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Abstract: Black ice on the road can be dangerous, as it renders the road slippery and is difficult to
identify, owing to its transparency. Although studies on black ice detection using cameras, optical
sensors, and infrared sensors have been conducted, these sensors have limitations, as they are affected
by low light conditions and sunlight. To detect black ice regardless of low light conditions or sunlight,
in this study, we incorporate a mmWave sensor that is consistent with varying light conditions. In
the proposed method, a frequency modulated continuous wave is transmitted to the surface by the
mmWave sensor, and the mmWave sensor backscattering is modulated by the surface medium and
roughness. The proposed method also includes preprocessing to calculate the Range-FFT result of the
mmWave sensor backscattering and a classification based on a 1-dimensional convolutional neural
network to precisely detect the presence of black ice from the Range-FFT result. As a result of the
indoor experiment, the proposed black ice detection method achieves an accuracy of 98.2% on dry,
wet, and black ice surfaces. Additionally, under low light conditions and in an outdoor environment
with sunlight, the proposed method achieves accuracies of 95.6% and 98.5%, respectively.

Keywords: black ice; mmWave sensor; FMCW; 1D CNN

1. Introduction

Black ice is a thin layer of ice formed on the road surface. When black ice is formed on
the road surface, it tends to reduce the friction coefficient of the road. A road with black
ice is slippery and prone to safety accidents for pedestrians and automobiles. In addition,
due to its transparent nature, black ice is difficult to identify compared to other slippery
surfaces, such as wet and snowy roads. According to the Federal Highway Administration,
more than 116,800 people are injured in vehicle accidents caused on snowy, slushy, or icy
pavements annually in the USA [1].

The conducted studies on black ice detection can be categorized into two types: contact
sensor-based methods [2,3] and contactless sensor-based methods [4–9]. In the contact
sensor-based methods, to detect black ice, measured temperature and humidity from a
sensor installed on the road surface are compared with conditions capable of forming black
ice. In contactless sensor-based methods, black ice is detected by utilizing road images
obtained by the camera. In addition, black ice detection methods using an IR sensor and
optical sensor use the change in water and ice absorption coefficient depending on the
wavelength of the incident signal. Table 1 summarizes the black ice detection method using
the contact and contactless sensor. However, the sensors used in existing methods have
limitations. A camera could be affected by low light conditions [10]. IR sensors and optical
sensors also could be affected by sunlight as another resource [11]. Since black ice can form
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regardless of light conditions and sunlight, a black ice detection method using a sensor that
could generate compelling results in any light conditions is desired.

Table 1. Summary of existing sensors used in black ice detection.

Sensor Method Limitation

Contact sensor [2,3]

Estimate temperature and
humidity to verify two

parameters meet the black ice
forming condition

Hard to manage distributed
sensor

Camera [4,5] Detect black ice in vision data of
each road surface

Camera is affected by low light
conditions

IR sensor [6,8],
Optical sensor [7,9]

Utilize absorption coefficients that
vary with wavelength

IR sensor and Optical sensor are
affected by sunlight

Unlike a camera, IR sensor, and optical sensor, the mmWave sensor is robust under all
light conditions [12]. Although the mmWave sensor’s data need additional computation
to analyze the results, the mmWave sensor can estimate the object’s range, velocity, and
angle [13], owing to which it has been used in various fields, such as advanced driver
assistance systems [14], target detection [15,16], target classification [17], and gesture
recognition [18,19]. Therefore, for black ice detection, we utilize the mmWave sensor.
Additionally, CNN-based target detection methods using the mmWave sensor have been
presented [20,21]. As input data of the CNN model for target detection, the feature map,
which is based on two parameters among the target’s distance, velocity, and angle values,
is utilized. On the other hand, our proposed method utilizes the Range-FFT result as the
input data of 1D CNN for black ice detection since the experiment is stationary and the
surface is close to the mmWave sensor.

In this paper, we propose a black ice detection method using a mmWave sensor. In the
proposed method, mmWave sensor backscattering, which is influenced by the reflected sur-
face medium and roughness, is utilized. After the mmWave sensor transmits the frequency
modulated continuous wave (FMCW) toward the surface, the Range-FFT result of the
received mmWave sensor backscattering is calculated. To precisely determine the black ice
presence based on the Range-FFT result, the 1-dimensional convolutional neural network
(1D CNN) model is employed. We evaluate the proposed black ice detection method in ex-
perimental environments, including three surfaces (dry, wet, and black ice). The proposed
black ice detection method is represented in Figure 1. The primary contributions of this
paper are as follows:

1. To our knowledge, our proposed method is the first approach to detecting black ice
by using the mmWave sensor. Instead of theoretical analysis, we utilize the black ice
detection model based on 1D CNN, which learned the Range-FFT result obtained
from the experimental environment.

2. Experiments for evaluating the proposed method are conducted not only in an indoor
environment, but also in other environments, where the sensors used may be affected.
The experimental results show that the proposed method achieves an accuracy of
more than 95%. These experimental results demonstrate the feasibility of black ice
detection by using the mmWave sensor.

3. In other black ice detection using a camera [4], they achieved an accuracy of 96.1.
Comparing accuracy in the study, it exhibits that the mmWave sensor could detect
black ice more precisely.

The remainder of this paper is organized as follows. Background knowledge related
to the proposed method is described in Section 2. Then, our proposed black ice detection
method is explained in Section 3. In Section 4, the experimental environment for evaluating
the proposed black ice detection method is described, and the experimental results are
analyzed. Finally, the conclusion is presented in Section 5.



Remote Sens. 2022, 14, 5252 3 of 10Remote Sens. 2022, 14, 5252 3 of 10 
 

 

 
Figure 1. The schematic diagram of the proposed black ice detection method. 

The remainder of this paper is organized as follows. Background knowledge related 
to the proposed method is described in Section 2. Then, our proposed black ice detection 
method is explained in Section 3. In Section 4, the experimental environment for evaluat-
ing the proposed black ice detection method is described, and the experimental results are 
analyzed. Finally, the conclusion is presented in Section 5. 

2. Background Knowledge 
In the proposed black ice detection method, the mmWave sensor transmits FMCW 

to the surface. The frequency of FMCW used as the transmitted signal increases linearly 
with time. After the transmitted signal is backscattered from the surface, the mmWave 
sensor receives the backscattering. While the signal is backscattered from the surface and 
received by the mmWave sensor, the frequency of the transmitted signal increases line-
arly. So, the difference between frequencies of the transmitted signal and the received sig-
nal includes frequency components in proportion to distance between the mmWave sen-
sor and the object from which the signal is backscattered. To extract frequency compo-
nents related to the distance, the transmitted signal, and received signal are used as input 
data of a frequency mixer. The output of the frequency mixer is the intermediate fre-
quency (IF) signal, and is as follows: x t A cos 2π St t f t S2 t  (1)

where A  is the amplitude of the IF signal, S is the frequency increase rate, t  is the 
time delay that occurs while the signal is transmitted and received, and f  is the carrier 
frequency. To analyze the frequency components in the IF signal, a fast Fourier transform 
(FFT) is applied to the IF signal. An FFT for extracting the distance information from fre-
quency components is called Range-FFT [13]. Since frequency components of the IF signal 
are in proportion to the distance, the x-axis in the FFT may be converted from the fre-
quency domain to distance domain. The range resolution used in the distance domain of 
the Range-FFT result is expressed as follows: d 1T 1N cS 12 (2)

where T  is the duration of the FMCW, c is the speed of light, and N is the number of 
digitized x t  samples. The FMCW parameters used in this paper are given in Table 2. 
In the proposed method, black ice presence on the backscattered surface is determined by 
the Range-FFT result. Meanwhile, the mmWave sensor backscattering can be influenced 
by the medium and roughness of the surface from which the signal is backscattered [22]. 
All mediums have an inherent permittivity value, individually. When the signal is inci-
dent on the surface, the reflected signal amplitude can be affected by the permittivity of 
the medium that reflects the transmitted signal [23]. Moreover, when the transmitted sig-
nal is reflected, the nature of reflection is decided by the surface roughness. This can be 
classified into two types as shown in Figure 2. For a smooth surface, the reflected signal 
components have the same direction. However, if the signal is incident on a rough surface, 

Figure 1. The schematic diagram of the proposed black ice detection method.

2. Background Knowledge

In the proposed black ice detection method, the mmWave sensor transmits FMCW
to the surface. The frequency of FMCW used as the transmitted signal increases linearly
with time. After the transmitted signal is backscattered from the surface, the mmWave
sensor receives the backscattering. While the signal is backscattered from the surface and
received by the mmWave sensor, the frequency of the transmitted signal increases linearly.
So, the difference between frequencies of the transmitted signal and the received signal
includes frequency components in proportion to distance between the mmWave sensor
and the object from which the signal is backscattered. To extract frequency components
related to the distance, the transmitted signal, and received signal are used as input data of
a frequency mixer. The output of the frequency mixer is the intermediate frequency (IF)
signal, and is as follows:

xIF(t) = AIF cos
{

2π
(

Stdt + fctd −
S
2

td
2
)}

(1)

where AIF is the amplitude of the IF signal, S is the frequency increase rate, td is the time
delay that occurs while the signal is transmitted and received, and fc is the carrier frequency.
To analyze the frequency components in the IF signal, a fast Fourier transform (FFT) is
applied to the IF signal. An FFT for extracting the distance information from frequency
components is called Range-FFT [13]. Since frequency components of the IF signal are
in proportion to the distance, the x-axis in the FFT may be converted from the frequency
domain to distance domain. The range resolution used in the distance domain of the
Range-FFT result is expressed as follows:

dres =
1

TS
× 1

N
× c

S
× 1

2
(2)

where TS is the duration of the FMCW, c is the speed of light, and N is the number of
digitized xIF(t) samples. The FMCW parameters used in this paper are given in Table 2. In
the proposed method, black ice presence on the backscattered surface is determined by the
Range-FFT result. Meanwhile, the mmWave sensor backscattering can be influenced by
the medium and roughness of the surface from which the signal is backscattered [22]. All
mediums have an inherent permittivity value, individually. When the signal is incident on
the surface, the reflected signal amplitude can be affected by the permittivity of the medium
that reflects the transmitted signal [23]. Moreover, when the transmitted signal is reflected,
the nature of reflection is decided by the surface roughness. This can be classified into two
types as shown in Figure 2. For a smooth surface, the reflected signal components have the
same direction. However, if the signal is incident on a rough surface, the reflected signal
components scatter in all directions. Considering that the signal amplitude is decided
by the amount of signal that enters the receiver, the direction of the reflected signal can
be affected by the signal strength [24]. Many other parameters, such as density, surface
cover, wetness, etc., also affect signal amplitude [25,26]. By considering all parameters,
predicting the black ice presence based on signal amplitude requires extensive computation
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power [27]. So, after accumulating the Range-FFT result from experimental surfaces, we
train the black ice detection model using obtained data.

Table 2. FMCW parameters.

Parameter Values

Carrier frequency [GHz] 77
Bandwidth [GHz] 3.958

Frequency increase rate [MHz/µs] 29.982
Duration [µs] 132

Sampling frequency [Msps] 15
ADC sample [EA] 1536
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3. Proposed Black Ice Detection Method
3.1. Data Acquisition

The proposed black ice detection method utilizes the Range-FFT result obtained by the
mmWave sensor. As part of the mmWave sensor, we employ Texas Instruments’ IWR1443.
IWR1443 has three Tx antennas and four Rx antennas. For this study, two Tx antennas and
all Rx antennas are used. We also employ a DCA1000EVM to store the sensing results of
IWR1443 as bin files on a connected PC using ethernet. In the stored bin file, each sample
constituting the digitalized IF signal has a 16-bit complex number form. In this paper,
the mmWave sensor is operated by a mmWave studio supported by Texas Instruments.
Considering that the maximum bandwidth of the FMCW in IWR443 is 4 GHz, FMCW
parameters are set as shown in Table 2 to obtain fine range resolution. When the signal is
transmitted by the mmWave sensor using the mmWave studio, the transmitted signal has a
constant format. The transmitted signal comprises n frames, and each frame consists of j
FMCWs. In this paper, n and j are set as 8 and 128, respectively. After n, j, and the FMCW
parameters mentioned in Table 2 are set in mmWave studio, the signal is transmitted toward
the surface by the mmWave sensor. Then, the mmWave sensor backscattering from the
surface is received.

3.2. Preprocessing

After the transmitted signal is backscattered, the received signal data have a constant
format as (the number of used receivers) × (ADC samples × n × j). According to Table 2
and Section 3.1, the data format used in this paper is 4 × 1,572,864. Since the received
signal data are handled in the frame unit, the received signal data are divided by frame.
Next, the FMCWs that constitute the frame are arranged in the order of sampling data
in the time domain. As a representative signal of j FMCWs that constitute the frame, the
average signal of j FMCWs is calculated. Next, for the equal utilization of the received
signal from all receivers, the average of the received signal from all receivers is calculated.
Then, Range-FFT is applied to the representative signal. Concurrently, zero-padding is
conducted to make the range resolution finer. Since the range resolution equation is



Remote Sens. 2022, 14, 5252 5 of 10

inversely proportional to the number of ADC samples, zero-padding that puts zero values
after the original signal in the time domain can make the range resolution finer. Since the
zero-padding factor l is equal to four, the dres is replaced from 4.88 cm to 1.22 cm. The
Range-FFT result with zero-padding is as follows:

|S| = |S1, S2, S3, . . . , SlN| (3)

where the numbers in the subscript indicate the range bin of the degree of the signal travel
distance between the mmWave sensor and the backscattered surface, N represents the
original number of ADC samples, and l is the zero-padding factor. Among the Range-FFT
results, the partial values that are affected by the surface are extracted. To estimate whether
the Range-FFT results are affected by surface or not, the range resolution is utilized. The
range resolution is a unit for signal travel distance, not the vertical distance between the
mmWave sensor and the surface. So, by measuring the diagonal distance between the
mmWave sensor and surface, we can estimate the ideal Range-FFT result affected by surface
in the total result. In this manuscript, we extracted more Range-FFT results as a value
affected by the surface than the ideal value to ensure that all Range-FFT results affected
by the surface are used as input data for the black ice detection model. Before utilizing
these obtained data as the input for the black ice detection model, min-max normalization
is conducted so that the extracted partial values from the Range-FFT result can be treated
without any weighted. The proposed procedure is described in Figure 3. The dataset that is
utilized for preprocessing is depicted in Figure 4. Each row of the dataset in Figure 4a,b is
used as the input data for the black ice detection method.
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3.3. Classification

In this paper, a black ice detection method based on 1D CNN is utilized to determine
the presence of black ice from the surface backscattered signal. 1D CNN is a modified
version of 2D CNN that has a dominant performance in image processing [28]. Although
1D CNN has a simple mechanism, it is very effective in analyzing time series data. 1D CNN
has two parts, feature extraction and classification, through which it can derive an optimal
model, unlike traditional machine learning that requires handcrafted feature extraction [28].
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As input data of the 1D CNN model, the partial Range-FFT result obtained from three
surfaces (dry, wet, and black ice) in the environment mentioned in Section 4.1 is utilized.
The size of the input data is 68 × 1. As input data of the 1D CNN model, the partial
Range-FFT result affected by the surface is utilized. The size of the input data is 68 × 1. The
feature extraction part includes three convolutional layers, where each convolutional layer
is used with batch normalization, rectified linear unit (ReLu) function, and a maxpooling
layer. In the convolutional layer, the convolution between input data and each filter is
conducted sequentially to extract features from the input data. The size of the filters in
all convolutional layers is 3. In each convolutional layer, 15, 20, and 25 filters are used.
In the first two convolutional layers, data include zero padding by 1 on both sides. The
batch normalization is used to normalize the extracted features using learnable mean and
standard deviation. Next, the ReLu function is used as an activation function to reduce the
training time for the black ice detection model. The ReLu function removes the negative
values while maintaining positive values. Followed by the ReLu function, the maxpooling
layer is located to reduce the data size and extract influential features. The size of the filter
and its stride value in the first two maxpooling layers are two, and these values in the last
maxpooling layer are three.

In the classification part of the model, there is a fully connected layer and softmax
function. The fully connected layer makes the decision of black ice presence by adjusting
the contribution of the extracted features. In this paper, dropout is applied to the fully
connected layer to improve the generalization of the model, and 40% of input data in
the fully connected layer is lost intentionally. The softmax function converts the total
probability of predicted labels about the input data as 1. As a result, the input data are
classified into one of the classes: ‘w/black ice’ and ‘w/o black ice’. Meanwhile, a cross-
entropy function is used as a loss function. To minimize the loss function and optimally
set many weighted values, an adaptive moment estimation is used as the optimizer. The
other parameters used in the model are given in Table 3. The used data rates of training,
validation, and testing for the 1D CNN model are 70%, 15%, and 15%, respectively. The 1D
CNN model, which is constructed in MATLAB, is represented in Figure 5.
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Table 3. The 1D CNN model parameters.

Class Value

Learning rate 0.01
Batch size 64
Max epoch 30

Early stopping 4
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4. Experiment
4.1. Experimental Environment

To evaluate the proposed black ice detection method, we set up an indoor experimental
environment. A concept diagram for this environment is described in Figure 6. The vertical
height of the mmWave sensor from the surface is 75 cm, and the horizontal distance between
the mmWave sensor and concrete block is 20 cm. The concrete block is located within the
mmWave sensor coverage area.
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To evaluate the proposed black ice detection method, we set up an indoor experimental
environment. A concept diagram for this environment is described in Figure 6. The vertical
height of the mmWave sensor from the surface is 75 cm, and the horizontal distance between
the mmWave sensor and concrete block is 20 cm. The concrete block is located within the
mmWave sensor coverage area. Three types of concrete blocks (dry, wet, and black ice) are
used to obtain data from different surfaces. Of the three surfaces, the first two surfaces
(dry and wet) are classified as ‘w/o black ice’. The third surface is considered as ‘w/black
ice’. In terms of data accumulation, situations where the data can be biased by a fixed
environment should be avoided. So, the concrete block’s position is shifted frequently to
gather data in variable environments (based on the default position, (1) move to the left
5 cm, (2) move to the right 5 cm, (3) move to the back 5 cm, (4) move to the left 5 cm and
back 5 cm, (5) move to the right 5 cm and back 5 cm, (6) move to the back 10 cm, (7) move
to the left 5 cm and back 10 cm, (8) move to the right 5 cm and back 10 cm). The concrete
black location is adjusted every 20 times the mmWave sensor is operated. In this situation,
the data are collected 120 times per position. Considering that eight frames are obtained
at once, we can obtain 8640 frames from each surface. After preprocessing is applied to
accumulated data, they are utilized for training, validation, and testing of the black ice
detection model based on 1D CNN. The black ice thickness is about 1.5 cm. The sandpaper
is used to keep the roughness of the black ice surface. Since we have no cooling systems to
keep black ice, we employ instant freezing aerosol to maintain the black ice temporarily.
As a fundamental measure of preventing the melting of black ice, we had an idle time for
every 20 times mmWave sensor operation to freeze the black ice. The indoor temperature of
the experimental environment is about 24 ◦C. Table 4 is a confusion matrix to evaluate our
proposed black ice detection method using test data which account for 15% of the dataset
obtained in Section 4.1.

Table 4. The confusion matrix of experimental results (in the indoor environments).

Actual
w/Black Ice w/o Black Ice

Predicted
w/black ice 1211 8

w/o black ice 63 2606
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4.2. Experimental Result

Accuracy is the rate at which the model correctly predicts the data class for the total
data. In the confusion matrix, the row data indicates the prediction result of testing data using
our proposed black ice detection method. The column data indicate the actual label of the
testing data. Table 4 exhibits that among 3888 test data for evaluating the black ice detection
model based on 1D CNN, the model could predict 3817 data. In the experimental result, the
proposed black ice detection method achieved an accuracy of 98.2%. In addition, there are
two other parameters, precision, and sensitivity, which are used to evaluate the black ice
detector performance. Precision is the probability that the data label that was predicted as ‘A’
ice by the classification model is actually ‘A’. Sensitivity is the probability that the classification
model predicts ‘A’ when the actual label of the data is ‘A’. In this paper, the black ice detection
model achieved precision values of approximately 99.3% and 97.6% in the case of ‘w/black
ice’ and ‘w/o black’ ice, respectively. Additionally, the obtained sensitivity values in the case
of ‘w/black ice’ and ‘w/o black’ ice are 95.0% and 99.7%, respectively.

Moreover, experiments are conducted under low light conditions and in an outdoor
environment with sunlight. For low light conditions, we use the same experimental envi-
ronment described in Section 4.1, except for the light conditions. In this experiment, light
sources such as windows and LED are blocked. For the outdoor environment with sunlight,
again, we construct the outdoor experimental environment with the same conditions in
Section 4.1 for full exposure to sunlight. The indoor and outdoor temperatures in the
experiment environments are 24 ◦C and 20 ◦C, respectively. The total number of mmWave
sensor operations in each experiment is 135. The number of mmWave sensor operations to
obtain the backscattering from each surface (dry, wet, and black ice) is the same at 45. Since
the mmWave sensor transmits 8 frames sequentially, the total data obtained from each
experiment are 1080. During data accumulation, the concrete block is moved to avoid accu-
mulating biased data from a fixed environment. After the mmWave sensor backscattering
is obtained from both environments, preprocessing is conducted. Then, all preprocessing
results are put into the black ice detection model, which is the same as the model drawn
in the result in Table 4 to measure the accuracy of the Range-FFT result obtained from the
two different environments. Tables 5 and 6 are the confusion matrices obtained for the low
light conditions and an outdoor environment with sunlight, respectively. Tables 5 and 6
exhibit that for each 1080 test data obtained from both environments, 1033 and 1064 data
are predicted correctly. In the two additional experiments, the proposed black ice detection
model achieved accuracies of 95.6% and 98.5%, respectively.

Table 5. The confusion matrix of experimental results (in the low-light condition).

Actual
w/Black Ice w/o Black Ice

Predicted
w/black ice 702 29

w/o black ice 18 331

Table 6. The confusion matrix of experimental results (in the outdoor environment with sunlight).

Actual
w/Black Ice w/o Black Ice

Predicted
w/black ice 714 10

w/o black ice 6 350

5. Conclusions

In this paper, we conducted a study on black ice detection using a mmWave sensor.
As input data of the 1D CNN model, we utilized the Range-FFT result calculated from
mmWave sensor backscattering that is affected by the surface medium and roughness. We
utilized the input data from three types (dry, wet, and black ice) of surfaces in an indoor
experimental environment to train the 1D CNN model. The experimental result shows
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that our proposed black ice detection method achieves an accuracy of 98.2%. Additionally,
this method achieves accuracies of 95.6% and 98.5% under low-light conditions and in
the outdoor environment with sunlight, respectively. In our future work, to implement
our proposed black ice detection method on a real road, we will accumulate the mmWave
sensor backscattering obtained on several kinds of the actual road to train the black ice
detection model. Moreover, after designing the ideal black ice model, we will verify the
mmWave sensor backscattering obtained from the ideal black ice model by comparing it
with the mmWave sensor backscattering from actual experimental environments.
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