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Abstract: The classification of architectural style for Chinese traditional settlements (CTSs) has be-
come a crucial task for developing and preserving settlements. Traditionally, the classification of
CTSs primarily relies on manual work, which is inefficient and time consuming. Inspired by the
tremendous success of deep learning (DL), some recent studies attempted to apply DL networks
such as convolution neural networks (CNNs) to achieve automated classification of the architecture
styles. However, these studies suffer overfitting problems of the CNNs, leading to inferior clas-
sification performance. Moreover, most of the studies apply the CNNs as a black box providing
limited interpretability. To address these limitations, a new DL classification framework is proposed
in this study to overcome the overfitting problem by transfer learning and learning-based data
augmentation technique (i.e., AutoAugment). Furthermore, we also employ class activation map
(CAM) visualization technique to help understand how the CNN classifiers work to abstract patterns
from the input. Specifically, due to a lack of architectural style datasets for the CTSs, a new annotated
dataset is first established with six representative classes. Second, several representative CNNs are
leveraged to benchmark the new dataset. Third, to address the overfitting problem of the CNNs, a
new DL framework is proposed which combines transfer learning and AutoAugment to improve the
classification performance. Extensive experiments are conducted on the new dataset to demonstrate
the effectiveness of our framework. The proposed framework achieves much better performance than
baselines, greatly mitigating the overfitting problem. Additionally, the CAM visualization technique
is harnessed to explain what and how the CNN classifiers implicitly learn for recognizing a specified
architectural style.

Keywords: architectural style classification; heritage preservation; cultural heritage; Chinese traditional
settlements; convolutional neural networks; CNN interpretability; Grad-CAM; AutoAugment;
deep learning

1. Introduction

China possesses a great treasure of tangible and intangible cultural heritage from
its long history [1,2]. With the accelerated pace of industrialization and urbanization,
safeguarding these intangible cultural heritage settlements has become a crucial task for
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cultural preservation, since these intangible heritage assets would be endangered without
proper preservation strategies planned and implemented [3–5]. Among the preservation
of cultural heritage, preserving Chinese traditional settlements (CTSs) is a crucial task,
since CTSs are regarded as living fossils of vernacular culture containing rich historical and
folk custom information. To safeguard and manage these CTSs purposely and efficiently,
classifying the architectural style of the CTSs is important, and it lays a good foundation
to develop and preserve traditional settlements for tourism. Conversely, an incorrect
classification possibly results in the loss of native characteristics in tourism development
and old building restoration.

Traditionally, the classification of CTSs was usually conducted by manual judgment
without the evidence of analysis and revision comments, which is scope limited, time
consuming, and costly. Recently, DL, especially convolutional neural networks (CNNs) has
achieved remarkable success in various 2D vision tasks such as classification, detection,
and semantic segmentation [6]. Inspired by the tremendous success of DL [6,7], several
researchers have attempted to apply computer vision and DL techniques to automate the
recognition of architecture styles. Abraham et al. [8] introduced a saliency map to select ef-
fective inputs and then trained deep convolutional neural networks (CNNs) to perceive the
architectural styles of Mexican buildings. Subsequently, Jianfang et al. [9] developed a new
deep learning framework to classify Chinese traditional mural images. They fused multiple
levels of features to an SVM classifier for traditional mural image classification, including
high-level features extracted from pre-trained VGGNets [10], low-level features from the
conventional color histogram, and local traditional features. However, these studies suffer
the overfitting problem of the CNNs, leading to inferior classification performance. Worse
still, most of the studies apply the CNNs as a black box, providing limited interpretability
of why and how the CNN classifiers thinks a given input belongs to a particular class.

To tackle these limitations, recent deep learning techniques have been investigated to
achieve automated architecture style classification for CTSs. First, due to a lack of labeled
datasets for CTSs, we establish a new labeled CTS image dataset with over 1200 images
and six representative regional style classes such as Chinese Chuan and Jin architectural
style. Second, several representative CNNs such as ResNet [11] and DenseNet [12] are
benchmarked on the new dataset to demonstrate the effectiveness of the CNNs. As in
previous studies, the overfitting problem is identified as a primary problem of applying
the CNNs, due to the dilemma between the small-sized dataset and large capacity of the
CNNs. The CNNs archives very good performance on the training set of the new dataset
but generalizes very poorly on its test set. To mitigate the overfitting problem, we propose
a new framework by introducing transfer learning (TL) techniques [13] and a learning-
based data augmentation technique (i.e., AutoAugment) [14] to the CNNs. Extensive
experiments are conducted to demonstrate the effectiveness of introducing the TL and
AutoAugment to the CNNs, which achieves outstanding classification performance on
the dataset, exceeding the baselines by a large margin. Lastly, we also employ the CAM
visualization technique to analyze what our developed framework has implicitly learned
to perceive a specified architectural style, thereby boosting interpretability of the CNNs.
With the resultant activation heat maps for each architectural style, we can understand how
machine perception is achieved by these CNNs. The proposed framework shed light on
addressing the overfitting problem when applying CNNs over a small-size dataset and
set a comprehensive example of achieve automatic heritage asset recognition using recent
fancy deep learning techniques. To conclude, our primary contributions of this study are
as follows:

• Established a first new architectural style dataset for Chinese traditional settlement
style classification and benchmarked the dataset with several representative CNNs.

• Developed a new DL framework to classify CTS styles effectively by introducing
transfer learning and AutoAugment to the baselines, e.g., DenseNet.

• Interpreted the CNNs by the CAM visualization technique to reveal how the CNNs
think a given image belongs to a particular architectural style.
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The remainder of this article is organized as follows. Section 2 conducts a brief
literature review of the classification of architectural styles, CNNs, and effective techniques
to address overfitting. The methodology is elaborated in Section 3, including building a
new labeled CTS dataset, our proposed framework, model evaluation metrics, and class
activation map technique. The results of designed experiments for validating the proposed
approach are presented in Section 4. Finally, conclusions, limitations, and future work are
concluded in Section 5.

2. Literature Review
2.1. Classification of Architectural Style for Heritage Preservation

Traditional architecture was spontaneously formed in the long-term interactions be-
tween mankind and nature, with distinct regional characteristics [15,16]. The existing
studies have deeply discussed the influence of the natural environment, economy, and
culture on cultural heritage and architecture [17–19], trying to understand the reasons for
the formation of settlements or architecture so as to achieve accurate heritage preserva-
tion. Shaolin Wu et al. [20] analyzed and clustered 4000 traditional settlements into five
classes and found that the dominant factors of the natural environment for five zones
are topographical conditions and hydrologic resources. However, it is slowly becoming
accepted that the architectural style is a concentrated reflection of other aspects, which
can directly distinguish the architecture and even the settlement from others. Abraham
et al. [8] classified Mexican buildings into three classes according to the architectural styles
to promote Mexican culture.

From the aspect of methods, the GIS and basic statistical approaches, such as correla-
tion and regression analysis, are widely used to better understand architectural style and
pattern [21,22]. PeiLin Liu [23] preliminarily divided the Chinese area into 3 large-scale
traditional settlement landscape areas, 14 landscape areas, and 76 landscape sub-areas
through the index system and GIS method. However, with the deepening digital research
on traditional settlement architecture and cultural heritage, the progression to machine
learning is natural [7,24,25], especially as clustering algorithms, SVM and random forest
are often preferred [9]. Bienvenido-Huertas et al. predict environmental parameters of
heritage preservation using an artificial intelligence model [17]. Shaolin Wu et al. [20]
set the Chinese traditional settlements as positive samples and the other settlements as
negative samples to fulfill the supervised classification of settlements using Random forests.
Nicolas Gonthier et al. [26] propose a method for the weakly supervised detection of objects
in paintings for helping art historians to explore large digital databases.

However, two gaps are observed in the current study. The first gap is that, in most
cases, the machine learning algorithms are applied as a black box with few changes to the
underlying formulation [7], resulting in an inadequate understanding of data. The other
gap is how to interpret the complex nonlinear process in machine learning so that we can
integrate the knowledge of traditional settlement and traditional architecture to re-interpret
the results instead of just knowing a classification result value. Hence, a specialized dataset,
an applicable framework, as well as a visualization scheme are needed for the classification
of Chinese architecture.

2.2. Convolutional Neural Networks

Recently, deep learning (DL) has achieved tremendous success in solving visual object
recognition problems such as classification, segmentation, and detection [6]. These DL
techniques are very good at discerning intricate structures from visual image data and have
dramatically advanced the state-of-the-art in these visual recognition problems. A plethora
of DL networks have been developed in recent years. AlexNet [27] is considered a milestone
in ConvNets, in which GPUs were applied to speed up deep learning training and which
won the 1st prize in the ImageNet Large Scale Visual Recognition Challenge. After AlexNet,
myriad CNN variants have been proposed to tackle all kinds of vision or perception tasks,
and hereafter, another AI summer is emerging. An AlexNet model typically consists of
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five convolutional layers including max pooling layers and three fully connected layers,
whereby the former layers are used to extract and down-sample representative patterns of
feature maps, while the latter layers are used to classify images to output probability scores.
VggNet [10] extends AlexNet, which adopts a smaller receptive field (3 × 3 kernel size
with stride 1), while AlexNet uses a larger receptive field (11 × 11 kernel size with stride 4).
The rationale of this design is that three convolution layers with 3 × 3 kernel size are
equivalent to one convolution layer with 11 × 11 kernel size, and it can reduce computation
by a large margin. Similar to AlexNet, VggNet also consists of two types of layers, i.e.,
convolutional layers and fully connected layers. ResNet [11] is proposed to tackle the
gradient vanishing problem when training very deep convolutional networks. The basic
idea of ResNet is to learn a residual mapping between two inputs and outputs instead
of learning the whole complex function. Such a simple idea has robustly addressed the
gradient vanishing issue when training very deep CNNs. The core component of ResNet is
a Residual block that add input features to the output after a convolution layer. To date,
ResNet is the de facto backbone for image classification in most practical applications. In
our benchmark experiments, a ResNet50 consisting of 50 layers is used.

DenseNet [12] can serve as a strong alternative to ResNet. Unlike ResNet, which
adds features together, the basic idea of DenseNet is to maintain low-level features by
concatenating the inputs and outputs on the channel dimension. Specifically, DenseNet
consists of two core components: dense blocks and transition layers, where the former
defines a special convolution type by densely concatenating features of all previous layers,
while the latter controls the number of channels to avoid the channel explosion problem
of the DenseNet block. DenseNet can provide evident favorable advantages such as
strong gradient flow to avoid gradient vanishing problems, being computationally efficient,
and enabling more diversified features. In our benchmark experiments, DenseNet121,
consisting of 121 layers, is used.

2.3. Effective Techniques to Address the Overfitting Problem
2.3.1. Transfer Learning

Transfer learning is widely used to tackle the overfitting problem when applying deep
learning on small-sized image datasets where labeled data examples are in shortage. It
is highly effective to mitigate overfitting and can help to greatly improve the recognition
performance [28,29]. Its fundamental idea is to transfer knowledge across domains. The
concept of transfer learning in the computer vision domain might originate from educa-
tional psychology. In psychology, as long as a person has a good generalization learning
ability, he could easily transfer his/her knowledge of one activity to another relevant
activity. For example, a child who learned the piano could learn another relevant musi-
cal instrument (e.g., Chinese erhu) much swifter than other children, as the two musical
instruments might share some common knowledge or experience. Therefore, intuitively,
transfer learning aims at harnessing knowledge from one domain (termed source domain)
to another related domain (termed target domain), thereby improving learning capability
or minimizing the number of labeled data required in training.

Typically, a pre-trained model trained on a large dataset such ImageNet dataset [30] is
often served as a generic model of the visual world. Considering that the ImageNet dataset
is large enough and general enough, containing over 1 million images with 1000 different
classes, the hierarchical features extracted by the pre-trained model are of use to many
computer-vision tasks, even when these new tasks might encompass different classification
classes from those of the original task. In this study, a pre-trained CNN (trained on
the gigantic ImageNet dataset) is firstly obtained and then repurposed to classify the
architectural styles of CTSs.
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2.3.2. Data Augmentation

Even though DL has achieved tremendous success in many computer-vision tasks,
these DL models still require collecting and annotating a large-scale dataset to overcome
the overfitting problem. However, annotated data for the realistic application is not feasible
due to the difficulty of data collection and the expensive costs of data annotation. Apart
from harnessing transfer learning to overcome the overfitting problem, another dominating
technique is applying data augmentation (DA) to improve the quantity and diversity of the
training data [31,32]. Typically, the data augmentation techniques can be categorized into
two types: manual data augmentation and learning-based data augmentation.

Manual data augmentation. This technique is commonly used to expand the scale
of the dataset so as to improve the generalizability of the DL models. The basic idea of
data augmentation is to generate random images based on existing training images to
increase data sufficiency and promote data diversity, allowing the CNN models to see
more types of data examples, thereby improving their recognition accuracy. By doing so,
the trained model can be less sensitive to certain properties, thus promoting the model’s
generalization capability. For example, we can adjust the brightness, color, and other factors
of the input images to reduce the model’s sensitivity to color. It is worth mentioning that
DA is only applied to the training examples rather than the test examples, since definitive
results are desired when making predictions. There are a variety of data augmentation
techniques to overcome the overfitting problem, typically including randomly cropping
images, adjusting brightness, adjusting the color, and randomly input dropout. However,
this manual DA is primarily hand-designed, which is inefficient.

Learning-based data augmentation. To overcome the limitations of manual designing
data augmentation, Cubuk et al. [14] propose a learning-based DA named AutoAugment to
allow automated search for refined strategies for the CNNs. Unlike the conventional manual
data augmentation, which manually designs data augmentation strategies (e.g., flipping
and rotation), AutoAugment automates the search procedure of designing DA strategies.
Subsequently, Ruihui et al. [33] extend this idea to 3D point cloud data for training a
classification network. In particular, they propose a new auto-augmentation framework
called PointAugment [33], which can automatically search and apply optimization and
augmentation policies on point cloud examples to enrich the data diversity. Very recently,
Cubuk et al. [34] also propose another learning-based network termed RandAugment. In
this study, we integrate the seminal learning-based DA technique (i.e., AutoAugment) into
baselines to address the overfitting problem, thereby improving model generalizability and
performance.

3. Methodology

In this section, an automated neural framework is presented to classify the architectural
styles of CTSs. As is shown in Figure 1, the proposed neural framework constitutes four
major components. Firstly, a labeled CTS dataset is established and preprocessed for DL
training. Secondly, several representative CNNs are employed to benchmark the new CTS
dataset, wherein overfitting is identified as a bottleneck in classifying the architectural
styles accurately and robustly. To address the overfitting problem over the small-sized
CTS dataset, we propose a new DL framework by introducing transfer learning and
AutoAugment to the existing CNN baselines. Thirdly, all baselines and the proposed
network are trained and evaluated. Lastly, to understand how a CNN classifier thinks
about a given input CTS image, the CAM visualization technique is harnessed.

3.1. Building a Labeled CTS Dataset
3.1.1. Overview of the CTSs

To date, there are hundreds of thousands of diverse CTSs across China. In this study,
we focus on the first three batches of Chinese traditional villages published by the Ministry
of Housing and Urban–Rural Development of the People’s Republic of China with over
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2500 CTSs. Figure 2 illustrates the geographical locations of these traditional settlements
with the data coming from the Digital Journal of Global Change Data Repository [35].
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Figure 2. Geographical locations of the CTSs across China.

The CTSs are the reflection of the local environment, culture, and human activities.
Therefore, as shown in Figure 2, the first to third batches of traditional villages have already
covered all provinces and regions in China, but their distribution is unbalanced. At the
same time, we should also see that there are too many traditional settlements to investigate
one by one. Thus, the classification of architectural styles through the eye of artificial
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intelligence not only can help understand the traditional settlements and their mutual
relations from a macro scale but also provides a reference for the zoning of CTSs. The key
problem is to define representative architectural styles from the enrichment of digital visual
archives of CTSs.

3.1.2. Representative Architectural Styles of the CTSs

In the long history of China, as people adapt to a local natural environment, many dis-
tinctive examples of traditional architecture have been left. Those collections of architecture
with certain scales gradually develop into a particular architecture style to represent local
folk customs and history. In this study, we shortlist six representative architectural styles of
the national CTSs, including Min, Wan, Su, Jin, Jing, and Chuan styles. Their typical photos
and detailed descriptions are shown in Table 1.

Table 1. Typical photographs and detailed descriptions of the six selected architectural styles.

Typical Photographs Style Description

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 21 
 

 

Figure 2. Geographical locations of the CTSs across China. 

The CTSs are the reflection of the local environment, culture, and human activities. 

Therefore, as shown in Figure 2, the first to third batches of traditional villages have al-

ready covered all provinces and regions in China, but their distribution is unbalanced. At 

the same time, we should also see that there are too many traditional settlements to inves-

tigate one by one. Thus, the classification of architectural styles through the eye of artificial 

intelligence not only can help understand the traditional settlements and their mutual re-

lations from a macro scale but also provides a reference for the zoning of CTSs. The key 

problem is to define representative architectural styles from the enrichment of digital vis-

ual archives of CTSs. 

3.1.2. Representative Architectural Styles of the CTSs 

In the long history of China, as people adapt to a local natural environment, many 

distinctive examples of traditional architecture have been left. Those collections of archi-

tecture with certain scales gradually develop into a particular architecture style to repre-

sent local folk customs and history. In this study, we shortlist six representative architec-

tural styles of the national CTSs, including Min, Wan, Su, Jin, Jing, and Chuan styles. Their 

typical photos and detailed descriptions are shown in Table 1. 

Table 1. Typical photographs and detailed descriptions of the six selected architectural styles. 

Typical Photographs Style Description 

 

 

Chuan 

Chuan style is widely distributed in Sichuan, Yunnan, Guizhou province 

of China, mostly in the ethnic minority areas. To keep ventilation, dry, 

and prevent poisonous wild animals in the humid environment, the resi-

dents build the house as column or semi-column structures, such as the 

dai bamboo houses and the stilted buildings. 

 

 

Jin 

Jin style is named after the abbreviation of Shanxi, most of the areas are 

around Shanxi province. The architecture is represented as cave dwell-

ings in the rural area and is well designed with blue brick walls in the ur-

ban area showing the steady and preciseness of Shanxi merchants. 

Chuan

Chuan style is widely distributed in Sichuan, Yunnan, Guizhou
province of China, mostly in the ethnic minority areas. To keep

ventilation, dry, and prevent poisonous wild animals in the humid
environment, the residents build the house as column or semi-column

structures, such as the dai bamboo houses and the stilted buildings.

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 21 
 

 

Figure 2. Geographical locations of the CTSs across China. 

The CTSs are the reflection of the local environment, culture, and human activities. 

Therefore, as shown in Figure 2, the first to third batches of traditional villages have al-

ready covered all provinces and regions in China, but their distribution is unbalanced. At 

the same time, we should also see that there are too many traditional settlements to inves-

tigate one by one. Thus, the classification of architectural styles through the eye of artificial 

intelligence not only can help understand the traditional settlements and their mutual re-

lations from a macro scale but also provides a reference for the zoning of CTSs. The key 

problem is to define representative architectural styles from the enrichment of digital vis-

ual archives of CTSs. 

3.1.2. Representative Architectural Styles of the CTSs 

In the long history of China, as people adapt to a local natural environment, many 

distinctive examples of traditional architecture have been left. Those collections of archi-

tecture with certain scales gradually develop into a particular architecture style to repre-

sent local folk customs and history. In this study, we shortlist six representative architec-

tural styles of the national CTSs, including Min, Wan, Su, Jin, Jing, and Chuan styles. Their 

typical photos and detailed descriptions are shown in Table 1. 

Table 1. Typical photographs and detailed descriptions of the six selected architectural styles. 

Typical Photographs Style Description 

 

 

Chuan 

Chuan style is widely distributed in Sichuan, Yunnan, Guizhou province 

of China, mostly in the ethnic minority areas. To keep ventilation, dry, 

and prevent poisonous wild animals in the humid environment, the resi-

dents build the house as column or semi-column structures, such as the 

dai bamboo houses and the stilted buildings. 

 

 

Jin 

Jin style is named after the abbreviation of Shanxi, most of the areas are 

around Shanxi province. The architecture is represented as cave dwell-

ings in the rural area and is well designed with blue brick walls in the ur-

ban area showing the steady and preciseness of Shanxi merchants. 

Jin

Jin style is named after the abbreviation of Shanxi, most of the areas are
around Shanxi province. The architecture is represented as cave

dwellings in the rural area and is well designed with blue brick walls in
the urban area showing the steady and preciseness of

Shanxi merchants.
Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 21 
 

 

 

 

Jing 

Jing style is usually in the form of a quadrangle courtyard, which is the 

most typical style of northern China. The most representative, of course, 

is the Forbidden City, which is over 600 years old. Additionally, the 

quadrangle courtyards with carved or painted ornaments in Beijing 

Hutong are like a miniature of the Forbidden City, highlighting the 

stately peculiarity. 

 

 

Min 

Min style originated from the ancient construction technology of raw soil 

in the Central Plains and has been inherited for more than 500 years in 

the south of Fujian (Min). This bunker-style architecture is still in use to-

day. It can not only prevent fire and shock but also resist the invasion of 

the enemy. 

 

 

Su 

Su style is the epitome of southern and northern architectural styles, and 

the garden layout is one of its prominent features. The architecture with 

glazed tile windows, high ridge roof, and brick gate tower, faultlessly re-

flect the artistic characteristics of purity, lightness, elegance, and simplic-

ity of Jiangnan Water Town. 

 
 

Wan 

The Wan style is representative of the southern folk dwellings of China. 

The Hui style, one of the most familiar styles in the Wan style, was in-

scribed on the World Heritage List in 2000. The typical features of the 

Wan style architecture are high walls and deep courtyards with black 

tiles and white walls, which are full of quietly elegant characteristics, 

showing the infinite charm of the Wan style. 

3.1.3. Data Collection and Preprocessing 

Jing

Jing style is usually in the form of a quadrangle courtyard, which is the
most typical style of northern China. The most representative, of

course, is the Forbidden City, which is over 600 years old. Additionally,
the quadrangle courtyards with carved or painted ornaments in Beijing

Hutong are like a miniature of the Forbidden City, highlighting the
stately peculiarity.



Remote Sens. 2022, 14, 5250 8 of 19

Table 1. Cont.
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Wan

The Wan style is representative of the southern folk dwellings of China.
The Hui style, one of the most familiar styles in the Wan style, was

inscribed on the World Heritage List in 2000. The typical features of the
Wan style architecture are high walls and deep courtyards with black
tiles and white walls, which are full of quietly elegant characteristics,

showing the infinite charm of the Wan style.

3.1.3. Data Collection and Preprocessing

Due to a lack of annotated architectural style datasets of the CTSs, we firstly collect
numerous CTS images from existing CTS field research images of our research group and
crawl public online images. Subsequently, rigorous quality inspection is conducted to
remove irrelevant CTS images manually. Lastly, all images are preprocessed to facilitate
deep learning model training, including data normalization and image size resizing.

(1) Data collection and rigorous quality inspection

As is detailed in Section 3.1.2, six representative architectural styles of the CTSs are
selected as targeted architectural styles, including Min, Wan, Su, Jin, Jing, and Chuan
styles. To collect images of the targeted styles, we employed existing field CTS images
from our research group and searched images on popular image search engines based on
keywords (e.g., building names) of each style. For instance, we utilized key words “Dai
bamboo tower” and “Sip song pan na” to find images of Chuan style on the Internet search
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engines. Furthermore, we also manually shortlist CTS images, retain those images with
noticeable characteristics of each style and remove unclear and atypical ones. In total, we
end up collecting over 1200 images, with each style about 200 images. Table 2 illustrates
the number of images for each style. The new dataset is relatively small sized and might
be prone to suffering overfitting problems. In Section 3.3, we present a new framework to
mitigate the overfitting problem for the new small-sized dataset.

Table 2. The number of images for each architectural style class.

Chuan Jin Jing Min Su Wan Total

The number of images 214 193 194 215 188 222 1226

(2) Data preprocessing

After data collection, we preprocess the dataset with three fundamental processing
operations to facilitate the DL model training. First, due to inconsistent sizes of the image,
all images in the new dataset are resized to the same size (i.e., 224 × 224) obeying the
image resizing strategy utilized in the AlexNet [27]. Second, the training and test set are
created by splitting the whole dataset randomly with a training and test ratio of 4:1. Table 3
presents details of the number of images of the training and test set for each style. Moreover,
Figure 3 illustrates a graphic form of the training and test class distribution. Finally, to
facilitate better model convergence, each image is normalized during the training.

Table 3. Training and test set of our architectural style dataset.

Class Chuan Jin Jing Min Su Wan Total

Training 169 147 166 175 145 178 980

Test 45 46 28 40 43 44 246

Total 214 193 194 215 188 222 1226
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3.2. Benchmarking the CTS Dataset Using Representative CNNs

After establishing the first publicly open architectural style dataset for CTSs, we
benchmark the new dataset using three representative CNNs, including AlexNet [27],
ResNet [11], and DenseNet [12]. Similarly to previous studies [8,9] which apply the CNNs
to address the classification problem by training them on small-sized CNNs, overfitting
problem is identified as a main problem which achieves almost perfect performance on
the training set, whilst it suffers on the test set with a large performance gap. This is
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mainly due to the dilemma between the small-sized dataset and large capacity of the CNNs.
These CNNs are often very deep, with millions of parameters and possess a much larger
capacity, while the training dataset is small in scale. As a result, the CNNs possibly merely
learn noise or random fluctuations in the small-scale training set, thus leading to poor
generalizability on the unseen set (i.e., test set). These three types of networks are utilized
as baselines to develop our new framework to mitigate the overfitting problem confronted
with the small-sized dataset.

3.3. The Proposed Framework DenseNet-TL-Aug

To address the overfitting problem faced with applying the CNNs on the small-sized
labeled dataset, we propose a new DL framework named DenseNet-TL-Aug, which inte-
grates transfer learning (TL) and AutoAugment (Aug) component into the best performing
CNN baseline DenseNet. In the following sections, TL and Aug component are elaborated
in detail.

3.3.1. Transfer Learning

Transfer learning (TL) is an extremely powerful deep learning technique to overcome
the overfitting problem resulting from training on a small-sized dataset. Its basic idea is
transferring and reusing knowledge from one source domain to another related domain.
For example, knowledge distilled while learning to recognize horses can be useful to
recognize other kinds of animals, e.g., zebras. Typically, when two tasks (source and target
task) are similar, using the pre-trained model from the source task to train or repurpose the
target task can greatly enhance model recognition performance.

In this study, we use one common transfer learning technique—feature extraction—to
tackle the overfitting problem. Specifically, a pre-trained CNN, such as DenseNet121
trained on the ImageNet dataset, is used as the backbone to extract generic features for
the recognition. Subsequently, a new classifier is trained from scratch to repurpose the
architectural style CTS dataset. The pre-trained CNN consists of two parts: convolutional
base and densely connected classifier. Typically, the representations learned by the former
convolutional base are generic, which is useful to any other computer vision problems at
hand. It is worth mentioning that the transfer learning technique is still applicable and
useful even when the source and target domain has very different data distributions, e.g.,
the CTS images are quite different from the images from ImageNet-1K. This is because
the extracted meaningful features by the convolutional base are sufficiently generic and
are useful for the classification for a specific target domain. However, the representations
extracted by the densely connected classifier are specific to the set of categories on which the
CNN was trained (i.e., the 1000 categories of the ImageNet dataset). On the other hand, the
representations learned by the former convolutional base contain object location, whereas
the representation extracted by the densely connected classifier no longer encompasses any
location information of the objects. Therefore, the convolutional base of the CNN is reused
which is frozen during training, and the densely trained classifier is substituted by a new
classifier. Figure 4 illustrates the basic idea of applying the transfer learning technique to
the baseline CNNs, which displaces classifiers of the pre-trained CNN to repurpose the
CTS dataset, whilst freezing its convolutional base to reuse the visual knowledge from the
ImageNet dataset. It is worth mentioning that the weights of the classifiers are randomly
initialized, while the weights from the convolutional base are all fixed during training. In
Section 4.2, results of TL-enhanced CNNs are presented.
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3.3.2. AutoAugment

To further mitigate the overfitting of the baselines, a learning-based DA technique
named AutoAugment (Aug) [14] is harnessed. The fundamental idea of AutoAugment
is to use a reinforcement learning algorithm to increase quantity and diversity of the
existing training dataset. Intuitively, it aims at making a network invariant to the input’s
transformation, such that the network can be taught what image invariances are like in
the current data domain. By doing so, the AutoAugment can automatically learn custom
DA transformation policies for a given dataset, such as guiding toward choosing a set of
image transformation operations, e.g., rotation, shearing and translation, flipping vertically
or horizontally, adjusting the color brightness, etc. Usually, the AutoAugment can find an
optimal policy set for a very large-sized dataset.

In this study, we follow the official AutoAugment implementation [14] to employ a
reinforcement learning algorithm to learn dataset-specific data augmentation strategies
brutally. For the CTS dataset, there are five policies, each of which has five sub-policies.
Each sub-policy comprises two data augmentation operations, which are chosen from a
predefined 16-data augmentation operation set, such as rotation, shearing and translation,
flipping vertically or horizontally, adjusting the color brightness, etc. As the reinforcement
learning algorithm proceeds, the optimal policy set could be searched by rewarding on
the higher accuracy of classifying the validation set of CTS dataset. In the end, an optimal
policy set (i.e., data augmentation set) for the CTS dataset can be searched out automatically.

In Section 4.2, results of Augmentation-enhanced CNNs are presented.

3.4. Model Evaluation Metrics

To evaluate the classification model performance, a confusion matrix is firstly pre-
sented to demonstrate classification performance visually, after which we utilize several
typical multi-classification metrics (e.g., accuracy, precision, and recall) to evaluate the per-
formance of the classification models. The detail of each metric is summarized as follows.

• Confusion matrix (CM). A CM is a summary table of prediction results on a classifier
which allows presenting the performance of the classifier visually. Typically, each row
represents an actual class, while each column represents a predicted class (shown in
Figure 5). CM not only enables the visualization of the performance but also allows
easy identification of the confusion between classes, i.e., misclassifying one class
with another class. In addition, most concise classification performance metrics, e.g.,
accuracy, precision, and recall, are calculated based on the components of CM, such as
the number of true positives (TP), the number of false positives (FP), the number of
true negatives (TN) and the number of false negatives (FN).
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• Overall accuracy (OA), precision, recall, and F1 score. OA is the rate of correctly pre-
dicted data points concerning the total number of data points (Equation (1)). However,
OA is not sufficient for evaluating a classifier, especially when dealing with imbal-
anced datasets (i.e., some classes in the dataset are much more frequent than others).
Therefore, we consider using more classification metrics including mean accuracy,
precision, recall, and F1 score. Mean accuracy is the mean of the accuracy over all
classes (Equation (2)). Precision is the accuracy of the positive predictions (Equation
(3)), while recall is the ratio of positive data points that are correctly detected by the
classifier (Equation (4)). To integrate the precision and recall into a single metric, the
F1 score is often used which computes the harmonic mean of precision and recall
(Equation (5)). Typically, the classifier gets a high F1 score if both recall, and precision
are high.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

mean Accuracy = ∑
i

Accuracyi (2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1 score =
2Recall × Precision
Recall + Precision

(5)

3.5. Interpreting the CNNs Using the Grad-CAM

Instead of applying the CNNs as black boxes, we employ the class activation map
(CAM) visualization technique to promote their interpretability: why do our developed
classifiers perceive a given image belongs to Jing style when they think it is Su-style-like,
not otherwise? This CAM technique allows us to understand which parts of a particular
CTS image contribute most to a specified class, thus revealing why a classifier (i.e., a CNN
model) thinks a given image belongs to a particular class. Essentially, the CAM technique
refers to creating heatmaps of class activation over the input images to understand why
a classifier/CNN makes such a decision. The resultant heat map consists of a 2D grid of
scores that are related to a given output class, each of which in the input image reveals how
important each part is to the given class. For example, in this study, when feeding a CTS
image into a CNN, the CAM visualization can produce a heat map for a particular class
(e.g., Jing style) to uncover how Jing-like different parts of the image are. Similarly, other
heat maps for other classes, such as Su or Wan style can also be generated.

Currently, Grad-CAM [36] is often used to visualize a CNN via gradient-based local-
ization. The fundamental idea behind the Grad-CAM is to leverage the spatial information
preserved through convolutional layers in the classifier to understand which parts of an
input image are important for a final classification decision. It generates a coarse local-
ization map highlighting important regions in the image for a targeted goal by making
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full use of their gradients flowing into the final convolutional layer. Essentially, comprises
two core steps: (1) obtaining a feature map of a convolution layer with respect to a given
input image and (2) figuring out every channel in the feature map via the gradients of the
class associated with the channel. It is worth mentioning that the reason why Grad-CAM
exploits feature maps of the last convolutional layer is possible that the last convolutional
layer can strike a good compromise between high-level semantics and detailed spatial
information. Algorithm 1 presents details of generating the class activation heatmap for
given images using a pre-trained model under a specified class.

Algorithm 1: Grad-CAM visualization technique for interpreting a CNN classifier

Input: given input images X, a pre-trained model M, and a specified class k
Output: the class activation heatmaps H for a particular class
1 Load a pre-trained model M
2 Preprocessing given input images X to obtain X’ (in batch form)
3 for each image x in X’:
4 create a classifier that maps x to the activations of the last convolutional layer L
5 create a model that maps the activations of the last convolutional layer to the final

predictions
6 compute gradients of the top predicted class for x w.r.t. the activations of the last

convolution layer L
7 apply pooling and importance weighting to the gradient tensor to obtain the heatmap of

class activation
8 normalize the heatmap between 0 and 1
9 generate an image that superimposes the original image on the heatmap

10 end for

Simply put, the CAM allows us to interpret which parts contribute more to a given
class, thus enabling to localize objects in images. From another perspective, it serves as
a good tool to help “debug” the decision process of a classifier/CNN, especially when
the classifier made a mistake, thereby promoting model interpretability. Keeping in mind
these insights into how the classifier thinks, we may investigate the differences between
the machine and human eyes and shed light on how to supplement human expertise with
machine perception (i.e., how a computer vision program thinks about a given image).
Experimental results of the CAM visualization are shown in Section 4.3.

4. Experiments and Results

In this section, we firstly benchmark three representative CNNs on the new CTS
dataset, show their results, and then identify the overfitting as a bottleneck to classify
the CTSs. Then, to mitigate the overfitting problem, we employ the proposed framework
to train the dataset and compare the performance of the proposed framework with the
baselines. Finally, the results of Grad-CAM on our best model are shown to reveal how a
CNN classifier recognizes a specified architectural style of Chinese traditional settlement.

4.1. Results of the Baselines

As discussed in Section 3.2, three representative CNNs are applied to benchmark our
newly established architectural style dataset. All models are trained 200 epochs on the
training set with batch size 32 and Adam optimizer, detailed performance on the test set for
each network is presented in Table 4. It is discovered that the DenseNet achieves the best
performance with an accuracy of 82.92% and an F1 score of 88.56%, while ResNet performs
slightly worse. However, as is shown in Table 4, the AlexNet classifies the CTS images very
poorly, with an accuracy of below 60%.
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Table 4. Performance of three representative CNNs on the test set. The best metrics are highlighted
in bold font in the table.

Model Accuracy Precision Recall F1 Score

AlexNet 57.53% 77.21% 57.53% 63.56%
DenseNet 82.92% 97.08% 82.92% 88.56%

ResNet 73.02% 94.80% 73.02% 81.41%

As is shown in accuracy the learning curve of Figure 6, all three of these CNN baselines
suffer from the overfitting problems; they achieve almost perfect performance on the
training set, whilst performing poorly on the test set. For example, as is depicted in
Figure 6, the AlexNet model achieves nearly 99% accuracy on the training set but degrades
greatly on the test set, with a drop in a classification performance accuracy of 50%. Similar
overfitting phenomena are also observed on the DenseNet and ResNet CNNs. Therefore,
the overfitting problem is identified as the main bottleneck of applying CNNs to the
small-sized dataset, which often yields poor performance on the test set.
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4.2. Result of the Proposed Framework

For a fair comparison, all training settings in this section are similar to the baselines’
settings (as discussed in Section 4.1). Our proposed framework (elaborated in Section 3.3)
with three different types of the backbone (i.e., AlexNet, ResNet, and DenseNet) is applied to
train on the CTS dataset, leading to three corresponding CNNs with transfer learning and
AutoAugment utilized, which are AlexNet-TL-Aug, DenseNet-TL-Aug, and ResNet-TL-Aug.

As is illustrated in Table 5, the proposed networks (AlexNet-TL-Aug, DenseNet-
TL-Aug, and ResNet-TL-Aug) demonstrate several superior properties. First, thanks
to transfer learning and data augmentation techniques, our models, including AlexNet-
TL-Aug, DenseNet-TL-Aug, and ResNet-TL-Aug, exceed their corresponding baselines
by a large margin. For example, compared with the AlexNet baseline, the AlexNet-TL-
Aug achieve a performance boost on accuracy and F1 score by over 29.5% and 26.2%,
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respectively. In addition, the proposed DenseNet-TL-Aug achieves the best performance,
with an accuracy of 94.15% and an F1 score of 95.06%, outperforming the baseline DenseNet
by 11.2% and 6.5%, respectively. Second, the overfitting problem is greatly mitigated,
whereby the model performance gap between the training and test set appears to be much
smaller (as is shown in Table 5). Lastly, as is depicted in Figures 6 and 7, the proposed
models can converge much faster to yield the best performance, with about 30 epochs,
while baselines need 100 epochs or more training epochs to converge. In Section 4.3, we
will use the best model (i.e., DenseNet-TL-Aug) to study how it recognizes architectural
patterns of a given CTS image.

Table 5. Performance comparison of the proposed networks with transfer learning and AutoAugment
and baselines on the test set. The best metrics are highlighted in bold font.

Model Accuracy Precision Recall F1 Score

AlexNet 57.53% 77.21% 57.53% 63.56%
AlexNet-TL-Aug (ours) 86.98% (+29.5%) 93.48% 86.98% 89.73%

DenseNet 82.92% 97.08% 82.92% 88.56%
DenseNet-TL-Aug (ours) 94.15% (+11.2%) 96.53% 94.15% 95.06%

ResNet 73.02% 94.80% 73.02% 81.41%
ResNet-TL-Aug (ours) 89.98% (+11.2%) 94.01% 89.98% 91.68%
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4.3. Results of the Grad-CAM Visualization

Three typical architectural style images (shown in Figure 8a) from the test set were fed
into our best-trained model (i.e., DenseNet-TL-Aug) to apply the Grad-CAM technique to
test how the CNN classifier thinks these images belonging to a particular architectural style.
As is shown in Figure 8b, in the chosen examined images, when perceiving the Chuang-
or Jing-style images, our DenseNet-TL-Aug classifier values more on the building part in
the images (more intense yellow color on the building part). Yet, when understanding
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the Jin-style image, the classifier attends differently, mainly focusing on both wall texture
and building eave in the image, though the two sides are not equally intense. The reason
why the classifier places more attention to the right side is possibly that the view angle
of the picture is relatively centered from the photographer’s perspective. Interestingly,
the classifier seems to perceive the visual images similarly to how we humans do. For
given input images with different architectural styles, it looks at different parts of the input
to judge its final style type. Interestingly, the machine perception model (i.e., the CNNs)
seems to think similarly to how we humans perceive the architectural styles, which attends
to similar regions of the input images for a particular style image.
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Figure 8. Interpreting the CNN classifier using the CAM visualization technique. (a) Raw image;
(b) Image after applying the CAM visualization technique. Note that the deeper the yellow color in
the images with CAM, the higher the influence on the final decision of the classifier.
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5. Conclusions

This paper investigates applying the latest deep learning techniques to achieve au-
tomatic classification of architectural style for the CTSs. To the best of our knowledge,
this is the first study dedicated to the automated classification of traditional settlements
using DL. An automated DL framework is proposed to classify the CTS images by transfer
learning and the AutoAugment technique. First, due to a lack of architectural style images
of CTSs, a labeled CTS dataset is established. Second, several representative CNNs are
benchmarked on the new dataset, including AlexNet, DenseNet, and ResNet. Third, to
address the severe overfitting problem encountered by the representative CNNs, a new
type of network is developed, which consists of two key components: (1) transfer learning
and (2) learning-based data augmentation (i.e., AutoAugment).

Extensive experiments are conducted to demonstrate the effectiveness of our proposed
framework. The proposed networks (AlexNet-TL-Aug, DenseNet-TL-Aug, and ResNet-
TL-Aug) significantly outperform the baselines by a large margin. The DenseNet-TL-Aug
achieves the best performance, with an accuracy of 94.15% and an F1 score of 95.06%.
Finally, we also harness the Grad-CAM visualization technique to interpret how the CNNs
perceive a specified architectural style image and which parts contribute more to a given
class. This greatly helps promote model interpretability, since the CAM map images
provide visual hints to “debug” the decision process of a classifier when the classifier
makes a mistake.

Our contributions are three-fold. First, we build an architectural style dataset of
CTSs. To the best of our knowledge, this is the first public dataset in this domain. Sec-
ond, we benchmark several representative DL-based CNNs on the dataset and propose
an integrated deep learning framework that makes full use of transfer learning and Au-
toAugment techniques to combat the overfitting problem confronted with training on the
small-sized datasets. Lastly, by leveraging the Grad-CAM visualization techniques, we
reveal how CNNs are capable of recognizing architectural style patterns, which shed light
on interpreting the rationales of machine perception using the CNNs. The newly built CTS
dataset and deep learning code in this study will be released on the authors’ GitHub page:
https://github.com/PointCloudYC/CTS (accessed on 2 September 2022).

For future work, we shall investigate semi-supervised or self-supervised techniques
to address the architectural style classification, thus dispensing us from collecting and
annotating data [37,38]. Moreover, the CTS dataset should be enriched to involve more
representative CTS categories and more diverse images should be added. Finally, recent
state-of-the-art deep learning models such as ResNeSt [39] and Efficient-Net [40] are also
worthwhile studying.
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