and the fθ∗(·) denotes the hypothesis from
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x to ỹ in noisy distribution p(X, Ỹ). fθ(·) and fθ∗(·) can be implemented by CNN. In
hypothesis space H, the noisy distribution p(X, Ỹ) is expected to approximate the clean
data distribution p(X, Y), and therefore the label-noise learning can be redefined as that
the fθ∗(·) is anticipated to approximate fθ(·) in hypothesis spaceH.

In space debris detection, debris are typically confused with stars owing to their
similarity, and the data of debris contain numerous noisy labels. Label-noise learning
tries to find the optimal hypothesis fθ∗(·) in noisy data, and the fθ∗(·) is expected to have
equivalent abilities to fθ(·) in clean data.

2.2. Preprocessing

In original observation images recorded by ground-based telescopes, the background
is generally uneven, owing to variable light condition, channels of CCD, and thin clouds.
The background has hot pixels and flicker noise as well. These characteristics make it
harder to detect space debris in the original observation. The technique of preprocessing
is depicted in Figure 1. First, we employ a bilateral filter to reduce hot pixels and flicker
noise. The mathematical morphology operator is then adopted to remove the uneven
background. Lastly, the processed images can be utilized to extract sub-figures of space
debris by threshold and contour detection.

2.2.1. Background Denoising

In the original observation, the background contains hot pixels and flicker noise. Hot
pixels and flicker noise are a single bright area with a few pixels and domain the entire
image, making it difficult to distinguish objects. Since space debris is tiny and dark with
very low SNR, the averaging filter and median filter easily result in object loss. To tackle this
issue, we utilize a bilateral filter to eliminate hot pixels and flicker noise in the background.
The bilateral filter can be defined as in Equation (2).

I f ilter(x) =
1
Wp

∑
xi∈Ω

ks(||xi − x||)I(xi)kr(||I(xi)− I(x)||) (2)

The normalization termWp is defined as follows.

Wp = ∑
xi∈Ω

ks(||xi − x||)kr(||I(xi)− I(x)||) (3)

I f ilter(x) and I denote the filtered images and original input images, respectively. x is the
current pixels. Ω is the neighboring of x, and so xi ∈ Ω denotes another pixel except x in
Ω. kr and ks are the intensity kernel and the spatial kernel, respectively. kr and ks can be
the Gaussian function.

For each pixel, the intensity is computed by the average of the surrounding pixels.
The weightWp utilize spatial kernel ks and intensity kernel kr to represent spatial closeness
and intensity difference. For example, a pixel x is located at (i, j). The averaged intensity of
x is calculated on the neighboring pixels to denoise the image. xi, located at (k, l), denotes
the neighboring pixels of x. Assume that kr and ks are the Gaussian kernel; the weight
w(i, j, k, l) is calculated by

w(i, j, k, l) = exp (−||I(i, j)− I(k, l)||
2σ2

r
− (i− k)2 + (j− l)2

2σ2
d

), (4)

where I(i, j) and I(k, l) are the intensity of the corresponding pixels; σd and σr are the stan-
dard deviation of spatial closeness and intensity difference, respectively. Then, normalize
the neighboring by

ID(i, j) =
∑k,l I(k, l)w(i, j, k, l)

∑k,l w(i, j, k, l)
(5)
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ID is the intensity of pixel x from the denoised image. The results of background denoise are
shown in Figure 2. We can see that the pixels and flicker noise have been filtered effectively.

Space debrisSpace debris

(a)Original observation

(b)Background denoising (c)Background smothing (d)Threshold and locating

Space debris

(a)Original observation

(b)Background denoising (c)Background smothing (d)Threshold and locating

Figure 2. The image is a subsection of real observation of a ground-based telescope. (a) The original
observation image. Space debris is point-like and stars are stripe-like. (b)The result of background
denoising. (c) The result of background smoothing. (d) The result of threshold and locating.

2.2.2. Background Smoothing

Due to the skylight condition, thin cloud and different channels of CCD, the back-
ground of the original observation is uneven. The unevenness makes it difficult to detect
objects in the image. Thus, we adopt the mathematical morphology operator to smooth the
uneven background.

Mathematical morphology transform consists of dilation operator and erosion operator.
Let f (i, j) be a reference image and e(x, y) be the structuring element. The dilation operator
is defined as

( f ⊕ e) = min { f (i− x, j− y) + e(x, y)|(i− x, j− y) ∈ D f , (x, y) ∈ De}, (6)

the minimum value of pixels are assigned to the image border.
The erosion operator is defined as

( f 	 e) = max { f (i + x, j + y)− e(x, y)|(i + x, j + y) ∈ D f , (x, y) ∈ De}, (7)

the maximum value of pixels are assigned to the image border.
The structuring element e(x, y) plays a great role in dilation and erosion operators. A

structuring element is a matrix consisting of only zero and one that can have any arbitrary
shape and size. Structuring elements are determined by the size of space debris and stars,
the view field of telescopes and the pattern of observation. If the size of the structuring
element is too tiny, the stars and space debris will be eliminated by mistakes. Instead, the
unevenness of the background cannot be successfully smoothed if the size of the structuring
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element is too large. In this paper, the size of structuring element is fixed at 5× 5. We
initially perform the erosion operator and then conduct the dilation operator. The image
with an even background is obtained by

fsmooth = ( f 	 b)⊕ b, (8)

fsmooth is the smoothing image of original observation with uneven background.

2.2.3. Sub-Figure Extraction

After background denoising and smoothing, the sub-figure of space debris can be
extracted. Firstly, we perform threshold methods on smoothing images, and then detect
the contours of the object in images to extract sub-figure.

The results of threshold can be defined as follows:

fthreshold(i, j) =
{

1, i f f (i, j) ≥ threshold
0, i f f (i, j) ≤ threshold

(9)

And the threshold is set as:
threshold = m + kδ, (10)

where m and δ are the mean and standard deviation of the background, respectively, and k
is the coefficient determined by the number of points.

Then, we detect the contours of objects in image fthreshold, and each contour corre-
sponds to one object. The centroid of each object is calculated by contours, as follows.

x0 =
∑n

k=1 xk

n

y0 =
∑n

k=1 yk

n

(11)

n is the total number of pixels in every contour, and (x0, y0) is the coordinates of centroid.
Then, we clip a 32× 32 sub-figure from fsmooth as positive samples for the following training.
The negative samples are randomly selected from fsmooth with 32× 32 patches. The result
of threshold method and locating can be seen in Figure 2.

2.3. Co-Correcting

In space debris detection, the samples directly derived from images commonly include
noisy labels, mainly due to the low SNR and similarity to stars. To avoid time-consuming
procedures such as data cleaning, we directly employ the samples with noisy labels as
a compromise to train networks by introducing the methodology of label-noise learning.
We propose a novel label-noise learning paradigm, Co-correcting, to correct the noisy
labels and update parameters with the corrected labels. Concretely, we randomly initialize
two identical networks and then make their own predictions on the same samples. The
predictions of each network serve as auxiliary supervised information to correct the noisy
labels for peer networks during parameters updating stage. In other words, we utilize the
predictions of each network to correct its peer network’s original targets of noisy labels.
Due to the memorization effects of DNN, the networks have the ability to recognize the
noisy samples at the beginning of training. The corrected labels provide more supervised
information which can suppress the negative impact of noisy labels effectively. Thus,
our proposed method is termed “Co-correcting”. The supervision of our proposed Co-
correcting can be separated into two parts: original targets and auxiliary supervised
information. Original targets derive from the noisy datasets (i.e., space debris directly
extracted form images) and will degenerate the performance of networks. Consequently, we
utilize the auxiliary supervised information from the peer networks’ predictions to correct
the original targets. By the mutual rectification, Co-correcting has stronger supervision to
prevent overfitting noisy labels.
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In a real engineering context, we train two identical networks A and B, denoted by
f (x, θ1) and f (x, θ2). θ1 and θ2 are parameters of networks A and B. pi

1 ∈ {0, 1} and
pi

2 ∈ {0, 1} are their own predictions of i-th samples, respectively.

2.3.1. The Structure of Co-Correcting

The structure of Co-correcting is depicted in Figure 3. In Co-correcting, two identical
networks are utilized to make predictions on the same mini-batch data. We argue that
each network can provide effective supervised information for its peer networks. Due to
random initialization, two networks with the same structure have different abilities and
perspectives towards the same mini-batch data. It is the divergence that is vital to our
proposed method. For the same mini-batch data, network A and network B have their
respective predictions. These predictions depend on the parameters of two networks that
are updated during Stochastic Gradient Descent (SGD) [43]. Distinct predictions represent
different perspectives of two networks towards the same data. Based on this view, two
networks can learn from each other. In label-noise learning, the labels cannot provide
absolutely correct supervision owing to the existence of noise. To address this issue, we use
the predictions of two networks as auxiliary supervised information. The memorization
effect of DNN can be divided into two steps. At the first step, networks tend to memorize
samples with clean labels and then gradually overfit towards hard samples with noisy
labels at the second stage. Hence, the auxiliary supervised information from peer networks
can be exploited in the second training step to prevent overfitting noisy samples.

classifier A

classifier B

1101

0101

Noisy targetsPredictions

𝑝1

𝑝2

Networks Corrected targets

𝑦1
∗

𝑦2
∗𝑦2
∗

Figure 3. The schematic of Co-correcting. In Co-correcting, two networks make predictions on same
mini-batch data, and the noisy labels are corrected by peer networks’ predictions. The new corrected
labels then guide the training of the networks. We can see that each network is under supervision of
its peer network.

To implement this, we introduce the new target y∗ corrected by peer networks’ predic-
tions and compute loss function on y∗.

y∗1 = αy + (1− α)p2

y∗2 = αy + (1− α)p1
(12)

y∗1 , y∗2 are the new corrected targets for classifier f (x, θ1) and f (x, θ2). y is the original
target of noisy labels and α controls the extent of correction from peer networks. y∗1 consists
of two parts: noisy labels y as the original supervised target, and the peer network’s
predictions as the new supervised target. Due to the existence of noise, we provide p2 as
extra supervised information to correct noisy labels y. Intuitively, the networks are more
robust, the auxiliary supervised information is more effective, and it even approximates
the case in clean labels learning.
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The memorization effect of deep networks reveals that training of DNN can split into
two phases. Based on this observation, we propose a small α in Equation (12) in early
training, and then the α increases to noise rate ε. At the beginning of training, networks
have formed their own perspectives and can select reliable samples from noisy dataset. Due
to this, the clean labels dominate the whole training data. Here, supervised information
from peer networks is not essential for training. Yet, as the epoch increases, side effects
of noisy labels tend to appear. The networks cannot handle noisy labels by just relying
on their inherent properties learned in the first step through clean labels. Consequently,
they require more vigorous supervision. A big α is required to improve the supervision in
Equation (12). As in Equation (13), t refers to the current epoch, Ek regulates the pace of α
attaining its maximum. The maximum of α is defined by the noisy rate ε.

α(t) = ε min{ t
Ek

, 1} (13)

2.3.2. Loss Function of Co-Correcting

The loss function of Co-correcting is calculated by corresponding new corrected labels.

`1(xi) = CCE(p1, y∗1)

= −
N

∑
i=1

yi∗
1 log pi

1(xi)

`2(xi) = CCE(p2, y∗2)

= −
N

∑
i=1

yi∗
2 log pi

2(xi)

(14)

CCE signifies Categorical Cross Entropy. We apply Cross-Entropy Loss to minimize
the distance between predictions and corrected targets. The corrected targets are influenced
by peer networks so the CCE can be seen to minimize the distance between two networks
of Co-correcting. Each network is under the supervision of its peer network. Due to
the divergence of two networks, they might present distinct viewpoints upon the same
mini-batch data. Thus, each network can distill supervised information from mini-batch
data to guide the training of another peer network.

During back-propagation, the error accumulation of each network caused by mini-
batch data can be successfully reduced by the procedure of mutually correcting peer
networks’ targets.

2.3.3. Small-Loss Selection

Due to the memorization effect of DNN [31], we should train networks with clean
samples to prevent them overfitting noisy labels. Samples with small loss are more likely to
have the clean labels [30,34,40]. Co-teaching utilizes two identical networks with different
initialization to select clean samples. Each network selects samples with small-loss policy
on their own perspectives, and then the selected samples are utilized for their peer networks.
Instead, JoCoR utilizes joint regularization to select small-loss samples upon perspectives
of both networks. JoCoR argues that the samples are more likely to have clean labels when
two networks achieve agreement. Similar to Co-teaching and JoCoR, we select samples of
each network with small-loss policy based on Equation (15).

D̃i = arg minD′i :|D′i |≥R(t)|D̄|`i(D′i)

i = 1, 2
(15)

In Equation(15), D̃1 and D̃2 are selected samples of two networks, respectively. D̄
is the mini-batch dataset. Let R(t) determine the number of selected samples in every
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mini-batch [40]. Compared to Co-teaching, we do not employ the “cross update” approach.
In our study, the training samples of two networks are the same (Co-teaching is not), and
we take the union of these chosen samples as training data for both networks.

D̃ = D̃1 ∪ D̃2 (16)

Then, networks forward propagate on D̃ and update parameters during backward
propagation. We argue that such a sample selecting policy can utilize more data and take
advantage of two networks’ different perspectives.

2.3.4. Algorithm Description

In Algorithm 1, f (x, θ1) and f (x, θ2), respectively, select small-loss samples from
mini-batch data (step 5–6) based on their own loss function in Equation (14). Then, we take
the union of two networks’ selected samples as training samples (step 7). To strengthen
the supervision of training, we correct the original targets of noisy labels by peer networks’
predictions (step 8–9). The loss function of each network is computed on the correspond-
ing corrected target, and then back-propagation is conducted to update two networks’
parameters, respectively (step 10–11).

Algorithm 1 Co-correcting
Input: Networks f (x, θ1) and f (x, θ2), training dataset D, learning rate η, noisy rate ε and
epoch Ek and Emax, iteration Imax
Output: Networks f (x, θ1) and f (x, θ2)

1: for t = 1, 2, . . . , Emax do
2: Shuffle training set D; //noisy dataset
3: for i = 1, 2, . . . , Imax do
4: Fetch mini-batch D̄ from D
5: Select D̃1 = arg minD′1 :|D′1|≥R(t)|D̄|`1(D′1)
6: Select D̃2 = arg minD′2 :|D′2|≥R(t)|D̄|`2(D′2)
7: Obtain D̃ = D̃1 ∪ D̃2
8: Correct y∗1 = αy + (1− α)p2
9: Correct y∗2 = αy + (1− α)p1

10: Update θ1 = θ1 − η5 `1(D̃)
11: Update θ2 = θ2 − η5 `2(D̃)
12: end for
13: UpdateR(t) = 1− ε min{ t

Ek
, 1}

14: Update α based on Equation (13)
15: end for

3. Results

In this section, we introduce the concrete experiment setting and exhibit the concise
description of the experimental results.

3.1. Experiments Setting
3.1.1. Dataset

In this paper, the original observation is processed by background denoising in
Section 2.2.1 and background smoothing in Section 2.2.2. Then, the sub-figures are clipped
from the original observation images with the size of 32× 32, and serve as positive training
samples for networks. Note that the extracted sub-figures of positive samples contain space
debris and false alarms with noisy labels. Space debris is the positive sample and stars
are the false alarms. In our work, the extracted sub-figures are identified as space debris,
i.d., the sub-figures are assigned a positive label “1”, despite the labels contain ambiguous
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category. The negative samples with label “0” background are randomly cropped from
original observation images with the size of 32× 32.

In label-noise learning, the label noise rate must be lower than 50% for the two-
classifier. In other words, the right labels must be prominent. In original observation
images, the number of stars is significantly larger than the amount of space debris. Thus,
simulated space debris is added to training dataset to expand the number of clean samples.
The intensity distribution of the debris without motion blur is

I(x, y) = I0

2J1

(√
x2 + y2

)
√

x2 + y2

2

(17)

where I0 is the central intensity of the debris, and J1 is the first-order Bessel function.
In this way, despite the extracted sub-figures from images include false alarms (e.g., stars),

space debris dominates the positive samples, i.e., the number of correct labels in the training
dataset is larger than the wrong labels. We prepare four datasets with different noise rate.

In every image, we extract 100 sub-figures of the detected objects (most of them
are stars and a few are space objects) in Section 2.2.3, and then 100/200/300/500 sim-
ulated space debris is added to each image. The 100 extracted patches and simulated
space debris serve as positive samples. As for negative samples, we randomly extract
200/300/400/600 patches from the background in every image to balance the quantity of
positive and negative samples. We prepare 10 original observation images with size of
4096× 4096 for training, and the total number of training samples is 4000/6000/8000/12,000
with corresponding estimated label noise rate at 50%/33.3%/25%/16%. The samples in the
test dataset share the same distribution with training data, and the test dataset has 300 positive
samples and 300 negative samples extracted from the other three original observation images.

3.1.2. Baselines

Our proposed Co-correcting (Algorithm 1) is compared with the following state-of-
the-art methods. For fair comparison, we implement all methods in Baselines with default
parameters and same network architectures. All methods are implemented by PyTorch,
and all experiments are conducted on NVIDIA RTX 3090 GPU.

• JoCoR [30], which trains two networks and adopts joint training with Co-regularization
to combat noisy labels.

• Co-teaching [40], which trains two networks simultaneously and cross-updates pa-
rameters of peer networks.

• Standard, which trains networks directly on noisy datasets as a simple baseline.

3.1.3. Measurement

We use test accuracy to measure the performance of every method. Test accuracy is
defined as follows.

test accuracy =
the num. o f correct predictions

the num. o f test
(18)

Besides, label precision i.e.,

label precision =
the num. o f clean labels

the num. o f all selected labels
(19)

is also calculated. Label precision reflects the abilities of methods in select reliable samples.
The higher label precision means more clean samples are selected to train networks, and
thus the networks may achieve high performance in test accuracy.

We also introduce detection probability and false alarm rate to measure the perfor-
mance of space debris detection. They are given by
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Pd =
Nd

Ntotal

Pf =
N f

Ntotal

(20)

where Pd is detection probability and Pf is false alarm rate. Nd, N f and Ntotal represents
numbers of detected space debris, false alarms, and total space debris.

We implement all experiments five times. The highlighted shade in each figure denotes
the standard deviation.

3.1.4. Network Structure and Optimizer

Because space debris only covers a few pixels and has low-level features such as edges
and points, the shallow neural networks are suitable to this situation. Specifically, we
adopt the two-layer CNN architecture in Table 1 as backbone networks for all methods
in Baselines. For all experiments, active function is ReLU and batch-size is set to 64. We
adopt an Adam optimizer with momentum 0.9 and set the initial learning rate to 0.001.
Dropout and bath normalization are also used. We run 50 epochs for all experiments.

Table 1. The structure of 2-layer CNN.

2-layer CNN

32× 32 gray Image

5× 5, 16 BN, ReLU
2× 2 Max-pool

5× 5, 16 BN, ReLU
2× 2 Max-pool

Dense 16× 5× 5 −→ 120, ReLU
Dense 120 −→ 84, ReLU

Dense 84 −→ 10

3.1.5. Selection Setting

The noisy rate ε can be inferred by the training dataset. For example, the positive
samples in an image have 200/300/400/600 simulated space debris, and the corresponding
noisy rate ε is about 50%/33.3%/25%/16%, respectively. The ratio of small-loss samples
R(t) of Co-correcting is set to:

R(t) = 1−min ε

{
t

Ek
, 1
}

(21)

R(t) determines the selected sample ratio in small-loss selection. t is the current epoch
and Ek is the scheduled epoch, where Co-correcting selects most samples in every updat-
ing procedure.

3.2. Feasibility of Label-Noise Learning in Space Debris Detection

In this section, we demonstrate the feasibility of label-noise learning methods in space
debris detection. All methods in Baseline are implemented with the same settings in
Section 3.1.4. We train all networks on datasets with four different noise rates: 50%/ 33.3%/
25%/ 16%, and then trained networks are tested on the test dataset.

As in Figure 4, the performance of each method on a noisy dataset with a different
noise rate is plotted. We can see the memorization effect clearly in all four plots. The
standard test accuracy rapidly achieves the greatest levels at the first stage, and at the
second stage it declines gradually owing to existence of noise labels. However, we can
see that the other methods can successfully alleviate the decline at the second stage. At
this point, all methods demonstrate their effectiveness in avoiding networks overfitting
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towards noisy labels. To illustrate these phenomena, we plot the label precision curve in
Figure 5 of every method in all cases with a different noise rate. We can observe that the
label precision of every method has the same trend compared to test accuracy. The label
precision rises initially and then falls progressively. The rationale is that the label-noise
learning methods can extract clean labels from noisy datasets by themselves. Test accuracy
reaches its maximum in the seventh epoch, but label precision reaches its highest at the
10th epoch. The delay in the label precision’s diminishing illustrates that the networks
begin to overfit the noisy data, and then lose the ability to select clean labels. The selected
noisy labels degenerate the performance of networks in turn. The detailed test accuracy
can be seen in Table 2, and the detailed label precision can be seen in Table 3.
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Figure 4. The test accuracy of the methods in Baselines. The datasets have the different label noise
rate. The label noise rate is: (a) noise rate 16%, (b) noise rate 25%, (c) noise rate 33%, and (d) noise
rate 50%. Each experiment is repeated five times. The error bar for STD in each figure has been
highlighted as a shade.
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Table 2. The test accuracy of methods in Baselines with different noise rate.

Noise rate Standard Co-Teaching JoCoR Co-Correcting

Noise rate 16 % 89.34± 0.50 96.46± 0.22 96.67± 0.20 97.55 ± 0.07
Noise rate 25 % 73.14± 0.90 93.04± 0.36 94.49± 0.53 95.95± 0.11
Noise rate 33 % 55.52± 0.98 97.48± 0.56 90.67± 0.73 92.45± 0.45
Noise rate 50 % 33.97± 1.32 82.12± 3.02 85.49± 4.03 88.45± 0.75

The test accuracy of every method is calculated over the last 10 epochs.
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Figure 5. The label precision of the methods in Baselines. The training datasets have four different
label noise rate: (a) noise rate 16%, (b) noise rate 25%, (c) noise rate 33% and (d) noise rate 50%.
Higher label precision means less noisy samples are selected during sample selection, and methods
with high label precision are more robust to noisy labels.
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Table 3. The label precision of methods in Baselines with different noise rate.

Noise Rate Standard Co-Teaching JoCoR Co-Correcting

Noise rate 16 % 94.67 97.66 98.36 97.24
Noise rate 25 % 81.10 94.09 96.05 93.41
Noise rate 33 % 58.78 88.67 92.97 89.41
Noise rate 50 % 32.98 82.59 86.87 83.43

The label precision of every method is calculated over the last 10 epochs.

When the noise rate is 16%, the test accuracy of Standard starts to fall after it achieves
the greatest level at the 7th epoch. Finally, the Standard achieves the test accuracy at 89.34%.
However, other methods such as Co-teaching, JoCoR and Co-correcting work well; notably,
our proposed Co-correcting achieves the best result at 97.55%. It is noticed that in the
17 early epochs, the test accuracy of Co-correcting is lower than Co-teaching and JoCoR,
and then other methods begin to decline, but Co-correcting grows progressively. This
is because Co-correcting can correct the noisy labels via its two identical peer networks.
Although Co-teaching and JoCoR begin to drop significantly, Co-correcting can still grow
in test accuracy. In label precision, all approaches yield great results due to the low noise
rate. The JoCoR obtains the best performance in label precision, while Co-correcting still
surpasses other methods in test accuracy.

In the case of 25% noise rate, the tendency is same as the case of 16% noise rate. The
Co-correcting achieves the best test accuracy in the 30 late epochs at 95.95± 0.11%, but
JoCoR achieves the maximum label precision.

In the case of 33% noise rate, the Standard degenerates substantially and ultimately
reaches 55.52± 0.98% test accuracy. Co-teaching, JoCoR and Co-correcting still perform
well, and Co-correcting is better than other methods. JoCoR also have the performance on
picking clean labels.

In the harshest case of 50% noise rate, the Standard loses its capacity to recognize
objects. The test accuracy is 33.97± 1.32% and the label precision is 32.98%. Co-teaching,
JoCoR, and Co-correcting attain the lowest test accuracy at the 7th epoch and then grow
fast. In the late epochs, they maintain the high test accuracy. The trend of test accuracy is
similar to label precision.

Co-correcting gets the greatest test accuracy in all cases, but JoCoR acquires the best
performance of label precision. This result explains that Co-correcting can successfully
correct the noisy labels using their two identical peer networks. In contrast, Co-teaching
and JoCoR strive to pick clean labels, and hence their label precision is better, but their test
accuracy is lower than that of Co-correcting.

3.3. Detection Results of Co-Correcting

In this section, we exhibit the results of space debris detection in different noise
rates. The networks of Co-correcting are trained with datasets of four different noise rates:
16%, 25%, 33%, and 50%. The four trained networks are evaluated on 300 space debris
samples (100 samples from 10 real images and 200 simulated samples). The detection
results are shown in Table 4. When the noise rate is low (16%), Co-correcting can obtain
99.7% detection probability and 0.3% false alarms rate. Even in the harshest case (50% noise
rate), the detection probability is 98.0% and the false alarm rate is 2.0%.

Due to the similarity between space debris and stars, the stars are the main source of
false alarms. In training dataset, there are numerous noisy labels which provide networks
with the wrong supervised information. However, our proposed Co-correcting can effec-
tively correct the noisy labels by their peer networks mutually. The trained networks have
the great performance in space debris detection with high detection probability and low
false alarm rate. The results demonstrate the excellent performance of the networks trained
by Co-correcting in space debris detection, even in the high noise rate case (50% noise rate).
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Table 4. Detection results of the networks trained by Co-correcting with different noise accuracy.

Noise Rate (%) Total Number Detection
Number

Detection
Probability (%) False Alarms False Alarms Rate

(%)

16% 300 299 99.7% 1 0.3%
25% 300 298 99.3% 2 0.7%
33% 300 297 99.0% 3 1.0%
50% 300 294 98.0% 6 2.0%

The networks of Co-correcting are trained using a dataset with a different noise rate. The 300 samples for test
contain no noisy label.

4. Discussion
4.1. The Memorization Effect of Network

In Figure 4, we can see the memorization effect clearly. Standard is just a two-layer
network without any label-noise learning methodology. The samples with noisy labels are
directly forwarded to Standard, and its performance can reveal the memorization effect
of CNN. The test accuracy of Standard increases quickly and achieves the highest level
at the 8th epoch. Then, the test accuracy begins to fall. The degeneration of networks’
performance in later epochs is caused by the noisy labels. In space debris detection, the
training data contains numerous noisy labels, due to the similarity between debris and stars
and low SNR. The parameters of networks are initialized randomly, and the number of
clean labels dominates the training dataset. Thus, the networks can select the correct space
debris at the first stage. With the training epoch increasing, the networks obtain more noisy
labels to guide their training and thus converge to noisy labels. In Figure 5, Standard has
high label precision at the first 10 epochs. That is to say, Standard can select the clean labels
by itself. Then, most training samples of Standard have noisy labels during the late epochs,
and the noisy labels degenerate the performance of Standard in terms of test accuracy.

4.2. The Feasibility of Label-Noise Learning in Label-Noise Learning

In Figure 4, Co-correcting outperforms other methods in Baseline in test accuracy.
Co-teaching and JoCoR mainly focus on selecting clean labels during parameter updating.
Instead, our proposed Co-correcting aims to correct the noisy labels. Thus, in the case
of 16% and 25% noise rate, we can see that the test accuracy of Co-teaching is lower
than that of Co-teaching and JoCoR at an early stage, but then it begins to increase and
finally achieves the highest level. In Figure 5 of label precision, although JoCoR achieves
the best performance in selecting clean labels, Co-correcting can achieve the best test
accuracy. These phenomena demonstrate the effectiveness of the correcting strategies of
Co-correcting. The inputted samples with noisy labels can be corrected by the two peer
networks of Co-correcting. The corrected labels serve as new supervised information for
networks to guide the training procedure.

4.3. The Performance of Co-Correcting in Space Debris Detection

The detection results of Co-correcting are shown in Table 4. In short time exposure,
debris extracted from observation contains lots of false alarms, which are the main source
of noisy labels in datasets. The network trained by Co-correcting with these noisy labels
can achieve high detection probability and a low false alarm rate. Our work provides a
new paradigm in space debris detection. In short time exposure, debris and stars share
similar features. CNN can effectively detect space debris from the background, but the
large datasets with highly accurate annotation are required to train networks. In space
debris detection, the datasets contain lots of noisy labels. The data cleaning is costly and
time consuming; therefore, Co-correcting utilizes the samples with noisy labels to train
networks. Assuming that the clean labels dominate, i.e., the highest label noise rate of
a two-classifier is 50%, the networks trained by Co-correcting can accomplish the space
debris detection tasks with high detection probability.
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5. Conclusions

In this paper, we propose a novel learning paradigm, Co-correcting, to overcome the
noisy label in space debris detection. In original observation images, space debris contains
plenty of noisy labels, making it difficult to train networks.

Our proposed Co-correcting comprises two identical networks and can correct the
noisy labels with the peer networks’ predictions. Empirical experiments show that Co-
correcting outperforms other state-of-the-art methods of label-noise learning in space debris
detection. When the label noise rate is 16%/ 25%/ 33.3%/ 50%, Co-correcting achieves
the best test accuracy at 97.55%/ 95.95%/ 92.45%/ 88.45%. Even with a high label noise
rate (50%), the networks trained via Co-correcting can detect space debris with a high
detection probability at 98.0% and a low false alarm rate at 2.0%. These results show that
Co-correcting can effectively mitigate the effects of noisy labels in space debris. In future
work, we will investigate more applications of Co-correcting in space debris, such as space
debris tracking, background suppression, and image registration.
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