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Abstract: Automatic prediction of the plant and animal species most likely to be observed at a given
geo-location is useful for many scenarios related to biodiversity management and conservation.
However, the sparseness of aerial images results in small discrepancies in the image appearance of
different species categories. In this paper, we propose a novel Dynamic Vision Transformer (DViT)
architecture to reduce the effect of small image discrepancies for plant and animal species recognition
by aerial image and geo-location environment information. We extract the latent representation by
sampling a subset of patches with low attention weights in the transformer encoder model with a
learnable mask token for multimodal aerial images. At the same time, the geo-location environment
information is added to the process of extracting the latent representation from aerial images and
fused with the token with high attention weights to improve the distinguishability of representation
by the dynamic attention fusion model. The proposed DViT method is evaluated on the GeoLifeCLEF
2021 and 2022 datasets, achieving state-of-the-art performance. The experimental results show that
fusing the aerial image and multimodal geo-location environment information contributes to plant
and animal species recognition.

Keywords: transformer encoder; learnable mask token; self-attention mechanism; dynamic attention
fusion; plant and animal species recognition

1. Introduction

With the development of computer vision, pattern recognition, and deep learning,
plant and animal species recognition technologies [1–6] based on aerial images also have
been constantly improving, and are being applied in various fields. In the tasks of un-
derstanding the geographical distribution of plant and animal species and protecting
species diversity, it is of positive significance to identify species and their surrounding
environmental characteristics through aerial images.

In contrast to traditional image classification [7–12], the discrepancies between aerial
images of different plant and animal species categories are small, which is a typical Fine-
Grained Visual Categorization (FGVC) task; also, the proportion of plant and animal pixels
is relatively small in the global image due to the sparsity of aerial images. Therefore, in the
plant and animal species recognition task based on aerial images, even though the aerial
images have both RGB and near-infrared (NIR) modal data, it is almost difficult to distin-
guish species classes if we rely on image information alone. Currently, the optimization
of species recognition by introducing additional information has become a hot research
topic. Currently, common additional information includes the geographic and temporal
information of the image capturing [13–17], and studies have shown that geographic and
temporal information can improve the accuracy of FGVC in BirdSnap [18], PlantCLEF [19],
FungiCLEF [20], YFCC100M [21], iNaturalist [22–24], and GeoLifeCLEF [25] datasets.

However, most of the current research approaches extract potential embedding of
images by Convolutional Neural Networks (CNN) and finally classify the concatenation of
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location, date, and image embedding for species identification [15,26–28]. Alternatively,
feature summation [13], multiplication [14,29], and dynamic projecting [17] are used to
fuse image embedding and location–date features. Although these methods have achieved
excellent results, most of these methods only consider the fusion of image and location–date
features in a single dimension. While dynamically projecting approaches construct high-
dimensional interactions between multimodal representations, mapping similar image
features to different locations in the feature space suggests accurate classification accuracy.
However, this is also a fusion method after feature extraction from different modal data;
also, these methods only consider the enhancement of image features by location–date
multimodal embedding of images without considering the influence of the surrounding
environment features, which is, of course, related to the common fine-grained image
classification dataset.

To further exploit the potential impact of additional information, we propose to incor-
porate it into the process of extracting image latent embedding while introducing additional
information into the fusion of the extracted multimodal features. Due to the similarity
in image appearance, the distinguishability of the images’ latent features extracted by
the network model is insufficient if the image classes are the same. Especially, when the
locations of the aerial images are close to each other, it is still difficult for the existing mul-
timodal fusion methods to distinguish species classes. However, when extracting image
embedding by the CNN model, it is again difficult for us to interact with the additional
information during the image feature-extraction process. With the widespread use of Visual
Transformer (ViT) [30] in the image field [31–39], its unique learning approach makes it
possible to introduce additional information into the extraction process of image potential
embedding. In this paper, we propose a Dynamic Vision Transformer (DViT) architec-
ture to dynamically enhance the latent representation of image embedding by additional
environmental information of the location.

Specifically, in the potential embedding extraction of aerial images, the multimodal
aerial images of the RGB and NIR are input into the transformer encoder model with the
Learnable Mask Token (LMT), respectively. The mask token has learned the attention
weight. Then, we mask the low-weight patches to extract the latent representations of
the local regions with high attention weights. At the same time, the location environ-
ment embedding by multi-layer perceptron (MLP) is added to the process of extracting
the latent representation and fused with the token with high attention weights to im-
prove the distinguishability of the aerial images’ latent representation by the dynamic
attention fusion (DAF) model. Finally, the enhanced latent representations by additional
location environment embedding of RGB and NIR images are fused for multimodal species
recognition. We evaluated DViT on the GeoLifeCLEF 2021 and 2022 datasets, achieving
state-of-the-art performance.

In summary, this paper attempts to propose a DViT model combining multimodal
aerial images and location environment information to reduce the effect of small image
discrepancies for multimodal species recognition. The main contributions of this paper are
summarized as follows:

1. This paper analyzed the impact of additional location environment information for
fine-grained image classification on multimodal species recognition.

2. This paper is the first study that combines a visual transformer with the LMT and
DAF and proposes a DViT architecture, which utilizes the multimodal aerial remote
sensing image and location environment information to reduce the effect of small
image discrepancies.

3. Our approach consistently achieved state-of-the-art (SOTA) results on multiple datasets
compared to existing published works, especially with top-30 error rates of 0.7297
and 0.6567 for the GeoLifeCLEF 2021 and 2022 private test sets, respectively.

The remainder of this paper is organized as follows: Section 2 provides a brief review
of the related research on species recognition; Section 3 provides a complete introduction to
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the proposed algorithm; Section 4 shows the datasets, details, and results of the experiment;
and, finally, Section 5 presents the conclusions of this research method.

2. Related Work

In this section, we review existing works on species recognition based on FGVC tasks
that only deal with images based on CNN. Then, we introduce the development of the ViT
model to species recognition. Finally, we summarize multimodal species recognition works
that incorporate additional information. This section provides an overview of the relevance
of the different methods.

2.1. Image Species Recognition Based on CNN

In image-based species recognition, there are two main types of species recognition:
one is species recognition based on ordinary optical images [40–44], and the other is
species recognition based on remote sensing images [45–49]. The current research mainly
focuses on the species recognition of ordinary optical images; however, both species recog-
nition from optical images and species recognition from aerial images are important. Since
there is very little difference between species classes, the current image-based species
recognition all belongs to FGVC tasks. To improve the performance of image-based
species recognition, the existing works are mainly divided into the following aspects.
First, end-to-end learning [50–55] is used to extract the global features of images with
more robustness. Second, it is shown that recognition performance can be improved by
locating discriminative regions of interest in an image and then extracting local minutiae
features of interest [56–62]. Third, additional research extracts more discriminative image
representations by contrast learning [63–67].

2.2. Image Species Recognition Based on ViT

With the widespread use of ViT in the image field, the ViT model patched the image
and input these patches into the multi-head self-attention (MSA) model to obtain image
embedding for classification. The MSA can focus on the weights of local regions of the
image, enabling the model to extract local fine features. Researchers have started to
introduce ViT to fine-grained image classification tasks [68–72]. He et al. [72] proposed a
transformer-based framework, TransFG, which improves the classification performance
by accurately and efficiently selecting image blocks with high differentiation by attention
weights. Liu et al. [71] proposed a transformer architecture with a peak suppression module
and knowledge guidance module. The model learns the most discriminative image local
features to enhance the information utilization of the ignored regions by the attention
model. Cai et al. [68] proposed a ViT with adaptive attention. The model consists of
two main components: attention-weakening and attention-enhancement modules, which
improve the performance of key features while capturing more feature information.

2.3. Multimodal Species Recognition

In species recognition, in addition to improving classification performance through
models, much of the existing work is now beginning to focus on the extraction of additional
information on model performance. The construction of multimodal datasets, such as
BirdSnap [18], PlantCLEF [19], FungiCLEF [20], YFCC100M [21], iNaturalist [22–24], and
GeoLifeCLEF [25], provides more possibilities to improve classification performance. These
datasets usually include information such as images, locations, and dates of species. The
GeoLifeCLEF also includes more multifaceted metadata, such as land cover, altitude,
bioclimatic, pedologic, etc. These multimodal data provide more opportunities to improve
classification performance [73–77]. Current research on multimodal species recognition
performs multimodal feature fusion by feature concatenation, summation, multiplication,
and dynamic weighting.

Kevin et al. [15] used multimodal information for the first time in the FGVC task. They
used concatenated image representation extracted by CNN and location representation
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extracted by multi-layer perceptron (MLP) for classification. Chu et al. [13] proposed a
Geo-Aware Network that fuses image representation with geo-location representation in a
summation manner. The classification performance is then enhanced by a series of post-
processing models. Oisin et al. [14] use geo-location and temporal representation extracted
by MLP as effective spatio-temporal prior knowledge to fuse with image representation
by multiplication. Terry et al. [29] performed species recognition by multiplying image
representation and metadata representation. Yang et al. [17] proposed a Dynamic MLP
model to enhance classification performance by projecting multimodal features to image
features through dynamic mapping. A summary of the multimodal fusion methods is
shown in Table 1.

Table 1. The summary of multimodal fusion methods for species recognition.

Methods Input Method Advantages Drawbacks

ConcatNet Image, Longitude,
Latitude Concat

The prior
knowledge of the

location and
environmental

information can help
improve species

recognition
performance

Embedding
redundancy

GeoNet Image, Longitude,
Latitude Add These methods

do not consider
the correlation
between image
and location
context
information

PriorsNet Image, Longitude,
Latitude, Date

Multiply

EnsembleNet

Image, Longitude,
Latitude, Date,

Weather, Habitat,
Recorder

Dynamic
MLP

Image, Longitude,
Latitude, Date

Dynamic
projecting

The location
environment
information

dynamic
enhancement of the
image embedding

The method
does not
consider the
effect of
metadata on the
distinguishabil-
ity of image local
embedding

Although these methods have achieved excellent results by fusing multimodal in-
formation, all these methods extract features of different modalities by models before
fusion. In contrast, our framework introduces multimodal information into the image
feature-extraction process to improve the distinguishability of potential representations of
aerial images.

3. Methodology

In this section, we introduce a multimodal fusion framework for species recognition
by aerial images and location environment information. The framework contains an RGB
image path, an NIR image path, and a location environment path, taking as input the aerial
images and the multimodal location environment information, respectively. First, the aerial
image embedding is extracted by vision transformers with the LMT module, while the
multimodal location environment embedding is derived by the MLP backbone network.
Then the geo-location environment information is added to the process of extracting the
latent representation. Finally, the DAF module adaptively performs projection location
environmental embedding of the latent representations of aerial images to produce final
species predictions.

3.1. Framework

The complete network structure we designed is shown in Figure 1. The aerial images
used the Dynamic Transformer Encoder model to extract visual embedding, and the
location environment embedding is extracted by the MLP block. Then, different from
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previous embedding fusion works, the DAF is used to enhance the ability of the image
patch embedding. We dynamically project multimodal location environment embedding
into the image tokens to enhance the image representation.
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Figure 1. The architecture of our proposed DViT. The RGB and NIR image is input into the LMT
module to sample a subset of patches to remove patches with low representability. Then, the
multimodal geo-location environment embedding is fused with multimodal image patches to enhance
the distinguishability of the image latent representation by the dynamic transformer encoder module.
Finally, the enhanced multimodal image representation is used for species recognition.

Following ViT, given the input aerial images, we first divide these aerial images into
regular non-overlapping patches. However, the sparsity of the aerial image information
creates small discrepancies between different categories of plant and animal species. If the
patches are directly input to the transformer encoder, it will bring information redundancy.
Therefore, the Masked Autoencoders (MAE) [35] model uses random sampling with a high
masking ratio to remove a high percentage of patches to eliminate redundancy. Although,
random sampling can construct efficient feature representations with highly sparse inputs
compared to block-wise sampling and grid-wise sampling. However, the uncertainty of
random sampling may remove some patches with high representation power. Therefore,
we use the LMT to sample a subset of patches for RGB and NIR aerial images, respectively.
We remove patches with low impact on species recognition by the LMT. We simply refer
to this as “learnable sampling”. A detailed introduction to the LMT model can be found
in Section 3.2.

Specifically, given the input aerial images, we can obtain this embedding without a
mask token through the transformer encoder with the LMT model, following each modal
image path. Simultaneously, the multimodal location environment path accepts latitude,
longitude, bioclimatic, and pedologic data as input. This environment information is
added to the process of extracting the latent embedding and fused with the token with high
attention weights to improve the distinguishability of the latent embedding of aerial images.
Then, the multimodal features are obtained through the MLP backbone network. After
the multimodal images and location environment features are obtained, they are fused via
the DAF model. In the DAF network, we fused the multimodal localization environment
features with aerial image tokens through the multiplication method. The multimodal
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fusion latent representation zm is obtained via a map of the environment features in each
image token to enhance the aerial image representations in the MLP backbone network.
We also concatenated the class token of the multimodal aerial image to further enhance the
multimodal fusion latent representation for species recognition.

3.2. Learnable Mask Token

The sparsity of aerial image information creates small discrepancies between different
categories of species; thus, how to efficiently extract the distinguishing local area embedding
for species recognition is the focus of research. Therefore, this paper proposes the LMT
(LMT) to sample a subset of patches on aerial images in a learnable way and extract a latent
representation of local regions with distinguishability. The patch tokens of the RGB and
NIR multimodal image are learned by LMT in the visual transformer model. Then the
patch tokens with high weights on RGB and NIR modalities are input into the transformer
encoder to extract the latent representation of the multimodal images.

In this section, we first describe the elementary implementation of the transformer
encoder model with the LMT. Specifically, given the input aerial images, we divided
them into regular non-overlapping patches, xp. Then, these patches were input into LMT
to sample a subset of patches to remove patches with low representability. The model
architecture of LMP is shown in Figure 2.
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Figure 2. The architecture of the LMP model in the RGB image path. The RGB image is divided into
regular non-overlapping patches, xp, and these patches are input into LMT to sample a subset of
patches, xs.

The LMP model is a fully connected layer in which the input is a one-hot encoder
vector of the same length as the image patches. The output of LMP is sorted to remove
those corresponding images with low weights, which is specifically expressed as

xs = xp × wlmt,
{

wk = 1, rank(wlmt)× 0.25
wk = 0, rank(wlmt)× 0.75

, k = [0, · · · , p− 1], (1)

where xs is the patches without masks, wlmt is the parameter of the LMT model, and wk is
the mask token projection of binarization corresponding to each image patch. These image
patches with high weights were mapped to a high-dimensional embedding and fused to
the positional embedding.

For multimodal embedding of RGB and NIR images, we added the LMT as a class
token to generate a new embedding. At the same time, we fused the multimodal location
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environment embedding with multimodal image embedding to improve the distinguishing
ability. The new embedding is as follows:

z0 =
[
z0_rgb; z0_nir

]
, (2)

z0_m =
[

xclass_m; x1
s_mE; z2

s_mE; · · · ; zN
s_mE

]
+ Epos_m, m ∈ [rgb, nir], (3)

xclass_m = rank(wlmt_m) ∗ 0.25, (4)

where N is the length of patches through the LMT, xclass_m is the top 25% sorted by
the learned mask token, E ∈ R(P2·C)×D is the multimodal image patches embedding
by convolution mapped, and Epos ∈ R(N+1)×D is the positional embedding.

In a different MAE model, we do not randomly remove image patches but remove
low-weight image patches through the LMT, and after each backpropagation, we arrange
the learned mask tokens in the order of deletion token. Finally, the low-weight mask token
is selected again for deletion. This reciprocates until the optimal high-weight region is
selected for species identification.

Based on this, we use the LMT to sample a subset of patches for RGB and NIR images,
respectively. We replaced random sampling with the LMT model; we simply refer to this as
“learnable sampling”. The learnable way of the mask token largely eliminates redundancy
by removing a high percentage of patches.

3.3. Dynamic Attention Fusion Model

The added class token is used to learn the attention weight of each patch before
inputting multimodal image paths into the transformer encoder model. The impact of the
high-dimensional features of each patch on species recognition is attended to through the
attention weights, in which we represent the positional relationship of each patch with the
LMT. The transformer encoder module contains L layers of MSA, DAF, and MLP blocks.

In this section, we first describe the elementary implementation of our proposed
dynamic attention fusion (DAF-A) model and its improved variant DAF-B. Inspired by
dynamic filters [17,78–80], we propose a DAF model that introduces multimodal location
environmental embedding, ze, into the visual transformer encoder adaptively to enhance
the distinguishability of aerial image representations. In Figure 3 on the left, we show a
single unit of DAF-A, the most concise implementation of DAF-A. The classification process
is as follows:

z′l = MSA(LN(zl−1)) + zl−1, l ∈ 1, . . . , L, (5)

z′′l = DAF
(

LN
(
z′l
))

+ z′l , l ∈ 1, . . . , L, (6)

zl = MLP
(

LN
(
z′′l
))

+ z′′l , l ∈ 1, . . . , L, (7)

MSA = So f tmax
(

QKT
√

dk

)
V, (8)

DAF = Reshape(LN(ze))× z′l , (9)

p = So f tmax
(

z0
L

)
, (10)

where Q, K, and V are the query, key, and value of the MSA model, ze is the patch of
multimodal location environment, Reshape() reformulates a 1-d feature into a 2-d matrix,
LN() denotes the fully connected layer, z0

L is the class token concatenation of the RGB and
NIR image, and p is the prediction result of the model.
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Finally, z0
L are replaced by the corresponding positions in the LMT, and the patches

with high weights are extracted again for the next iteration. Aerial image embedding
and multimodal location environment embedding have the potential to complement each
other. Therefore, we concatenated image embedding and multimodal location environment
embedding in DAF-B, which is an extended version of DAF-A, and then dynamically
mapped them to the image embedding.

DAF− B = Reshape(LN([ze, zi]))× z′l , (11)

zi = Pool
(
z′l
)
, (12)

In the DViT model training process, we used focal loss to reduce the impact of category
imbalance. The loss function is defined as follows:

l f ocal = −αt(1− pt)
rlog(pt), (13)

where αt and r are hyperparameters, αt is the balance factor, and γ is to adjust the rate at
which the weight of simple samples is reduced. To verify the ability of multimodal location
environment information to enhance the distinguishability of image features, we verified
the robustness of the model using RGB, NIR, and RGB+NIR, and the experimental results
are shown in table in Section 4.3.

4. Experiments

This section, we will introduce the detailed analysis of the experiment, including
datasets, performance metrics, experimental details results, and ablation experiment anal-
ysis. In addition, the ablation experimental analysis is conducted to better illustrate the
effectiveness of the DViT architecture.

4.1. Dataset

We conducted experiments on a species dataset with additional location environment
information (GeoLifeCLEF 2021, 2022). GeoLifeCLEF 2021 and 2022 are part of the LifeCLEF
2021 and 2022 evaluation campaigns, respectively, as well as part of the Eighth Workshop
on Fine-Grained Visual Categorization (FGVC8) on CVPR 2021 and FGVC9 on CVPR 2022.

The observation data in GeoLifeCLEF 2021 and 2022 are given latitude and longitude
coordinates, the remote sensing imagery in RGB and NIR, and the cover and altitude data
of the surrounding environment within 256 m × 256 m, which is 1 m per pixel in these
data. In addition, bioclimatic and pedologic data corresponding to each observational
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data sample is also given, as extracted, preprocessed environmental variable features. The
observation data of the location [43.779, 3.812] in GeoLifeCLEF 2021 and [32.957, −96.470]
in GeoLifeCLEF 2022 are shown in Figures 4 and 5.
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Due to the sparseness of the land cover and altitude data, only RGB and NIR images
in the dataset were used in the training process of the DViT model. Additional information
selected regarded species location and preprocessed environmental embedding. The sample
statistics of species number, train, validation, and test of GeoLifeCLEF 2021 and 2022 are
shown in Table 2.

Table 2. The sample statistics of GeoLifeCLEF 2021 and 2022.

GeoLifeCLEF 2021 GeoLifeCLEF 2022

Plantae N/A 9080

Animalia N/A 7957

Species 31,179 17,037

Train 1,833,272 1,587,395

Validation 45,446 40,080

Test 42,405 36,421

Due to the category imbalance of the species recognition dataset, the visualization
of species observation distribution in the two datasets is shown in Figure 6. It can be
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seen that the long-tailed distributions problem of the GeoLifeCLEF 2021 dataset is more
obvious. This dataset includes 31,179 observed species and only species category labels are
given. The 17,037 observed species in the GeoLifeCLEF 2022 removed species categories
with a small sample from GeoLifeCLEF 2021; this includes 9080 plants and 7957 animals.
The species, genus, family, and kingdom category labels are also given for each observed
data sample.
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4.2. Implementation Details and Performance Metrics

We iteratively update the parameters of the RGB and NIR paths of DViT on the
MAE pre-training model, to accelerate the model convergence during the training process.
During the training process, we applied random cropping, random rotation, random
vertical and horizontal flips, and 5–10% brightness and contrast adjustment to perform data
augmentation on the image dataset. We applied center cropping to the image as a data-
augmentation operation during the inference. Meanwhile, we trained with the Stochastic
Gradient Descent (SGD) algorithm with momentum for DViT model optimization with
an effective batch size of 512 on the 800 epochs. The learning rate was set to 0.0024 and
the learning rate decayed to 0.95. The proposed model was trained and predicted using
PyTorch on the GeForce RTX A6000 platform.

In the experiment, we used the top-30 error rate in the two public multimodal species
recognition datasets (GeoLifeCLEF 2021 and 2022) to validate the performance of the DViT
model. The top-30 error rate is expressed as follows:

Top− 30 error rate =
1
N

N

∑
i=1

ei, where ei =

{
1 i f ∀k ∈ {1, · · · , 30}, ŷi,k 6= yi
0 otherwise

, (14)

where yi is the ground-truth label of observation i. For each observation i, it provides 30
candidate labels ŷi,1, ŷi,2, · · · , ŷi,30 to compute the top-30 error rate.

4.3. Ablation Experiment Analysis

Mask Sampling Strategies: We first examined the impact of mask sampling strategies
on DViT architecture performance. The experimental results are shown in Table 3. Specifi-
cally, we compared the impact of four mask sampling strategies: learnable sampling (our
default), random sampling, lock-wise sampling, and grid-wise sampling. Random sam-
pling is a large-scale random removal of small image blocks, lock-wise sampling removes
large random blocks, and grid-wise sampling keeps one of every four patches.
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Table 3. Comparisons with previous results for mask sampling strategies based on the ViT backbone
of GeoLifeCLEF 2022.

Mask Sampling Strategies Public Private

Block 0.6824 0.6972
Grid 0.6738 0.6785
Random 0.6626 0.6647
Learnable 0.6594 0.6567

The experiments are conducted based on the ViT backbone of the GeoLifeCLEF 2022
dataset. The experimental results show that learnable sampling reduces the error rate of
recognition compared to random sampling strategies. We believe that the strategies of
learnable sampling can better extract the local region of interest representation with high
differentiation. In the MAE model, the random sampling strategies have been shown to
achieve better results than lock-wise sampling and grid-wise sampling. In this paper, we
also show that random sampling strategies can achieve good results in multimodal species
identification.

Comparison of Backbone: We trained different ViT backbones based on learnable
mask strategies of the GeoLifeCLEF 2022 dataset, achieving a very competitive top-30 error
rate of 0.6594. Furthermore, comparing ViT-Huge to ViT-Base and ViT Large, it was seen
that the larger-scale backbone model achieves more competitive results. The experimental
results are shown in Table 4.

Table 4. Comparisons with previous results for the backbone of GeoLifeCLEF 2022. The ViT models
are B/16, L/16, and H/14.

DAF Public Private

ViT-B/16 0.6946 0.6946
ViT-L/16 0.6742 0.6742
ViT-H/14 0.6594 0.6567

Comparison of Structures: We compared DAF-A and DAF-B (Figure 3) based on
the ViT backbone and learnable sampling strategies with GeoLifeCLEF 2022. The results
are shown in Table 5. The experimental results show that DAF-B can obtain better ex-
perimental results by fusing the embedding of aerial images and multimodal location
environment embedding.

Table 5. Comparisons between different DAF models. RGB”, “NIR”, and “L-E” indicate the input
feature type for the RGB path, NIR path, and multimodal location environment path.

DAF RGB NIR L-E Public Private

ViT
√

0.6954 0.6938
ViT

√
0.7106 0.7135

ViT
√ √

0.6924 0.6893
DAF-A

√ √
0.6816 0.6842

DAF-A
√ √

0.6687 0.6719
DAF-A

√ √ √
0.6603 0.6594

DAF-B
√ √

0.6754 0.6719
DAF-B

√ √
0.6645 0.6623

DAF-B
√ √ √

0.6594 0.6567

4.4. Comparisons with State-of-the-Arts

Our model was compared with five multimodal fusion schemes. We performed the
implementation under a unified backbone for a fair comparison. In the ConcatNet [15]
model, the species class was predicted by concatenating the image latent feature repre-
sentation extracted from the VIT model of the backbone network with the features of
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multimodal location information. In PriorsNet [14], GeoNet [13], EnsembleNet [29], and
Dynamic MLP [17], we similarly combined the original method embedding in the original
method with the same replacement to ensure the fairness of the experiments. The experi-
mental results—the top-30 error rates for classification of DViT and other methods using
the GeoLifeCLEF dataset for species identification—are shown in Table 6.

Table 6. The top-30 error rate with image-only and multimodal fusion models using the GeoLifeCLEF
2021 and 2022 public dataset (left) and private dataset (left).

Backbone Methods
GeoLifeCLEF 2021 GeoLifeCLEF 2022

Public Private Public Private

ResNet

RGB 0.7567 0.7683 0.7258 0.7325
NIR 0.7743 0.7794 0.7354 0.7468
RGB+NIR 0.7528 0.7668 0.7338 0.7334

ConcatNet [15] 0.7574 0.7583 0.7316 0.7310
PriorsNet [14] 0.7569 0.7514 0.7303 0.7283
GeoNet [13] 0.7451 0.7447 0.7285 0.7258
EnsembleNet [29] 0.7417 0.7403 0.7251 0.7196
Dynamic MLP [17] 0.7399 0.7371 0.7039 0.6974

DenseNet

RGB 0.7563 0.7547 0.6889 0.6807
NIR 0.7583 0.7556 0.7024 0.7124
RGB+NIR 0.7524 0.7538 0.6824 0.6810

ConcatNet [15] 0.7405 0.7496 0.6879 0.6775
PriorsNet [14] 0.7430 0.7404 0.6876 0.6791
GeoNet [13] 0.7479 0.7461 0.6867 0.6759
EnsembleNet [29] 0.7465 0.7423 0.6803 0.6673
Dynamic MLP [17] 0.7360 0.7396 0.6723 0.6658

ViT

RGB 0.7937 0.7950 0.7887 0.7889
NIR 0.7968 0.7890 0.7893 0.7913
RGB+NIR 0.7845 0.7616 0.7584 0.7507

ConcatNet [15] 0.7726 0.7754 0.7398 0.7334
PriorsNet [14] 0.7605 0.7627 0.7291 0.7225
GeoNet [13] 0.7598 0.7546 0.7176 0.7107
EnsembleNet [29] 0.7427 0.7447 0.6801 0.6810
Dynamic MLP [17] 0.7320 0.7354 0.6681 0.6689

DViT (ours) 0.7278 0.7297 0.6594 0.6567

For our proposed DViT model, the backbone structure adopts the ViT [30] model and
the LMT for aerial images to sample a subset of patches, and fused the patches’ subsets of
RGB, NIR, and multimodal location environmental embedding into the transformer encode
model to obtain the final classification results.

In the GeoLifeCLEF 2021 dataset, the top-30 recognition error rates of the proposed
DViT on the private test set are lower than those of the baseline method using only aerial
images (ResNet, DenseNet, and VIT), by 0.0371, 0.0241, and 0.0319, respectively. Compared
with the Dynamic MLP, which is the optimal fusion model of aerial images and multimodal
location environment embedding, it is lower by 0.0074, 0.0099, and 0.0057, respectively.
The DViT proposed also achieves SOTA recognition performance in the GeoLifeCLEF
2022 dataset.

Because the test results of GeoLifeCLEF 2021 and 2022 were submitted to Kaggle to
obtain the top-30 error rate, the accuracy, precision, and recall metrics could not be obtained.
Therefore, we further evaluated the DViT model with the RGB and NIR fusion (ResNet 50,
DenseNet 161, ViT-Huge) and multimodal fusion Dynamic MLP in the validation set. The
results are shown in Tables 7 and 8.
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Table 7. For the validation set: the top-1 accuracy, top-30 accuracy, precision, and recall metrics
comparison of the DViT with the image-only and multimodal fusion Dynamic MLP using GeoLife-
CLEF 2021.

Methods Params Acc@1 Acc@30 Precision Recall

ResNet on RGB+NIR 58 M 3.78 26.31 0.0100 0.0054
ResNet on Dynamic MLP 64 M 4.16 28.56 0.0124 0.0079

DenseNet on RGB+NIR 82 M 3.88 26.38 0.0111 0.0053
DenseNet on Dynamic MLP 86 M 4.29 29.35 0.0132 0.0086

ViT on RGB+NIR 640 M 3.27 24.61 0.0074 0.0048
ViT on Dynamic MLP 642 M 4.36 28.92 0.0129 0.0074

DViT (ours) 163 M 4.63 30.82 0.0143 0.0096

Table 8. For the validation set: the top-1 accuracy, top-30 accuracy, precision, and recall metrics
comparison of the DViT with the image-only and multimodal fusion Dynamic MLP using GeoLife-
CLEF 2022.

Methods Params Acc@1 Acc@30 Precision Recall

ResNet on RGB+NIR 58 M 4.23 28.44 0.0127 0.0057
ResNet on Dynamic MLP 64 M 4.48 31.94 0.0143 0.0072

DenseNet on RGB+NIR 82 M 5.06 34.72 0.0154 0.0084
DenseNet on Dynamic MLP 86 M 5.47 35.64 0.0178 0.0111

ViT on RGB+NIR 640 M 3.72 26.31 0.0099 0.0052
ViT on Dynamic MLP 642 M 5.75 36.81 0.0216 0.0132

DViT (ours) 163 M 5.98 37.56 0.0234 0.0141

4.5. Limitation and Discussion

The proposed DViT model improves the discrimination of image features by dynami-
cally fusing aerial image embedding and geo-location environment information, achieving
state-of-the-art performance in plant and animal species recognition. However, this method
still has three limitations. First, for each aerial image and set of environmental information
of each observed species, there may be other plants and animals. In this situation, the local
image region of observed species may be removed through LMT to reduce recognition
performance. Second, the influence of the positional relationship between MSA and DAF in
the DViT model was not considered, which is also one of the main issues to be considered
in future studies. Finally, the training of DViT starts with the pre-trained model of MAE,
which may affect feature extraction from aerial images. In future research, unsupervised
learning can be introduced for feature extraction of aerial images to increase the robustness
of image embedding to improve the performance of species recognition.

5. Conclusions

In this paper, we propose a DViT model to reduce the effect of small image dis-
crepancies for multimodal species recognition by combining aerial image and location
environment information. Our method used the LMT to sample a subset of patches with
high attention weights to reduce the complexity of the aerial image representation extrac-
tion calculation. The multimodal location environment information is added to the process
of extracting the latent representation to improve the distinguishability of images’ latent
representation using the DAF module. This study is the first to introduce multimodal
location environment information to the visual transformer model for plant and animal
species recognition. The many experiments conducted using the GeoLifeCLEF 2021 and
2022 datasets were validated with our analysis, which showed that the DViT achieved
SOTA recognition performance.
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