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Abstract: In situ resource utilization (ISRU) is required for the operation of both medium and
long-term exploration missions to provide metallic materials for the construction of lunar base
infrastructure and H2O and O2 for life support. The study of the distribution of the lunar surface
elements (Fe, Ti, Al, and Si) is the basis for the in situ utilization of mineral resources. With the arrival
of the era of big data, the application of big data concepts and technical methods to lunar surface
chemistry inversion has become an inevitable trend. This paper is guided by big data theory, and the
Apollo 17 region and the area near the Copernicus crater are selected for analysis. The dimensionality
of the first-order differential spectral features of lunar soil samples is reduced based on Pearson
correlation analysis and the successive projections algorithm (SPA), and the extremely randomized
trees (Extra-Trees) algorithm is applied to Chang’E-1 Interference Imaging Spectrometer (IIM) data to
establish a prediction model for the lunar surface chemistry and generate FeO, TiO2, Al2O3, and SiO2

distribution maps. The results show that the optimum number of variables for FeO, TiO2, Al2O3, and
SiO2 is 17, 5, 8, and 30, respectively. The accuracy of the Extra-Trees model using the best variables
was improved over that of the original band model, with determination coefficients (R2) of 0.962,
0.944, 0.964, and 0.860 for FeO, TiO2, Al2O3, and SiO2, and root mean square errors (RMSEs) of 1.028,
0.672, 0.942, and 0.897, respectively. The modeling feature variables and model preference methods in
this study can improve the inversion accuracy of chemical abundance to some extent, demonstrating
the potential of IIM data in predicting chemical abundance and providing a good data basis for lunar
geological evolution studies and ISRU.

Keywords: moon; machine learning; successive projections algorithm; extremely randomized trees;
lunar chemistry

1. Introduction

From ancient times to the present day, humankind has never stopped exploring the
vastness of the universe. The Moon, the closest celestial body to the Earth, has always
been a prime target for human astronomical activities and is naturally the first step for
humankind to step out of the cradle of the Earth and into the vastness of the universe [1].
As humankind is currently facing a shortage of resources, the exploitation and utilization
of the rich lunar reserves of mineral resources can effectively alleviate the problem of
resource shortages for humankind in the future. Given the high cost of Earth–Moon
transportation, in situ resource utilization (ISRU) has become a fundamental technological
guarantee for the establishment of a lunar base [2–4]. Currently, the most important ISRU
project is to obtain H2O and O2 for life support through ilmenite. However, increasing
human understanding and knowledge of the moon has revealed that any oxide can also be
reduced to its constituent elements through reduction processes and produce H2O and O2
as byproducts, which is a key issue worthy of study [5]. Therefore, the elements of greatest
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interest to us are the lunar surface elements Fe, Ti, Al, and Si. The study of the distribution
of Fe, Ti, Al, and Si is the basis for assessing the prospects for the exploitation of lunar
mineral resources and the rational exploitation of resources. Fe, Ti, Al, and Si can all be
used as sources of building materials for lunar base construction, with Fe mainly existing
in lunar mafic minerals, Ti accounting for a large proportion of the high-titanium mare
basalt [6,7], almost all Al on the lunar surface found in highland plagioclase [8], and Si is
always present in the form of silicates in nearly every rock and mineral grain on the Moon.
Therefore, this paper focuses on the inversion of Fe, Ti, Al, and Si on the lunar surface to
study the distribution and abundance of mineral resources and to lay the foundation for a
better assessment of the lunar mineral resources.

Currently, multisource remote sensing techniques based on γ-ray, X-ray, and multi/hypers
pectral data are widely used for lunar surface chemistry inversion [9–16]. Compared with
high-energy techniques, multi/hyperspectral data have the advantage of high resolution;
therefore, many studies invert chemistry abundances based on multi/hyperspectral data. The
outcomes of these studies include FeO and TiO2 distribution maps with a resolution of 100 m
obtained using Clementine data [17]; FeO, TiO2, Al2O3, SiO2, CaO, and MgO distribution
maps with a resolution of 200 m obtained based on IIM data [18–21]; FeO distribution maps
with a resolution of 20 m obtained based on Moon Mineralogy Mapper (M3) data [10]; a TiO2
distribution map with a resolution of 400 m obtained from the Lunar Reconnaissance Orbiter
Camera (LROC) Wide Angle Camera (WAC) [16]; and FeO, TiO2, Al2O3, CaO, and MgO
distribution maps with a resolution of 59 m obtained based on Kaguya Multiband Imager (MI)
data [22,23].

Among the four elements found on the lunar surface, namely, Fe, Ti, Al, and Si, Fe and Ti are
transition metals that can undergo ligand field transitions (d-d transitions). Accompanying this
electronic transition from low to high energy levels, the transition metals Fe2+ and Ti3+ produce
absorption features in the visible to near-infrared range [18,24–26]; thus, the spectral features of
the lunar surface can be directly interpreted based on mineralogical principles [7,24,26]. Early
quantitative spectroscopic analysis of lunar samples demonstrates the potential for inversion
of lunar surface chemistry and mineral components using band ratio methods [27]. Currently,
this approach has been widely used for FeO and TiO2 inversion [16,17,19,28–32]. However,
elemental abundance inversion is not limited to the chromophore elements Fe and Ti. Although
nonchromophore elements do not have absorption characteristics in the visible NIR, they affect
reflectance [18]. Therefore, many studies have used regression models to establish statistical
relationships between elemental abundance and spectral characteristics to predict chemical
abundance [20,21,33,34]. With continuous research, a variety of machine learning models have
been applied for oxide inversion. Regardless of whether the input variables are full or feature
bands, machine learning methods have displayed good performance in inversion [7,22,35–37].
For example, Korokhin et al. [7] proposed a nonlinear method based on an artificial neural
network (ANN) inversion of TiO2 and avoided problems related to the limited number of bands
and the subjective selection of band combinations compared with the traditional linear regression
method. Zhang et al. [37] used principal component analysis (PCA) combined with a support
vector machine (SVM) to estimate the abundance of chemical compositions (SiO2, Al2O3, FeO,
MgO, and TiO2) and their maturity indicators (Is/FeO), where PCA was used to downscale the
reflectance spectra of lunar soil samples for screening and the SVM was used to build a predictive
oxide content model. Wang et al. [22] used a particle swarm optimization-support vector machine
(PSO-SVM) algorithm based on KAGUYA MI data to generate oxide abundance maps with a
spatial resolution of up to 59 m/pixel, and the map was relatively free of topographic shadows.

The selection of appropriate modeling feature variables and machine learning models
is particularly important for the accuracy of oxide inversion. Feature band selection
methods can improve the efficiency and accuracy of machine learning models to some
extent. However, methods that combine machine learning and multi/hyperspectral data
for the inversion of the lunar surface oxide content do not fully consider the preferential
selection of model feature variables. For example, Shkuratov [33] used multiple linear
regression models for three bands of 750, 915, and 965 nm from SMART-1 data. Wang &
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Niu [35] used 19 (571 nm–865 nm) bands of IIM data to construct a model after removing
anomalous bands. Wu [18] selected 22 bands in the spectral range of 561–918 nm for
modeling based on the magnitude of the signal-to-noise ratio. Sun et al. [20] screened four
single bands and three band ratios with high correlations in the 513 nm–891 nm range
based on Pearson correlation coefficients for modeling. Most of the above methods do
not consider the interrelationships between pairs of spectral features or between oxides
and spectral features, and adding all available bands to a model can have a negative
impact on the accuracy and generalization ability of the model. In response to the above
research deficiencies, Pearson correlation coefficients are adopted in this paper for the initial
screening of spectral features. Then, input parameters are secondarily screened based on
clustering analysis combined with the successive projections algorithm (SPA) to reduce the
covariance interference among spectral features while ensuring a high correlation between
input spectral features and oxides.

The extremely randomized trees (Extra-Trees) machine learning algorithm is selected
to build the oxide inversion model and improve the oxide inversion accuracy. The Extra-
Trees algorithm can effectively describe the small-sample, high-dimensional, and complex
nonlinear relationship between the oxide content and spectral reflectance by integrating
several weak learners to obtain a strong learner [38]. This approach shows a clear advantage
in the inversion of the oxide content. For model sample set partitioning, Jin et al. [39],
Li [27,40], and Zhang et al. [37] divided the training and test sets according to particle
size. Zhou et al. [41] randomly selected 2/3 of the samples as the training set for modeling
and 1/3 of the samples as the validation set. These segmentation methods are often
random. In this paper, we use sample set partitioning based on the joint x-y distance (SPXY)
algorithm to partition the samples in a way that maximizes the characterization of the
sample distribution and improves the stability of the model.

The inversion of lunar surface chemistry based on the concept and analysis methods
of big data is an inevitable trend in future development. The selection of suitable modeling
feature variables and machine learning models is crucial for achieving high-accuracy oxide
inversion. Guided by big data theory, big data concepts and technical methods are applied
to lunar chemistry inversion, and a prediction method for feature band selection combined
with an Extra-Trees model is proposed. First, the first-order difference bands are initially
screened according to the Pearson correlation coefficient, and they are then downscaled
using the bisecting K-means (BKM) algorithm combined with the SPA to determine the best
band combination. Second, the Lunar Soil Characterization Consortium (LSCC) training
sample is used to build an Extra-Trees prediction model. Finally, the model is applied to
predict the oxide abundance in the Apollo 17 region of the lunar surface and the region near
the Copernicus crater. The experimental results are compared with those of representative
models [15,17,30,31], and it is found that the model shows good agreement with them,
providing a new idea and method for the inversion of oxide abundances.

2. Materials and Methods

This paper proposes a method to invert the distribution of lunar surface chemistry,
targeting the need for ISRU. Figure 1 shows the technological flow chart of this paper,
which includes the following main steps:

(1) Feature band selection: The sensitive regions of each chemistry were initially screened
according to Pearson correlation coefficients, and then clustering analysis combined
with SPA was used for secondary screening to determine the best combination
of bands.

(2) Construction of an Extra-Trees model: Seventy-six LSCC samples with reflectance and
oxide content data were used as model inputs for training and testing.

(3) Prediction of chemical abundance: The IIM reflectance data were put into the model
to estimate the lunar surface chemical abundance.
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2.1. Data Description
2.1.1. LSCC Data

The actual measured samples are important for studying the material components of
the lunar surface and are the only standard for testing the effectiveness of the inversion.
The LSCC soil sample data are stored in a spectral library created through the spectral
analysis of samples collected from the six Apollo lunar landings. The samples include
10 samples of highland lunar soil from Apollo 14 and Apollo 16 and 9 samples of mare
lunar soil from Apollo 11, 12, 15, and 17 [42]. Since the lunar surface spectral characteristics
are influenced by the particle size of the material, the LSCC screened the measured samples
for particle size and divided them into four groups, namely, <10 µm, 10–20 µm, 20–45 µm,
and <45 µm, for a total of 76 subsamples [27,42–44]. All measured spectra of lunar surface
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samples were obtained at the RELAB laboratory at Brown University using a phase angle of
30◦ at a sampling interval of 5 nm in the spectral range of 0.3–2.6 µm [40–42]. Composition
data for the LSCC soils used in this paper are shown in Table 1.

Table 1. Composition data for LSCC soils used in this paper.

Region Mission Number Size (µm) FeO TiO2 Al2O3 SiO2

mare

Apollo 11 10,084
<10 12.00 7.25 15.90 42.10

10–20 14.70 7.94 13.20 41.20
20–45 15.50 8.30 12.00 41.30

Apollo 12

12,001
<10 12.50 2.78 14.90 46.00

10–20 15.90 2.96 12.30 45.00
20–45 16.90 3.20 11.00 45.30

12,030
<10 14.30 3.01 13.90 46.20

10–20 17.20 3.32 10.70 46.30
20–45 17.60 3.74 10.50 46.10

Apollo 15

15,041
<10 11.00 1.79 16.40 46.60

10–20 14.40 1.88 13.50 46.20
20–45 15.20 2.03 12.50 46.10

15,071
<10 9.59 1.57 17.10 46.90

10–20 15.40 1.88 12.90 45.70
20–45 15.60 2.33 12.40 45.80

Apollo 17

70,181
<10 12.70 6.54 15.40 41.50

10–20 15.50 7.88 12.70 40.40
20–45 16.00 8.11 11.50 40.70

71,061
<10 14.80 7.89 13.80 40.20

10–20 17.50 8.94 10.80 39.50
20–45 18.50 9.48 9.33 39.20

71,501
<10 13.50 8.27 14.50 40.40

10–20 16.40 9.83 11.60 39.00
20–45 17.80 10.70 9.94 38.40

79,221
<10 11.30 5.83 15.90 42.30

10–20 15.00 7.21 12.90 40.90
20–45 15.80 7.38 11.60 40.50

highland

Apollo 14

14,141
<10 7.66 1.51 19.20 49.20

10–20 9.46 1.71 17.20 48.40
20–45 11.60 1.96 15.00 47.20

14,163
<10 8.83 2.07 18.90 47.20

10–20 10.10 1.88 17.00 47.40
20–45 11.50 2.00 15.40 47.10

14,259
<10 7.82 2.02 19.30 47.90

10–20 9.71 1.96 17.40 47.50
20–45 11.00 1.99 15.80 47.10

14,260
<10 8.10 1.94 19.10 47.80

10–20 9.84 1.98 17.30 47.50
20–45 10.70 1.86 16.30 47.40

Apollo 16

61,221
<10 3.64 0.50 28.50 44.50

10–20 4.40 0.54 27.50 44.50
20–45 4.62 0.56 27.20 44.50

61,141
<10 3.66 0.59 27.40 44.90

10–20 5.14 0.64 25.60 44.60
20–45 5.15 0.58 26.10 44.50

62,231
<10 3.63 0.58 27.40 45.00

10–20 4.86 0.61 26.30 44.70
20–45 5.31 0.58 25.70 44.50

64,801
<10 3.84 0.61 27.70 44.80

10–20 4.78 0.68 26.30 44.50
20–45 4.82 0.63 26.50 44.60

67,461
<10 3.35 0.34 29.40 44.50

10–20 4.64 0.39 27.80 44.10
20–45 4.93 0.44 27.30 44.40

67,481
<10 3.61 0.42 29.10 44.50

10–20 4.04 0.40 28.40 44.40
20–45 5.19 0.49 26.70 44.70

2.1.2. IIM Data

The IIM, one of the payloads of Chang’E-1, has achieved the first international appli-
cation of interferometric imaging spectroscopy in the field of planetary exploration. The
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wavelength range of IIM data is 480–960 nm, with a spectral resolution of 335 cm−1, a total
of 32 bands, and a spatial resolution of 200 m/pixel [18,45,46]. Critical to establishing a sta-
tistical relationship between the hyperspectral band characteristics of the samples and the
mineral element content is the requirement that the laboratory-measured LSCC samples and
the IIM image absolute calibrations have the same photometric calibration [7,21,33,47,48].
The IIM 2C data downloaded from the Ground Application System of the Lunar Exploration
Project have been preprocessed with radiometric correction, geometric correction, and pho-
tometric correction [46,49]. The IIM data used in this paper are based on the processing of
2C data with further recalibration processing, which includes reflectance correction using
Apollo samples. Therefore, the photometric conditions between the IIM image and the
LSCC sample data are the same after preprocessing, and the laboratory-measured LSCC
samples can be used together with the IIM data.

IIM data quality evaluation is also an important prerequisite for performing scientific
inversion. As indicated by signal-to-noise ratio analysis, the first four bands of IIM 2C
data contain considerable noise, and the 32nd band has the highest noise level (lowest
signal-to-noise ratio observed). Therefore, 26 bands of data in the range between 513 and
891 nm (bands 5–30) are used in this paper.

2.2. Feature Band Selection

The reflectance spectra used in this paper are between 513 and 891 nm, and band
difference calculation results in 325 spectral bands. If all these spectral bands are input
into the model for prediction, the number of bands will be high, as will the correlations
between adjacent bands, which will inevitably lead to an increase in the redundancy of
spectral information and adversely affect the accuracy and generalization of the model [37].
Therefore, it is necessary to filter the sensitive bands that play a key role in the model.

Pearson correlation analysis is used to correlate the differentially transformed spectral
features and the oxide content to find the band differences with correlation coefficients
that pass the significance test at the 0.01 level. The results are used to identify the sensitive
feature regions of the differentially transformed spectra.

Due to the large number and continuous distribution of selected wavelengths, sec-
ondary screening is required within the sensitive regions identified with Pearson correlation
analysis. Considering the random nature of the initial bands of the SPA, to reduce the
possibility of the selection of invalid initial bands, the range of random initial bands is
restricted to the corresponding clusters by combining the above algorithm with a clustering
algorithm. Fine screening is performed separately in each cluster to eliminate the pres-
ence of covariance bands. The feature wavelengths selected by the SPA are those that are
most representative.

2.2.1. Bisecting K-Means Algorithm

The bisecting K-means algorithm is an improvement on and expansion of the K-means
algorithm, and it essentially bifurcates the selected clusters until the specified number
of clusters is reached while satisfying a criterion based on the sum of the squared error
(SSE) [50]. The SSE is defined as shown in Equation (1). The greatest advantage of this
algorithm over the traditional K-means method is that it is simple and fast to implement
and finds the globally optimal solution. Therefore, in this paper, the dichotomous K-means
algorithm is used for the clustering analysis of sensitive feature regions with differences,
and the initial K value is set to 3.

SSE =
k

∑
i=1

∑
x∈Ci

dist(ci, x)2 (1)

where k is the number of clusters, ci is the cluster center of cluster Ci, and x is a sample in
that cluster.
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2.2.2. Successive Projections Algorithm

The successive projections algorithm (SPA) is a forward iterative feature variable
selection method that minimizes the covariance in vector space, minimizes the redundant
information in the original spectral matrix, eliminates the effect of covariance, and can be
used for spectral feature wavelength screening [51,52]. The SPA starts with one wavelength
and introduces the wavelength with the largest projection vector into the set of wavelength
variables in each iteration by analyzing the projection of the vector until a specified number
of wavelengths is reached [53–55]. The exact procedure of the algorithm is as follows.

1. In the 1st iteration (n = 1), any column of wavelength k(0) is chosen and denoted as
xj, where j = 1, . . . , J.

2. The wavelengths that are not included in the set are identified as s = {j, 1 ≤ j ≤ J, j
/∈ {k(0), . . . , k(n− 1)}}.

3. The projection of the initialized band xj with an unselected wavelength in orthogonal
space is calculated as

Pxj = xj −
(

xT
j xk(n−1)

)
xk(n−1)

(
xT

k(n−1)xk(n−1)

)−1
(2)

4. The maximum wavelength of the projection vector is calculated:

k(n) = arg
(

max
(
‖Pxj‖

))
(3)

5. n = n + 1; if n < N, return to step 2.
6. The final combination of wavelength variables is determined.

2.3. Sample Subset Partition

The division of the sample data set will affect the accuracy of the model estimates to
some extent. The SPXY algorithm was proposed by Galvao et al. [56]. The objective is to
use the physical-chemical variable y and the spectral variable x to calculate the intersample
distance, fully characterize the sample distribution, effectively cover the multidimensional
vector space, increase intersample variability and representativeness, and improve model
stability [57,58]. The distance equation is as follows [56]:

dx(p, q) =
√

∑J
j=1

[
xp(j)− xq(j)

]2 p, q ∈ [1, N] (4)

dy(p, q) =
√(

yp − yq
)2

=
∣∣yp − yq

∣∣ p, q ∈ [1, N] (5)

To ensure that the variables x and y give the same weight to a sample, dx(p, q) and
dy(p, q) are divided by the maximum value in the data set, respectively. Thus, the formula
after normalization is

dxy(p, q) =
dx(p, q)

maxp,q∈[1,N]dx(p, q)
+

dy(p, q)
maxp,q∈[1,N]dy(p, q)

p, q ∈ [1, N] (6)

In this study, the SPXY algorithm was used to divide the training and test sets of 76
LSCC samples based on the four oxide contents as y variables and the spectral features as x
variables, and the specific division results are shown in Table 2. The training set accounts
for 75% of all samples and contains 57 samples, and the test set accounts for 25% of all
samples and contains 19 samples. The statistical parameters of the oxide content in the test
set are generally within the same ranges as those of the training set, and the sample set
is divided reasonably and effectively, which helps improve the stability and reliability of
the model.
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Table 2. Statistical parameters of sample set partitioning.

Elements
Training Set Test Set

Count Max Min Mean Std Count Max Min Mean Std

FeO 57 18.50 3.35 10.50 5.01 19 16.40 3.66 10.83 4.40
TiO2 57 10.70 0.34 3.49 3.21 19 7.94 0.35 2.38 2.41

Al2O3 57 29.40 9.33 18.90 6.83 19 27.40 11.60 16.52 4.96
SiO2 57 49.20 38.40 44.35 2.75 19 47.60 40.40 44.90 2.31

2.4. Extra-Trees Regression

Extra-Trees is an integrated algorithm based on decision trees with good generalization
and robustness and was proposed by Geurts et al. [38]. The Extra-Trees algorithm is trained
using all training samples, and different decision trees are constructed according to different
features. The score of each random classification node for K random features is calculated
with the Score function (Equation (7)), and the node with the highest score is selected
as the splitting node [59,60]. When a new sample is input, multiple decision trees in the
integrated model score it, and the final prediction is based on the average of all decision
tree predictions [61].

ScoreR(s, S) =
var{y|S} − |Sl |

|S| var{y|Sl} −
|Sr |
|S| var{y|Sr}

var{y|S} (7)

where var{y|S} is the variance of the output y in sample S and l and r denote the left and
right divergence values of the nodes, respectively.

Unlike random forests that build each tree by sampling with feedback, Extra-Trees
uses the entire training sample to establish each tree, which can effectively reduce the
effects of the bias and variance of the sample set [62]. Moreover, unlike random forests that
obtain the best bifurcation within a random subset, Extra-Trees obtains the bifurcation of
each decision tree completely randomly [38].

In this paper, the Extra-Trees algorithm is used as the lunar surface oxide content pre-
diction model, and the flow chart of this model is shown in Figure 2. The best combination
of bands after secondary screening is input into the model, and each oxide content is output
to construct the Extra-Trees oxide content prediction model. The implementation of the
Extra-Trees model in this study is based on the ExtraTreesRegressor algorithm provided
in the sklearn package of the Python language. The algorithm has two main parameters,
including the minimum size of the samples for splitting the nodes, nmin, and the size of
the randomly selected attributes for each node, k [38]. According to Geurts’s experimental
results, the default parameter settings are generally satisfactory in terms of accuracy and
computational efficiency; therefore, the default parameters are used.

2.5. Evaluation Indicators

The accuracy and predictive ability of the model are mainly evaluated in terms of the
coefficient of determination (R2) and root mean square error (RMSE). R2 is used to evaluate
the correlation between the predicted and true values of the sample, and the closer R2 is
to 1, the higher the correlation between the predicted and true values (Equation (8). The
RMSE is used to evaluate the predictive ability of the model for a given data set, and the
smaller the RMSE is, the better the predictive ability of the model [37,52].
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RMSE =

√
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2

n
(9)

where či, ci and ci denote the true, predicted, and mean values of the ith sample, respec-
tively, and n denotes the number of samples.

3. Results
3.1. Correlation Coefficients between Elements and Reflectance

In this paper, IIM reflectivity data in the range of 513–891 nm were used as the basis
for the estimation and analysis of the lunar surface oxide content. First, the standard
bidirectional emissivity data for 76 LSCC samples (300–2600 nm) were resampled into
the wavelength range of IIM data (513–891 nm) using a linear interpolation method. The
spectral data after resampling were differentially transformed to obtain the reflectivity
spectral band difference.

The linear correlation coefficients between LSCC reflectance and the content were
calculated (Figure 3). The results showed that the correlation coefficients did not vary
significantly within 513–891 nm, and the correlation coefficients between FeO, TiO2, Al2O3,
and SiO2 and reflectance remained at approximately 0.75, 0.58, 0.79, and 0.25, respectively.
Additionally, positive correlations were observed between the Al2O3 and SiO2 contents
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and spectral reflectance, and negative correlations were observed between the FeO and
TiO2 contents and spectral reflectance.

Remote Sens. 2022, 14, x FOR PEER REVIEW 10 of 29 
 

 

𝑅𝑀𝑆𝐸 =  ∑ (𝑐 − 𝑐 )𝑛  (9)

where 𝑐 , 𝑐  and 𝑐  denote the true, predicted, and mean values of the 𝑖th sample, re-
spectively, and 𝑛 denotes the number of samples. 

3. Results 
3.1. Correlation Coefficients between Elements and Reflectance 

In this paper, IIM reflectivity data in the range of 513–891 nm were used as the basis 
for the estimation and analysis of the lunar surface oxide content. First, the standard bidi-
rectional emissivity data for 76 LSCC samples (300–2600 nm) were resampled into the 
wavelength range of IIM data (513–891 nm) using a linear interpolation method. The spec-
tral data after resampling were differentially transformed to obtain the reflectivity spectral 
band difference. 

The linear correlation coefficients between LSCC reflectance and the content were 
calculated (Figure 3). The results showed that the correlation coefficients did not vary sig-
nificantly within 513–891 nm, and the correlation coefficients between FeO, TiO2, Al2O3, 
and SiO2 and reflectance remained at approximately 0.75, 0.58, 0.79, and 0.25, respectively. 
Additionally, positive correlations were observed between the Al2O3 and SiO2 contents 
and spectral reflectance, and negative correlations were observed between the FeO and 
TiO2 contents and spectral reflectance. 

 
Figure 3. Linear correlation coefficients between the contents of the four oxides and LSCC reflec-
tance data. 

The correlations between the elemental contents and LSCC reflectance are mainly 
concentrated in the grain size range of 10–20 μm, as the optical information at these sizes 
is most similar to that of the bulk soil [18,63]. Figure 4 demonstrates the relationship be-
tween the 891 nm reflectance and the content of each oxide (FeO and TiO2) in the LSCC 
samples of size 10–20 μm. The FeO and TiO2 contents decrease with increasing reflectance, 
highlighting the negative correlations between the FeO and TiO2 contents and spectral 
reflectance. However, the relationship between elements and IIM reflectance is not neces-
sarily linear. For some oxides, it is difficult to describe the complex relationship between 
them and the spectra based on conventional linear regression [36], and suitable nonlinear 
models are needed to invert the major oxide contents. 
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flectance data.

The correlations between the elemental contents and LSCC reflectance are mainly
concentrated in the grain size range of 10–20 µm, as the optical information at these sizes
is most similar to that of the bulk soil [18,63]. Figure 4 demonstrates the relationship
between the 891 nm reflectance and the content of each oxide (FeO and TiO2) in the
LSCC samples of size 10–20 µm. The FeO and TiO2 contents decrease with increasing
reflectance, highlighting the negative correlations between the FeO and TiO2 contents and
spectral reflectance. However, the relationship between elements and IIM reflectance is
not necessarily linear. For some oxides, it is difficult to describe the complex relationship
between them and the spectra based on conventional linear regression [36], and suitable
nonlinear models are needed to invert the major oxide contents.
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Figure 4. Relationship between the 891 nm reflectance and the (a) FeO and (b) TiO2 contents in LSCC
samples with 10–20 µm grain sizes.

Moreover, there are also correlations among elements. As shown in Figure 5, there is a
significant inverse correlation between the FeO and Al2O3 contents and a significant inverse
correlation between TiO2 and SiO2. These findings are consistent with the conclusion that
there are positive correlations between the Al2O3 and SiO2 contents and spectral reflectance
and negative correlations between the FeO and TiO2 contents and spectral reflectance, as
shown in Figure 3.
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Figure 5. Correlations between (a) FeO and Al2O3 and (b) TiO2 and SiO2 in the LSCC samples with
10–20 µm grain sizes.

Figure 6 shows the correlations between the reflectance band differences and the major
oxides, and the color of each point in the figure indicates the magnitude of the correlation
coefficient between the band differences and the oxide contents. The results show that
the band differences display the highest correlations with FeO and Al2O3 and the lowest
correlations with TiO2 and SiO2. The maximum value of the correlation coefficient between
FeO and the band difference is located at 541 nm–532 nm (0.861); most of the correlation
coefficients between Al2O3 and the band difference of IIM are approximately 0.80, and
the maximum value is 0.870. Additionally, the correlation between TiO2 and the band
difference of IIM decreases from the lower left to the upper right corner, and the maximum
value appears at 532 nm–522 nm (0.710). The correlation between SiO2 and the band
difference is poor, with a maximum value of 0.427, and most of the correlation coefficients
are approximately 0.40. In general, for the four oxides, the high correlations are mainly
concentrated in the lower left corner, and the band differences among the longer bands
(upper right corner in the figure) are poorly correlated. Correlation calculations for the
original bands and all band differences in the IIM spectral range separately show that band
differences can be used to effectively enhance the correlations between reflectance and the
oxide contents to determine the best combination of bands for subsequent modeling.
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3.2. Screening of Feature Bands

The band differences that passed the 0.01 significance test were screened twice, and
the sensitive bands identified through BKM clustering analysis combined with SPA are
shown in Table 3. These bands are used as the inputs to the model.

Table 3. Final screening results for feature bands.

Oxide Clustering
Categories Number of Bands Selected Band (nm)

FeO
Category 1 5/91 522–583, 631–777, 645–721, and 659–842,

and 659–891

Category 2 9/123
513–757, 513–819, 522–659, 551–721,
551–777, 561–842, 606–777, 606–891,

and 618–819
Category 3 3/99 532–583, 739–819, and 739–891

TiO2

Category 1 1/81 513–631
Category 2 1/119 522–673
Category 3 3/87 606–659, 721–819, and 739–797

Al2O3

Category 1 1/91 522–631
Category 2 4/123 513–891, 561–797, 606–757, and 645–842
Category 3 3/98 513–561, 739–891, and 739–819

SiO2

Category 1 10/125
513–618, 522–594, 532–583, 541–572,
551–645, 561–673, 572–689, 583–631,

606–659, and 631–757

Category 2 12/46
513–631, 513–673, 522–659, 522–689,
532–645, 551–721, 561–739, 572–721,

572–757, 583–777, 606–739, and 618–777

Category 3 8/32 513–721, 513–777, 522–705, 522–819,
532–739, 551–757, 561–777, and 583–797

3.3. Establishment and Evaluation of the Extra-Trees Model

The spectral features obtained based on the band reduction screening were used as
the independent variables for the Extra-Trees modeling analysis. Additionally, the lunar
surface oxide content was used as the dependent variable, and the SPXY algorithm was
applied to divide the sample set and establish the Extra-Trees model. To effectively analyze
the results of variable screening, the modeling results for the original bands were also
applied for comparison. The prediction results (Figures 7 and 8) show that the coefficients
of determination R2 of the FeO, TiO2, Al2O3, and SiO2 prediction models after differential
transformation and variable filtering were 0.962, 0.944, 0.964, and 0.860, respectively, which
are all greater than 0.850, indicating good prediction ability for the four oxide contents. The
model accuracy is improved compared with that obtained based on the original bands,
further verifying the importance of the differential transformation of the original bands and
reduced-dimension filtering of the variable information. The modeling accuracy of feature
band selection was compared with the accuracy reported by Wu [18] (Table 4), and the
accuracy for all four oxide contents after differential transformation and variable screening
was improved. Therefore, in this paper, the differential variables obtained based on the
SPA were adopted as the inputs to the model for prediction.
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Table 4. Comparison of the accuracy of the four chemical abundance tests with the results of Wu [18].

FeO (wt.%) TiO2 (wt.%) Al2O3 (wt.%) SiO2 (wt.%)

Calibration in this work (Extra-Trees model based on feature band selection)
R2 1 1 1 0.974

RMSE 0.012 0 0.032 0.438
Validation in this work (Extra-Trees model based on feature band selection)

R2 0.962 0.944 0.964 0.860
RMSE 1.028 0.672 0.942 0.897

Calibration by Wu [18]
R2 0.90 0.69 0.92 0.76

RMSE 1.58 2.00 1.68 0.75
Validation by Wu [18]

R2 0.88 0.59 0.90 0.67
RMSE 1.76 2.26 1.92 0.91

3.4. Extra-Trees Modelling in the Apollo 17 Area

The Apollo 17 area is close to the junction of Serenitatis and Tranquillitatis, and the
coordinates of the landing site are (30◦44′58.3′′E, 20◦9′50.5”N). The geological environment
of the area is complex; according to the analysis of Apollo17 samples, the rock types in the
area are mainly overlying mare basalts and orange-grey breccia [64].

3.4.1. Extra-Trees Modelling of FeO

Fe mainly exists in lunar mafic minerals, and understanding the abundance and
distribution of Fe can aid in understanding the nature and origin of the Moon and provide
an indicator of lithology to distinguish between mare and highland [65]. In this paper, Extra-
Trees modeling is performed with the effective bands obtained by the Pearson correlation
coefficients and SPA. Due to the large number of bands of IIM data that undergo band-
difference transformation, the coverages overlap. The sensitive bands that play a key role
in the model are first screened, and the model is then trained and tested; however, the
regression results are not the only reference used to evaluate the model. To further verify
the accuracy of the model, it was applied to the Apollo 17 area (landing site coordinates:
30◦44′58.3′′ E, 20◦9′50.5′′ N) to evaluate the accuracy of FeO inversion.

The FeO training and testing accuracies for the Extra-Trees model after variable
screening are shown in Figure 8a, where the blue dots represent the training set, and the
red dots represent the test set. The coefficient of determination (R2) for the test set is 0.962,
and the RMSE is approximately 1.028. The FeO inversion results (Figure 9) show that the
predicted FeO abundance in the region near the Apollo 17 landing site ranges from 7.64 to
15.72 wt.%, and the FeO content of the mare area is significantly higher than that of the
highland area, with good consistency regarding the distribution of FeO content values in
comparison with the results of Lucey et al. [17].

3.4.2. Extra-Trees Modelling of TiO2

The distribution of the TiO2 content varies greatly among different types of mare
basalts; thus, it is the key to classifying mare basalt types and is important for the exploita-
tion of lunar ilmenite resources [6]. The optimal band selection for TiO2 is similar to that
in the FeO model. First, the 287 bands that passed the p < 0.01 significance test were used
to establish the sensitive region for TiO2, and the best band combination was selected by
clustering analysis and applying the SPA. The results are shown in Table 4.
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The TiO2 training and testing accuracies of the Extra-Trees model after variable screen-
ing are shown in Figure 8b, where the coefficient of determination (R2) for the test set is
0.944 and the RMSE is approximately 0.672. The model was applied for TiO2 inversion in
the test area (Figure 10), and the results show that the TiO2 abundance ranges from 2.21 to
9.37 wt.%; the high-value areas are mainly located in the mare, and the low-value areas
are mainly in the highland, which is generally similar to the results reported by Lucey
et al. [17]. The inversion results display a similar trend, but the lower limit value of TiO2 is
higher, and the contents are slightly higher in the lower left corner of the figure, which may
be due to the effect of topographic shadowing from the light angle.

3.4.3. Extra-Trees Modelling of Al2O3

Almost all Al on the lunar surface is present in plagioclase, and the distribution of the
Al2O3 content is related to the formation and evolution of the lunar crust; notably, levels
are highest in highland calcarenite rocks and intermediate in mare basalts and can be used
to assist in distinguishing mare basalts from highland plagioclase. To assess the accuracy
of its inversion, an initial screening based on Pearson correlation coefficients was carried
out, followed by BKM clustering analysis combined with the SPA algorithm to find the
best band combinations for Al2O3. From Table 3, it can be seen that the eight best band
differences were finally screened and used as input to the model for modeling.

The training and testing accuracies of the Al2O3 Extra-Trees model after variable
screening are shown in Figure 8c. The coefficient of determination (R2) for the test set with
this method is 0.964, and the RMSE is approximately 0.942. The model was applied to
the Apollo 17 region for Al2O3 inversion, and the results (Figure 11) show that the Al2O3
abundance obtained with this method ranges from 11.75–24.43 wt.%, with a mean value of
14.70 wt.%. The abundance of Al2O3 in the highlands region is lower than that in the mare
region, and this correlates negatively with FeO.
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3.4.4. Extra-Trees Modeling of SiO2

SiO2 is in nearly every rock and mineral grain on the Moon as the fundamental
component of silicate minerals. The optimal waveband selection for SiO2 is similar to that
for FeO, and the optimum number of bands for SiO2 is shown in Table 3, with a total of
30 band differences.
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The training and testing accuracies of the SiO2 Extra-Trees model after variable screen-
ing are shown in Figure 8d. The R2 value for the test set obtained with this method is 0.860,
and the RMSE is approximately 0.897. The model was applied for SiO2 inversion in the
Apollo 17 region (Figure 11c), and the results show that the SiO2 abundance obtained with
this method ranges from 41.08 to 45.67 wt.%, with a mean value of 43.84 wt.%. SiO2 is
commonly found in lunar rocks, with higher levels in the highland than in the mare, which
is negatively correlated with TiO2.

3.5. Oxide Content Mapping for the Copernicus Crater Region
3.5.1. Regional Distribution of Lunar Surface Chemistry

Using ArcGIS as the platform, a 1:2,500,000 lunar geological map of the study area
was mapped (Figure 12), which covers a geographical area of approximately 125 × 104 km2

at longitudes of −52◦ to 6.6◦ W and latitudes of −2.8◦ to 28◦ N. The study area is mainly
occupied by the Copernicus crater, Kepler crater, and Aristarchus crater, located in the
transition zone between the mare and the lunar highlands in the south of the Oceanus
Procellarum. The study area is rich in geomorphic features and material types, and the
rocks are mainly mare basalts, followed by KREEP rocks and ferroan anorthositic suite.
Linear structures are widely developed and distributed and are of great importance to
studies of lunar diagenesis and geological evolution.
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In the study area, the mare basalt is widely distributed in the lower and flat region,
including south of Oceanus Procellarum and the impact basin floor, basically occupying
the entire study area. These mare basalts formed between 19 Ga and 37 Ga ago according
to the isotopic age data of lunar samples and the dating results of crater size-frequency
distribution (CSFD) for mare basalt units. Meanwhile, a large number of tectonic develop-
ments are present, and the main linear formations are rills, wrinkle ridges, and crater-floor
fractures, with wrinkle ridges being the most numerous, widespread, and characteristic
linear structures, mainly within the mare basalt. Rills are also widespread and distributed
around the wrinkle ridges; the circular structures are mainly domes, volcanic vents, craters,
and impact basins.

The main geological evolution in the study area includes endodynamic geological
evolution processes, such as differentiation of magma ocean, plutonic magmatism, and vol-
canism, and exodynamic geological evolution processes such as impact. During the Magma-
Oceanian period, the primary ferroan anorthositic crust mainly formed, followed by the
formation of the Copernicus-H basin in the Aitkenian, the Imbrain basin in the Imbrian, the
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Timocharis crater in the Eratothenian, and the Copernicus, Kepler, and Aristarchus craters
in the Copernican.

An Extra-Trees model based on variable screening was used to invert the oxide contents
in the region near the Copernicus crater using IIM data, and frequency histograms were
plotted based on the oxide contents (Figures 13 and 14).
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Figure 13 shows the predicted results of oxide contents (FeO, TiO2, Al2O3, and SiO2)
in the Copernicus crater region. As shown in Figure 13, the FeO content ranges from
3.61 to 17.68 wt.%, with a mean value of 12.51 wt.%. The FeO content in the mare is
significantly higher than that in the highland, with the lower FeO content mainly located in
the Copernicus crater, Aristarchus crater, and Kepler crater floor, and the high FeO content
area mainly located on the southwest side of Kepler crater. The frequency histogram in
Figure 14 also shows a clear bimodal distribution, with the first peak at approximately
12.80 wt.% and the second peak at approximately 15.1 wt.%. The TiO2 content ranges from
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0.38 to 8.88 wt.%, with a mean value of 2.60 wt.%. Its content is significantly higher in
the mare than in the highland, and there is a positive correlation between the FeO content
in areas with high TiO2 content in the mare basalt area. The low TiO2 content areas are
mainly located around the Copernicus, Aristarchus, and Kepler craters, and the high TiO2
content areas are mainly located on the southwestern side of the Kepler crater and the
northeastern side of the Copernicus crater, while the rest of the mare has moderate TiO2
content. The frequency histogram distribution shows a clear bimodal distribution, with
the first peak at approximately 2.16 wt.% and the second peak at approximately 2.82 wt.%.
The Al2O3 content ranges from 10.27–29.09 wt.%, with a mean value of 13.56 wt.%. It
is clearly higher in the highland than in the mare, with an inverse correlation with FeO
content. The high-value areas are mainly located in the vicinity of craters, with lower levels
in the mare, especially on the southwestern and western sides of the Kepler crater. The
frequency histogram of Al2O3 shows a clear bimodal distribution, with the first peak of
approximately 13.57 wt.% and the second peak of approximately 18.25 wt.%. The SiO2
content ranges from 39.82 to 47.01 wt.%, with an average value of 39.53 wt.%. The SiO2
content is high throughout the study area, ranging from 39.82 to 47.01 wt.%, with a mean
value of 39.53 wt.%. The content is significantly higher in the highland than in the mare,
which shows an inverse correlation with TiO2. The high-value areas are mainly located
within the crater and its sputtering, with lower levels in the rest of the area. The SiO2
first peak of the frequency histogram is approximately 41.11 wt.%, and the second peak is
approximately 44.25 wt.%.

3.5.2. Comparison with Previous Works

Figures 15 and 16 show the FeO and TiO2 content distributions generated based on the
different data/methods. First, the correlation analysis was carried out with the FeO content
distribution maps generated in this paper (Table 5). The correlations between the FeO
inversion results in this paper and the inversion results of Clementine, IIM (band ratio), and
LP GRS data were 0.91, 0.89, and 0.90, respectively, and the correlation was basically stable
at approximately 0.90. The correlations between the TiO2 inversion and the Clementine
and IIM (band ratio) inversions (Table 6) were 0.61 and 0.65, respectively. Due to the low
resolution of the GRS TiO2 data, this correlation was not analyzed. As seen in Figure 15,
the FeO and TiO2 contents of the inversions in this paper are lower than the mean values of
the inversions of other models. To better compare the discrepancy between the inversion
results of this paper and the Clementine FeO results. the IIM FeO map is compared with
the Clementine FeO product resampled to the same resolution (0.5◦), and the correlation
between the two products is 91%, with good agreement, as shown in Figure 17. The
difference between the results of this paper and Clementine may be due to the influence of
topographic shadows caused by the camera angle, post-image processing, and differences
in the oxide inversion algorithm. Additionally, using IIM data, the difference between the
results of this paper and the band ratio-based method is mainly due to differences in the
oxide inversion algorithm and post-image processing. In contrast to the IIM optical image
data, which can only capture the material component of the lunar surface, the LP GRS
data are not affected by topographic shadows, light angles, etc., and can be detected to
a depth of 20–30 cm below the lunar surface [15]. Therefore, the difference between the
results of this paper and the LP GRS is mainly because the GRS data are not affected by
topographic shadows and because the GRS data are deeper than the IIM data. The results
from different data and methods indicate that, despite the different absolute abundance
ranges, their relative abundances are similar to each other [19,33].
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Table 5. Correlation coefficients based on different data/methods for FeO inversion.

Parameters
Statistical Values of Predicted FeO

This Work Clementine [17] IIM (Band Ratio) [30] LP GRS [15]

Average 12.51 13.98 13.8 15.82
Standard Deviation 4.7 5.61 6.19 6.26

Correlation Coefficients 1 0.91 0.89 0.9

Table 6. Correlation coefficients based on different data/methods for TiO2 inversion.

Parameters
Statistical Values of Predicted TiO2

This Work Clementine [17] IIM (Band Ratio) [31] LP GRS [15]

Average 2.6 4.1 2.68 2.87
Standard Deviation 1.36 2.94 1.64 1.67

Correlation Coefficients 1 0.61 0.65 0.48
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The existence of negative correlations between FeO and Al2O3 and TiO2 and SiO2 was
verified. Specifically, two-dimensional density plots of FeO and Al2O3 and two-dimensional
density plots of TiO2 and SiO2 were established (Figure 18). The results show that the
correlation between FeO and Al2O3 is 75%, and the correlation between TiO2 and SiO2
is 76%. These results are consistent with the previous conclusion that Fe is negatively
correlated with Al content and that a decreasing Si phenomenon tends to occur along with
the enrichment of Ti elements [64].
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4. Discussion

In this paper, a new method of feature band selection combined with Extra-Trees
is presented to predict oxide contents on the lunar surface. The results show that the
proposed method has good potential for assessing the distribution of oxide contents using
spectral features.

4.1. Comparison with Other Similar Studies

Previous studies mainly used two bands to retrieve oxide contents according to
the absorption characteristics of mineral elements in the visible near-infrared (VNIR)
band. For example, 750 nm and 950 nm [17], 757 nm and 891 nm [21], and 757 nm and
918 nm [19] were used to retrieve the FeO content. Additionally, wavelengths of 415 nm
and 750 nm [17,67], 531 nm and 757 nm [19], and 321 nm and 415 nm [16] were used to
retrieve TiO2 content. Due to the complexity of the lunar soil composition, the ability to
describe the nonlinear relationships between spectral features and oxide contents from
only two bands is very limited [36], and the accuracy of composition inference is highly
dependent on the selected inversion models [68]. In addition, nonchromophore elements
do not display absorption characteristics in the VNIR region, which makes it difficult to
use most methods in nonchromophore element (Al and Si) inversion. Currently, some
scholars [18,20,54] have established the relationships between spectral features and oxide
contents based on regression models to invert these oxide contents. Therefore, the inversion
of oxide contents on the lunar surface using regression models has become a popular
research topic.

Spectral pretreatment methods can improve the correlations between spectral fea-
tures and oxide contents, as has been well established in previous studies. For example,
Li [40] attempted to improve the performance of a model by using a log(1/reflectance)
transformation approach. Pieters [26] and Sun et al. [20] applied a band-ratio approach to
improve the above correlations. Wu [18] experimentally demonstrated that the correlations
obtained considering band differences were superior to those obtained with the band-ratio
technique. Therefore, the first-order band-difference transformation method was chosen in
this paper to improve the correlations between spectral features and oxide contents. After
the preprocessing of spectral data, feature band selection is crucial. However, previous
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studies paid little attention to the optimization of feature variables in models. In this study,
on the basis of earlier methods [20,37], the Pearson correlation coefficient and SPA are used
to select characteristic bands, thus ensuring that high correlations between input spectral
features and oxides are retained and reducing the multicollinearity among spectral features.
With expanding research, a variety of machine-learning models have been applied to the
inversion of lunar surface oxides. The Extra-Trees algorithm selected in this paper can
effectively describe the nonlinear characteristics of the studied features and provides strong
generalization ability and robustness. This feature band selection approach combined
with the Extra-Trees prediction method for predicting oxide contents on the lunar surface
yielded reasonable accuracy for the sample test set (R2 values of 0.962, 0.944, 0.964, and 0.86
for FeO, TiO2, Al2O3, and SiO2, respectively, and RMSEs of 1.028, 0.672, 0.942, and 0.897,
respectively) and the regional scale (Apollo17 area; the area near the Copernicus crater).

4.2. Future Prospects

(1) The LSCC sample data used in this paper are mainly distributed in the low-latitude
area of the lunar nearside, and the number of samples is small; consequently, the
distribution characteristics of the oxide contents on the lunar surface cannot be com-
prehensively reflected, and there are limitations in both quantity and region. This
leads to some uncertainty in the prediction results. In the future, more samples should
be obtained to supplement the sample data limitations in certain regions of the Moon,
such as at middle and high latitudes, and increase the number of samples, which is
expected to improve the accuracy of chemical abundance distribution characteristics.

(2) There are spectral anomalies at the edges of different orbit images of IIM hyperspectral
data, and factors such as solar azimuth and topographic relief will lead to shadows in
the images, which will inevitably increase errors in the inversion results. In future
research, we should consider how to mitigate the spectral anomalies and topographic
shadows in IIM data or explore the potential of using higher-quality and higher-
resolution remote sensing data for inversion, such as the M3 data obtained with the
Indian satellite Chandrayaan-1 and the MI data obtained with Kaguya in Japan, to
improve the prediction accuracy of the model.

(3) The continuity of hyperspectral data greatly enriches the amount of information
available in remote sensing data, but it can also lead to issues such as information
redundancy and high correlations between bands. Therefore, determining how to
obtain the best combination of sensitive bands is an important step in the application
of hyperspectral data. The sensitive band screening method applied in this paper
provides a reference for other chemistry inversion research. In the future, more band
screening algorithms can be applied for feature selection with lunar hyperspectral data
to reasonably select the best number and combination of bands and improve accuracy.

(4) In the era of big data, big data theory and technology are important tools for solving
practical problems. The application of machine learning and deep learning algorithms
for lunar chemistry inversion is still in its infancy. Although the Extra-Trees model
developed in this paper provides good prediction ability, there is still room for further
improvement. Thus, a future development direction is to complete lunar surface
oxide inversion through better machine learning and deep learning methods.

5. Conclusions

The plan to return to the Moon in the new era is to develop and utilize lunar resources,
establish a lunar base, and use the Moon as a springboard to gradually carry out deep
space exploration. Through comprehensive remote sensing exploration of the Moon to
analyze and assess the distribution of lunar mineral resources, it can provide a long-term
stable resource reserve for the sustainable development of human society. In this paper,
using IIM data, the original reflectance as the initial input and the oxide contents of LSCC
samples as the desired outputs, we use a combination of the mathematical transformation
of spectral data (first-order difference method), a feature band selection technique (with
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the SPA) and a machine learning modeling method (Extra-Trees). The correlations between
reflectance and oxide contents are improved to identify the difference bands most sensitive
to oxide levels and construct a prediction model with excellent inversion ability for lunar
surface oxide (FeO, TiO2, Al2O3, and SiO2) contents. This approach can solve the problems
of low accuracy and poor generalizability encountered with traditional modeling methods
based on raw spectral data. The main conclusions of this paper are as follows.

(1) The correlation calculations for the original bands and all band differences in the IIM
spectral range separately show that considering the band differences can enhance the
correlations between reflectance and oxide contents. Thus, the best combination of
spectral bands can be used in subsequent modeling, and the accuracy of the model
can be improved. Moreover, the calculated interelement correlations suggest that Fe
is negatively correlated with Al and that Si depletion is often accompanied by the
enrichment of Ti.

(2) In total, 325 band differences were initially screened using Pearson correlation coeffi-
cients, and then secondary downscaling screening was performed according to BKM
combined with SPA. Consequently, 17, 5, 8, and 30 feature bands were retained for
the four oxides (FeO, TiO2, Al2O3, and SiO2, respectively) for modeling. The SPA
encompasses most of the spectral information associated with samples, effectively
reduces the complexity of modeling and reduces the covariance interference among
spectral features.

(3) Machine learning algorithms are increasingly integrated with lunar surface chemistry
inversion in the big data era. Big data undoubtedly provide new data-driven research
methods and can effectively overcome the relatively limited numbers of lunar samples.
Moreover, the high dimensional and complex nonlinear relationships between oxide
contents and spectral reflectance can be better described. In this paper, we apply the
Extra-Trees algorithm for chemistry inversion to predict the distribution of chemistry
on the lunar surface. The results show that the R2 values of the test sets for FeO, TiO2,
Al2O3, and SiO2 are 0.962, 0.944, 0.964, and 0.860, respectively, and the RMSE values
are 1.028, 0.672, 0.942, and 0.897, respectively, improving the modeling accuracy over
the original bands.

(4) The average contents of the four oxides (FeO, TiO2, Al2O3, and SiO2) in the region
near the Copernicus crater are 12.51 wt.%, 2.60 wt.%, 13.56 wt.%, and 39.53 wt.%,
respectively. The oxide content distributions display obvious variations, and the
frequency histograms show a clear bimodal distribution. The comparison of the
present result with representative models shows that the model in this paper provides
good agreement in the inversion of oxide abundance, thus providing a new idea and
method for the inversion of oxide abundance.
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