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Abstract: Field seed maturity monitoring is essential to optimize the farming process and guarantee
yield quality through high germination. Remote sensing of parsley fields through UAV multispectral
imagery allows uniform scanning and better capture of crop information, in comparison to traditional
limited field sampling analysis in the laboratory. Moreover, they only represent localized sub-sections
of the crop field and are time consuming to process. The limited availability of seed sample maturity
data is a drawback for applying deep learning methods, which have shown tremendous potential
in estimating agronomic parameters, especially maturity, as they require large labeled datasets. In
this paper, we propose a parametric and non-parametric-based weak labeling approach to overcome
the lack of maturity labels and render possible maturity estimation by deep network regression
to assist growers in harvest decision-making. We present the data acquisition protocol and the
performance evaluation of the generative models and neural network architectures. Convolutional
and recurrent neural networks were trained on the generated labels and evaluated on maturity
ground truth labels to assess the maturity quantification quality. The results showed improvement
by the semi-supervised approaches over the generative models, with a root-mean-squared error
of 0.0770 for the long-short-term memory network trained on kernel-density-estimation-generated
labels. Generative-model-based data labeling can unlock new possibilities for remote sensing fields
where data collection is complex, and in our usage, they provide better-performing models for parsley
maturity estimation based on UAV multispectral imagery.

Keywords: UAV imagery; multispectral imaging; machine learning; deep learning; weak labeling;
parametric and non-parametric models; chlorophyll; crop monitoring

1. Introduction

Seed maturity measurement is an important factor for seed quality determination and
is gaining interest as the agricultural sector of seed multiplication is facing modifications
due to global warming, altering crop cycles [1] and the germination quality of the seeds
produced [2,3]. Quantification of seed maturity provides growers additional indicators to
precisely monitor the evolution of their crops for selecting optimal harvest dates.

To maintain seed quality, several methods have been implemented for quality control.
Jalink et. al. [4] developed a non-destructive technique for measuring seed maturity based
on laser-induced fluorescence (LIF). This approach measures fluorescence emissions of
chlorophyll A at a given wavelength (around 660 nm, corresponding to the absorption peak
of chlorophyll A). Using this procedure, chlorophyll fluorescence (CF) has been correlated
with the quality of carrot, tomato, and cabbage seeds [5–7]. Fluorescence emissions are neg-
atively correlated with seed chlorophyll and seed germination quality [8,9]. CF estimation
is an area of research tackled at various levels. It ranges from portable field equipment to
laboratory spectrometers and computer vision approaches [10]. More specifically, applied
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to seeds, computer vision approaches are mainly based on seed pigmentation informa-
tion, geometric features [11,12] combined with infrared imaging [13,14], and near-infrared
hyperspectral imaging [15]. However, these techniques are limited to small samplings
over the field and cannot reflect the heterogeneity of the field. Moreover, seed collection
and preparation are time consuming. Unmanned aerial vehicles (UAVs) and multispectral
imagery are emerging as an attractive approach for field-scale vegetation measurements
with high spatial and temporal resolutions.

Indeed, vegetation monitoring based on UAV imagery combined with multispectral
imagery has produced notable results in various applications such as yield estimation
or vegetation vigor monitoring [16–19] and even forecasting vegetation evolution using
temporal components [20,21]. To extract specific information from multispectral images,
vegetation indexes (VIs) have been proposed, which result from arithmetic combinations
of images of different wavelengths. In agriculture, they can highlight vegetation health,
photosynthetic activity, and leaves’ chlorophyll concentration [22–28]. The best-known
indexes are the Normalized Difference Vegetation Index (NDVI) [29] for chlorophyll content
and the Normalized Difference Red-Edge (NDRE) for plant nitrogen diagnosis [30]. Other
indexes such as the Soil-Adjusted Vegetation Index (SAVI) or the Leaf Area Index (LAI) [31]
are also suitable for plant observation. Statistical methods and machine learning are
also significant approaches that use VIs for building models to detect crop chlorophyll
content [32].

The past decade has seen the rapid development of deep learning approaches in
many agriculture applications, such as weed management and disease detection [33–38].
Deep learning methods have achieved state-of-the-art accuracy results [39] compared
to other machine learning approaches such as support vector machine (SVM) [40] or
random forests [41]. Each category generally addresses different use cases: multiclass
classification to discriminate portions of vegetation in images [42–44], regression to estimate
the evolution of a specific marker [45–47], and time series classification for the prediction of
measurements, using recurrent neural networks (RNNs) [48,49]. Deep learning approaches
have impressive capacities for data modeling, and their use for chlorophyll estimation from
VIs seems an interesting approach.

However, the performance of machine learning approaches is strongly dependent on
the amount of labeled data. Collecting samples and labeling a large amount of field data
with the associated images is a very tedious and time-consuming task, if not impossible
to complete. Semi-supervised learning is one of the most widely used approaches to
address the dependency on large, labeled datasets, where the goal is to combine a small
labeled dataset with a large set of unlabeled data [50]. Semi-supervised learning deals
with incomplete labeled data, while weakly supervised learning additionally deals with
noisy data [51,52]. Our aim is to incorporate label uncertainty and small labeled datasets to
build efficient deep network models through the concept of weakly supervised learning.
However, despite the success of such a concept, how data are annotated remains an open
problem that depends on the type of data and the application.

In this paper, we propose a new approach that considers generative models to associate
an approximate CF value to an NDVI image in order to build a large labeled dataset for
deep learning models. We used both parametric and non-parametric estimation techniques,
namely: the Gaussian mixture model (GMM), K-nearest neighbors (KNN), and the kernel
density estimator (KDE). The first step consisted of the acquisition of aerial images and
the collection of seed samples from different locations in the crop fields. Correlation
analysis between CF and NDVI was performed to identify relevant regression variables.
Then, generative models were built with a few ground truth samples collected from the
studied fields. The created labels were fed into both convolutional neural networks (CNNs)
and long short-term memory (LSTM) to build regression models that predict chlorophyll
fluorescence emissions as a function of (Date, NDVI). The proposed method proved to have
a very interesting potential to deal with CF estimation from remote sensing images and to
address the problem of labeling large amounts of data. The agronomic purpose of training



Remote Sens. 2022, 14, 5238 3 of 19

a CF regression model is providing an additional indicator of present crop CF throughout
the entire field surface to help growers and experts select an optimal harvest date.

This paper is organized as follows: Section 2 describes the agronomic experimental
protocol and the equipment used for the UAV data acquisition, followed by the exploratory
analysis of the data. We then present our weak labeling approach and discuss the CF pre-
diction performances of the trained models. Finally, we highlight the benefits, limitations,
and perspectives of generative weak labeling for UAV maturity remote sensing.

2. Materials and Methods
2.1. Data Acquisition

The data acquisition campaign was conducted during the summer of 2020, from
21 July to 18 September, covering the seed filling period. Four parsley fields, located in
the Centre-Val de Loire region, France, were considered, representing two types of parsley,
curly and flat, and four different varieties. These field choices were made to observe
potential variations between both parsley types and varieties during the seed maturation
phase. The mean distance between each field is about 15 km. The data collected were of
two types, ground seed samples and multispectral UAV images, both associated with a
temporal dimension. As crop maturity varies rapidly in the weeks before harvest, a 3-day
interval between the different data acquisitions was targeted. However, due to external
factors such as weather or wind conditions preventing optimal UAV flights, the effective
time step between flights varied from 3 to 6 days. This variable time interval between
image acquisitions resulted in photographing the fields at different times of the day, under
different weather and lighting conditions, adding image data variance.

2.1.1. Drone Multispectral Images

Aerial images were acquired at a flight height of 40 m, a height that was chosen as a
trade-off between image resolution and sufficient image ground footprint coverage. At an
altitude of 40 m, the ground sample distance between two consecutive pixels is 2.73 cm
and the ground footprint of a single image covers 34.9 m × 26.2 m. Therefore, each 4 ha
(depicted in Figure 1) could be covered by the UAV in approximately 20 min. The on-
board camera used was the Micasense RedEdge-MX. It is a 5-band multispectral sensor,
and 5 images were simultaneously acquired at different wavelengths, as summarized in
Table 1.

Figure 1. Orthorectified UAV images of curly leaf-type parsley Fields A and B and flat-type parsley
Fields C and D acquired at a 40 m height.
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Table 1. Multispectral specifications of the sensor.

Band Name Wavelength Center (nm) Bandwidth (nm)

Blue 475 32

Green 560 27

Red 668 14

Red-Edge 717 12

Near-IR 842 57

This sensor was chosen as it covers both the wavelength used by the LIF method,
which is centered on 660 nm (method for estimating seed maturity), and the spectral
ranges corresponding to the photosynthetic absorption of plants. The multispectral camera
measures the reflectance of light from different types of surfaces, soil, and vegetation. The
values are directly influenced by the external lighting conditions. To compare the evolution
between UAV images of the same field acquired at different times, the multispectral images
needed to be calibrated. This was performed by using two external devices: the sunlight
sensor, which measures both the Sun irradiation and the angle of incidence, and secondly, a
photograph of a calibration panel whose reflectance surface is known. Once corrected, the
multispectral images of 1280 × 960 pixels were assembled into an orthorectified image, as
shown in Figure 1, using the Agisoft-Metashape-1.6.3 software, Agisoft LLC, Saint Petersburg,
Russia, which corrects for image distortions and GPS errors using stereo image calibration
between matched points. Successive images were acquired with a minimum longitudinal
and lateral overlap of 70% and 30%, respectively, to have enough matched points in adjacent
images. The overlap is usually increased depending on the vegetation density.

Pixel-corrected GPS positions in the assembled images allowed the same field acquired
at different times during the seed filling period to be overlaid. By spatially aligning global
field images at different time steps, we can better monitor the evolution of subareas through
multispectral imagery with different UAV flights.

2.1.2. Ground Truth

The ground truth, for each parsley field, was composed of the pairing between UAV
images and seed samples. To guarantee the correct pairing, physical control zones were
set up, as illustrated in Figure 2. For each studied parsley field, four 12 m2 control zones
were marked with ribbons. This ensured that seed samples were collected from the same
field subzones during the sampling period and were easily identifiable on aerial images.
The locations of the control zones were selected across the field to represent differences in
crop maturity.

Figure 2. Example of a control zone set up in a parsley field marked with a ribbon to monitor maturity
in UAV images according to ground truth harvested samples.
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Thirty-two UAV flights were carried out to monitor the maturity of parsley seeds,
resulting in 128 seed samples collected from the control zones. Each sample was composed
of approximately 200 g of seeds, which were cleaned of debris before being processed. The
maturity of seed samples was quantified by the non-destructive LIF method based on CF
estimation. As plant and seed maturity increases, the CF value decreases (i.e., negative
correlation) [5]. The CF estimation machine provides an average CF value ranging from 0
to 10,000 pA as lower and upper theoretical bounds, which are not reached in practice. The
CF values are expressed in pA (pico Amperes), as a photodiode was used to capture the
fluorescence emissions. Once the CF falls below a certain threshold, the field is considered
ready for swathing.

As can be observed in Figure 3, left column, the CF values of the seed samples for each
control zone and each field decreased over time. The observation time of the four fields
varied because of the crop types (curly, flat) and varieties. Particular crop phenotypes of the
same species mature at distinct speeds; therefore, the four fields were harvested at different
times. This resulted in an unbalanced distribution of samples, with Fields B and C being
under-sampled compared to Fields D and A.

The CF decrease was not steady and fluctuated with punctuated increased spikes, but
following a global decrease. These CF fluctuations were influenced by external factors such
as weather, soil type, or irrigation, but also by potential sampling errors, as some control
zones became heterogeneous as crops matured. The CF trends of the control zones within
the same field followed similar amplitude variations and maturation durations. Greater
differences were observable between fields, with early varieties having faster and steeper
diminutions in CF than late ones. With aerial images, we calculated the vegetation indexes
corresponding to the control zones and associated these indexes with the estimated seed
maturity of the ground samples.

2.2. Dataset
2.2.1. Data Preparation

Using multiple UAV flights and aligned orthorectified images, we can monitor the
evolution of each field throughout the seed maturity period. Harvest dates were different
from one field to another. We had four fields A, B, C, and D, with 15, 6, 4, and 7 aerial
observations, respectively. The image dataset can be divided into two categories: a small
labeled set of image samples that are matched with ground truth CF values and a large
number of unlabeled samples for which we had no ground truth CF. The ground truth
samples consisted of 128 CF/image pairs. The remaining unlabeled dataset contained
19,443 image samples, obtained by dividing the field image into 128 × 128 pixel tiles. This
size was selected to be consistent with the control area size (i.e., resolution of 2.73 cm per
pixel for an altitude of 40 m). In order to compare the influence of the image size, we also
extracted 32 × 32 pixel tiles where each image contains at most a single parsley crop, on
which we performed the same preparation as the 128 × 128 tiles input.

Since drone images of successive fields are aligned, each tile can be observed over a
period, enabling the creation of a time series composed of sequential images of the same
area. In this study, we limited the length of the time series to 4 consecutive observations
as this is the maximum length we had for Field C. For the other three fields, we selected
4 series by sliding a window, with 4 observations, over the temporal dimension. Once the
128 × 128 images had been extracted from the ortho-photos, those that did not contain a
minimum of 85% of vegetation were removed.
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Figure 3. In the left column, the chlorophyll fluorescence (CF) evolution over time of the ground
truth seed samples for Fields A, B, C, and D. In the right column, the associated NDVI evolutions of
the control zones computed from the UAV multispectral images until the field swathing date.

2.2.2. Correlation between CF and NDVI

The Normalized Difference Vegetation Index (NDVI) is an arithmetic imagery indicator
computed using images acquired in two spectral wavelengths (red 668 nm and near-IR
842 nm) as expressed in Equation (1). This index is widely used for monitoring vegetation
vigor and plant health from satellite and UAV imagery. NDVI values range from 0 to 1, with
0 representing no vegetation presence and values of 0.8 and above representing maximum
vegetation cover.

NDVI =
NearIR − Red
NearIR + Red

(1)
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As for the seed CF samples, the NDVI evolution in the control zones was monitored until
the field harvest. The decrease in NDVI at different time steps can be observed in Figure 3,
right column, and in Figure 4, representing the index values using a heat map. We observed
the decrease of the index values as the field seeds were maturing. To correlate the CF
evolution with NDVI [22], we computed the mean index value for each control zone. The
NDVI during the maturation period also had a decreasing trend like the CF and showed
similar variations at given time steps, as depicted side by side in Figure 3. The NDVI
amplitudes at the beginning of the study period varied depending on the crop variety. The
NDVI and the CF both decreased over the seed filling period as the parsley crop produces
its seeds near the end of its life cycle. As the seeds mature, the parsley crops dry, and their
photosynthetic activity decreases.

Figure 4. NDVI orthorectified heat maps’ evolution over time. Warmer colors represent higher NDVI
values, ranging from 0 to 1, as we monitored vegetation evolution.

The ground truths of the CF and NDVI dimensions presented similar behavior when
considering individual fields. This similarity did not necessarily hold for different types of
fields or varieties. Assuming a direct correlation between CF and NDVI would lead to a low-
quality estimate as the Pearson coefficient was centered on 0.7812 when considering each
field separately and dropped to 0.6460 when calculated for the four fields studied. It would
probably decrease if more plant varieties were added. Since we aimed to allow for stronger
correlation, we introduced the date as an extra dimension. As can be seen in the correlation
matrix transcribed in Table 2, the couple (Date, CF) had a negative Pearson coefficient of
−0.6913 and the couple (Date, NDVI) a value of −0.5267 when using all samples from the
four fields. A second correlation matrix, given in Table 3, was also calculated, using the
Spearman coefficient as a non-parametric measure of rank correlation, whereas the Pearson
coefficient is a parametric measure of linear correlation between variables. Both Pearson
and Spearman correlation matrices output similar results. The coefficients of the different
dimensions having important values, their combination allows a better modeling of the
distribution of the data represented by the samples.

Table 2. Pearson correlation matrix.

Pearson NDVI CF Date

NDVI 1 0.645975 −0.526745

CF 0.645975 1 −0.691285

Date −0.526745 −0.691285 1
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Table 3. Spearman correlation matrix.

Spearman NDVI CF Date

NDVI 1 0.649225 −0.525424

CF 0.649225 1 −0.715251

Date −0.525424 −0.715251 1

Under the assumption of correlation between the target CF and the variables (Date,
NDVI), we fit the ground truth samples with generative models that were used for the data
labeling phase. The following section describes the parametric and non-parametric models
used in this process.

2.3. Labeling Based on Generative Models

Generative models are usually combined with neural networks [53,54] for prediction
or optimization of model hyperparameters [55], but not directly for data labeling. Let
us now describe the considered parametric and non-parametric methods and how their
respective parameters were fit to our acquired ground truth dataset of (Date, NDVI, CF)
using the python scikit-learn machine learning library.

2.3.1. Gaussian Mixture Model

The Gaussian mixture model (GMM) is a parametric method combining n Gaussians,
where each Gaussian clusters a subdivision of data. The Gaussian fitting was performed by
the iterative expectation maximization algorithm. Combining multiple Gaussians enables a
better characterization of the data compared to a single Gaussian, as each subdistribution
is locally approximated. When data are fit with Gaussians, soft clustering is performed,
since each prediction is quantified by a probability and not by a continuous target value.
The probability density function of a multivariate GMM is given by Equation (2).

p(~x) =
C

∑
i=1

φiN (~x|~µi, Σi) (2)

N is a multivariate Gaussian defined in Equation (3):

N (~x|~µi, Σi) =
1√

(2π)C|Σi|
exp(−1

2 (~x− ~µi)
TΣ−1

i (~x− ~µi)) (3)

where ~x is a data vector. C is the number of components. The ith component parameters
are the mean of µi and the covariance matrix Σi. The mixture component weights are
defined as φ with the constraint that ∑C

i=1 φi = 1 so that the total probability distribution is
normalized to 1. The covariance matrix type used was full, meaning each component has
its own general covariance matrix and can independently adopt any shape. The means and
weights were initialized with k-means clustering.

Selecting the appropriate number of Gaussian components was performed by mea-
suring the Bayesian information criterion (BIC) and Akaike information criterion (AIC)
for multiple components. The BIC explicated in Equation (4) measures the ratio between
the likelihood and the number of parameters used, to determine if the likelihood gain is
sufficient to justify the number of parameters.

BIC = kln(n)− 2ln(L) (4)

where L is the maximum value of the likelihood, n is the number of data points, and k is
the number of estimated parameters, which are for the GMM the mean vectors, covariance
matrices, and mixture weights. Better-performing models reduce the BIC indicator. In
addition, the AIC evaluates how well a model fits the data it was generated from. The best
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models according to the AIC are those representing the highest variations while using the
fewest independent variables. The AIC is expressed in Equation (5) with similar parameters
to those in Equation (4). The advantage of these probabilistic model scores is that they do
not require test data and can be evaluated on all samples and handle small datasets.

AIC = 2k− 2ln(L) (5)

The selected number of Gaussians for the GMM was 3, which presented a good trade-
off between both the BIC and AIC. Maximum values for each indicator were not retained
as the BIC tends to select too simple models and, conversely, the AIC too complex ones.
Values of the probabilistic indicators are summed up in Table 4 for a varying number of
Gaussians ranging from 1 to 5.

Table 4. BIC and AIC scores for a varying number of Gaussians in the GMM, ranging from 1 to 5.

n GMM 1 2 3 4 5

BIC −527.40 −532.46 −517.70 −494.46 −482.60

AIC −553.01 −586.50 −600.17 −605.39 −621.97

2.3.2. K-Nearest Neighbors

KNN is a non-parametric model that associates multiple variables by calculating the
average of the numerical target of the KNN. The distance function used for fitting the KNN
model was the Euclidean distance function given in Equation (6), as it is widely used and
adapted for continuous variable distance measuring.

dEuclidean(~x,~y) =

√√√√ k

∑
i=1

(~xi − ~yi)2 (6)

where ~x and ~y are data points and k the number of nearest neighbors. To improve per-
formance, the data dimensions were rescaled between 0 and 1, which prevents biasing
Euclidean distance measures. As the influence of the k value is high, the optimal value was
selected to minimize the regression error on the test data split. The error function used to
evaluate the performance of the regression was the root-mean-squared error (RMSE). This
metric was chosen as it keeps the error in the units of the variable of interest. Furthermore,
the error is squared before being averaged, which penalizes larger errors. Equation (7)
expresses the RMSE error.

RMSE =

√√√√ 1
n

n

∑
j=1

(yj −Yj)2 (7)

with n being the number of data samples, y the predicted target, and Y the true label of the
target. Overall, the KNN regression method is well suited to low-dimensional datasets,
but loses its practicality as the number of features increases. The optimal value of k = 8
was retained by performing a grid search cross-validation across the data and for multiple
values of k. This was performed in order to minimize the prediction error and to limit the
bias induced by the data splits during KNN model fitting.

2.3.3. kernel Density Estimator

The kernel density estimator (KDE) is a probability density function estimator for
random variables. For each dataset point, it evaluates its probability of belonging to a
hypercube. The calculation of the number of points inside the hypercube is formulated in
Equation (8).

kn = φ(
~x− ~xn

h
) (8)
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where φ is the window function determining whether a dataset entry belongs to the
hypercube or not. Knowing the points present inside the hypercube, we can estimate the
probability density function of the dataset using Equation (9).

P(x) =
1
N

N

∑
n=1

kn (9)

with N being the total number of samples, ~x the center of the hypercube, ~xn the nth data
sample, and h the bandwidth of the hypercube. The parameter h has a strong influence
on the resulting estimate and must be adapted alongside each data dimension if the data
ranges vary. Therefore, we rescaled all our data in the range 0–1. The kernel type used
was Gaussian as it is a smoother function than other kernel types and is better suited for
observations. For the parsley maturity application, we fit the KDE to our three-dimensional
ground truth dataset composed of (Date, NDVI, CF) to estimate the resultant probability
density function of the distribution. The optimal bandwidth selected for our dataset was
h = 0.08 for each dimension. The parameter h was computed by performing a grid search,
that is 0.001 ≤ h ≤ 1.0, with a step of 0.001 and by scoring the KDE fitting on unseen
ground truth portions of the dataset. The KDE scoring was performed by computing the
log-likelihood of the tests folds during the cross-validation on the ground truth samples.

2.4. Weak Data Labeling

As previously mentioned, we aimed to combine the generative models with the deep
learning approach in order to improve both the prediction performance and generalization
capabilities of deep networks for CF estimation. The originality of the proposed method
lies in the use of generative models to provide weak CF labels to additional multispectral
images, for which no ground truth data were collected. Generative labeling introduces bias
in the data distribution. This inaccuracy allows for a wider range of potential pairs of CF
and multispectral images to be covered, thus enabling a better representation of natural
fluctuations in the fields. In addition, labeling enough samples of the dataset permits the
use of a deep learning approach. The neural network will extract additional features from
multispectral images that are not considered during the generative fitting.

It can be observed in Figure 5 that the distribution of the generated weak labels
varied between the methods, specifically for the KDE model. The labels generated by the
GMM and KNN appear compact around the ground truths depicted in red. Therefore,
these distributions consider less heterogeneous variations and focus on average variations,
whereas the labels from the KDE span a larger bandwidth of potential data and include a
variety of linked heterogeneous ground truths of the other fields. The KDE labeling was
seen to be less restricted to the ground truth samples of one field, but was better suited to
generating labels for different fields.

Figure 5. Generated weak labels in green versus ground truth data in red for the GMM (left), KNN
(middle), and KDE (right) for Field A.
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By fixing the variables (Date, NDVI) of the generative model, we can extract from the
KDE a 1D histogram with the possible values of the CF (i.e., the NDVI variable consists
of the image mean NDVI). We randomly picked a CF value from the 1D histogram and
added the variance to this value in order to extend the range of CF, thus taking into account
fluctuations and unseen data. The CF obtained was associated with the sample image to
constitute its label. This procedure was applied for all unlabeled NDVI images. With these
labeled data, we trained different neural networks in order to improve the CF prediction
from the NDVI images.

To prevent overfitting during the association of the CF labels, the ground truths of the
field being labeled were excluded from the data used for the generative model training.
As can be seen in Figure 6, middle plot, the generated CF values followed a similar trend
as the ground truth from which they were generated (left plot), but were shifted towards
lower values, which is logical as the acquisition duration for Field A lasted longer. The date
boxplots for the generated labels and ground truth of Field A (right plot) are identical as
the ground truths were harvested at each acquisition date. The generated CF labels covered
a wider range than the ground truth, as we added uncertainty when associating the label.

Figure 6. On the left, the boxplots of the ground truths of Fields B, C, and D on which the KDE was
fit. In the middle, the generated labels by the KDE for Field A and, on the right, the ground truth
boxplots of Field A. Date and CF dimensions were rescaled to 0–1 to match the NDVI data range.
The dates 0 and 1 correspond, respectively, to the 1st of June and the 15th of October. CF rescaled
linearly from 0–10,000 to the 0–1 range.

2.5. Deep Neural Networks for CF Estimation

To build a deep learning model for CF estimation, we chose two types of popular
architectures. The first one was based on convolutional networks (CNNs). In this scope, we
opted for popular well-performing architectures, namely ResNet and EfficientNet. How-
ever, they do not take into account the temporal evolution between successive observations.
For this purpose, we used a second type of architecture, based on recurrent neural networks
(RNNs), specifically long short-term memory (LSTM) cells.

The preferred image input dimension needed for the neural networks was 3-dimensional
images, as the models had weights pre-trained on the ImageNet dataset. Using pre-trained
weights for fine-tuning CNN architectures yields better results than random initialization.
Therefore, the NDVI tile data were stored in the first dimension, and instead of duplicating
the data over the 3 image dimensions, the values of the date and mean image NDVI were
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added. Providing these data combined with the NDVI image to the neural networks
standardizes the inputs with respect to the generative models. The models were trained
on a Nvidia 2080 TI GPU and built with the Tensorflow 2.4.1 and Keras 2.4.3 frameworks
using python 3.6.9. The neural models were trained with an initial learning rate of 1 × 10−4

with a reduction factor of 0.1 when reaching a plateau and an early stopping criterion of
5 epochs. Only random rotations were performed by the data loader as data augmentations
as the quantity of images and variations due to external factors was high.

2.5.1. ResNet

Called also the deep residual network, this is based on the residual blocks, which
implement skip connections between layers, as illustrated in Figure 7. With x the input
matrix from the previous block, F(x) the output of the weight layers, and H(x) the output
of each block using the skip connection, the model minimizes the residual function during
training, as described in Equation (10).

Residual(x) = H(x)− x (10)

The ResNet architecture has shown very good performance in the ImageNet and
COCO 2015 competitions. It is implemented in varying depths ranging from 18 to 152
stacked residual blocks. We selected the ResNet-50 version because it incorporates 3 layers
of residual blocks, which perform better than the 2-layer residual blocks used in ResNet-18
and ResNet-34.

Figure 7. A 2-layer residual block with skip connection.

2.5.2. EfficientNet

As the name of the architecture suggests, the EfficientNet family consists of highly
parameter-optimized neural networks. They provide an increased parameter accuracy ratio
and training efficiency. With only 5.3 M parameters for EfficientNetB0, compared to 26 M
parameters for ResNet-50, the results are slightly better than ResNet-50 on the ImageNet
dataset. The neural network optimization was formulated as an optimization problem
described in Equation (11), where depth, width, and resolution scaling were performed.

depth : d = αφ

width : w = βφ

resolution : r = γφ

such that : α× β× γ ≈ 2
with : α ≥ 1, β ≥ 1, γ ≥ 1

(11)

where α, β, and γ are constants to be determined and φ a coefficient defined by the user.
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2.5.3. LSTM

Long short-term memory neural networks are RNNs using LSTM cells. This type of
architecture is well suited for sequential data modeling as it considers long-term depen-
dency between observations and also implements the forget gate mechanism for discarding
irrelevant features. The detailed principles of the LSTM cell inner architecture are illustrated
in Figure 8 and Equation (12).

it = σ(Wixt + U f ht−1 + bi)
ft = σ(W f xt + U f ht−1 + b f )
ot = σ(Woxt + Uoht−1 + bo)

ct = ft ◦ ct−1 + it ◦ tanh(Wcxt + Ucht−1 + bc)
ht = ot ◦ tanh(ct)

(12)

where W and U denote weight terms, b a bias term, and xt the tth observation of the
input sequence. The next hidden state and the previous hidden state are expressed by
ht and ht−1, respectively. ct and ct−1 are the states of the next cell and the previous one,
respectively. σ(·) is the nonlinear Sigmoid activation function. The operator ◦ denotes the
elementwise product.

Figure 8. The LSTM cell architecture.

As crop maturity progresses over the studied period, considering both past and present
observations of the same subzone as dependent, this enables CF prediction, which takes
into account the evolution of the crops over time. Thus, bidirectional LSTM cells were used,
with a 4-sequence length input and a 4-sequence output to quantify each time observation.
Since the LSTM input is a sequence vector, a time-distributed CNN head was used as the
feature extractor on the NDVI images to transform them into the format of the LSTM input.

3. Experiments and Results

In this section, we investigate the proposed approaches on real data described pre-
viously. First, we evaluated the method of generating labels by parametric and non-
parametric techniques. Then, we evaluated the deep learning methods trained with im-
ages automatically labeled by these generative methods. To assess the performance for
each method on unseen parsley fields and varieties, we conducted a leave one out cross-
validation for each technique. We used 3 parsley fields as the training split for fitting and 1
as the test split for the evaluation.

3.1. Evaluation of the Generative Labeling Methods

The monitored crops had varying numbers of observations, with 59, 24, 16, and
28 samples from Fields A, B, C, and D, respectively. The cross-validation procedure for each
generative model was trained using the optimal hyperparameters calculated previously
on all the ground truth data. For instance, we fit the GMM, KNN, or KDE on the Field A,
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B, and C ground truths and evaluated their performance on Field D. Table 5 shows the
adopted cross-validation folds, with different sizes of training and test splits.

Table 5. Parametric and non-parametric training and test split ratios.

Train Fields Train Samples Test Field Test Samples

B, C, D 68 A 59

A, C, D 103 B 24

A, B, D 111 C 16

A, B, C 99 D 28

As introduced before, the GMM, KNN, and KDE were utilized to represent the distri-
bution of the ground truth data samples, for which we had full knowledge of the CF value
and the corresponding NDVI images for a given acquisition date. With these models, we
firstly evaluated the prediction capabilities of the CF with the RMSE metric, and secondly,
the best method was used for weak labeling.

Table 6 compares the generative models’ accuracy on the different test sets with the
cross-validation procedure. We can observe that the variability in the number of training
samples had a direct impact on the prediction performance of the KNN. The RMSE metric
decreased with increasing number of training fold samples, with a maximum RMSE of
0.1782 for the test fold D and a minimum RMSE of 0.0968 for the test fold C. The RMSE of
the test Field A was not the highest, despite being the largest test set for a model built on
the smallest training set. This may be due in part to the fact that the parsley evolution of
Field A had less steep maturity variations over time and less internal crop disparities. For
the GMM, we observed similar trends to the KNN for each test fold. However, the changes
in the RMSE were more proportional to the increase in the number of training samples.
Apart from test Field A, the performances of the GMM compared to the KNN were roughly
equivalent, reaching an average error of 0.1422. The results provided by the KDE were
better, as observed in Table 6. While the errors for the folds B and C remained stable for
each method, the error of the fold D decreased by 9%, and the fold A reached a score of
0.1134 compared to 0.1418 or 0.2059 for the KNN and GMM, respectively. On the other
hand, we obtained the best prediction performance with the non-parametric KDE method.
This approach seems more robust to variations in the number of training and test samples.
Therefore, the KDE method was adopted to label the image samples.

Table 6. Root-mean-squared error between the true CF and that predicted by the GMM, KNN, and
KDE for each cross-validation fold.

Test Field GMM KNN KDE

A 0.2059 0.1418 0.1134

B 0.1079 0.1124 0.1084

C 0.0909 0.0968 0.0891

D 0.1774 0.1782 0.1656

Mean 0.1455 0.1323 0.1191

To ensure correct quantification of the prediction performance, each labeled field was
excluded from the training set for KDE model computation. For instance, Field A was
labeled using a KDE model fit on Fields (B, C, D) with respect to the splits presented
previously in Table 5. Labeling in this way enables the correct evaluation of the gener-
alization capabilities of the model, since each labeled field is considered as unseen data.
As can be seen in Table 7 for each field, we now had thousands of weakly labeled data.
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Two configurations were considered depending on the deep learning approach used: either
a sequence of four images for LSTM or independent images for the CNN-based architecture.

Table 7. Weak labeled data for each parsley field for 32 × 32 and 128 × 128 pixel size images
per time step.

Labeled Field 32 × 32 128 × 128 No. of Time Steps

A 64,656 4041 15

B 84,208 5263 6

C 88,640 5540 4

D 73,584 4599 7

3.2. Evaluation of Neural Regression Models

The weak labeled data were used to train the deep learning models in order to estimate
the CF from the NDVI images. As reported in Table 8, the overall performance of the CNN
architectures was similar with a slight advantage for the two EfficientNet models. The
size of the input images (128 × 128, 32 × 32) did not seem to influence the result for
these architectures either. On the other hand, the LSTM architecture provided the best
performance, with a minimum average error of 0.0770, because these models used images
from four successive observations for CF estimation. Indeed, this type of architecture was
better suited for sequential data. For the estimation improvement of the neural network
models compared to the parametric and non-parametric models alone, they benefited from
additional features extracted from the multispectral images, leading to a better estimation.
Since the cross-validation procedure was adopted, the prediction capabilities of the models
should remain stable for similar parsley fields.

Table 8. RMSE for each neural network and labeling models with varying sizes of the input images
(32 × 32 pixels on the left side and 128 × 128 pixels on the right side of the table).

ResNet5032×32 E f f icientNetB032×32 LST M32×32 ResNet50128×128 E f f icientNetB0128×128 LST M128×128

GMM
Field A 0.1982 0.2094 0.1782 0.1831 0.1932 0.1743
Field B 0.1273 0.1249 0.1097 0.1105 0.1056 0.1032
Field C 0.1129 0.1175 0.1063 0.1074 0.1069 0.0980
Field D 0.1938 0.1821 0.1632 0.1768 0.1731 0.1564
Mean 0.1581 0.1584 0.1393 0.1445 0.1447 0.1330

KNN
Field A 0.1564 0.1457 0.1325 0.1435 0.1385 0.1157
Field B 0.1345 0.1262 0.1141 0.1357 0.1246 0.1083
Field C 0.1211 0.1147 0.1089 0.1149 0.1051 0.0894
Field D 0.1718 0.1588 0.1351 0.1522 0.1493 0.1238
Mean 0.1459 0.1363 0.1226 0.1366 0.1294 0.1093

KDE
Field A 0.1320 0.1228 0.1133 0.1207 0.1127 0.1021
Field B 0.1239 0.1136 0.0981 0.1138 0.1047 0.0673
Field C 0.1152 0.1094 0.0953 0.1042 0.0978 0.0750
Field D 0.1767 0.1723 0.0902 0.1546 0.1471 0.0636
Mean 0.1366 0.1295 0.0992 0.1233 0.1156 0.0770

4. Discussion

This study aimed to analyze the possibility of generating extra labeled data from
generative models based on a few ground truth samples. Developing such approaches is
necessary to enable the creation of datasets large enough for neural network applications,
especially when applied to the agricultural sector. The economic cost and time required
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to annotate UAV data are high and rarely comprehensive due to continuously changing
external factors. To overcome these limitations, as depicted previously, parametric and
non-parametric methods were used to fit the ground truths for weak labeling. They were
fit on data components (Date, NDVI, CF) with CF as the desired output for chlorophyll
concentration quantification. The scope of this study was limited to these components as
they were the most representative to model parsley plant variations, as shown in Figure 3.

Given the small amount of ground truth data, the GMM, KNN, and KDE models
performed correctly with an RMSE error varying from 0.2059 to 0.0891 (i.e., varying from
2059 to 891 CF). We therefore needed to take this estimation a step further for multiple
reasons: the ground truths only considered the mean NDVI of the images, and the ground
truths were only a few samples from the field. The incorporation of a neural network
enabled additional features to be extracted from multispectral images, improving the CF
estimation and potentially correcting for manual experimental ground truth sampling
errors. Varying the input image size from 32 × 32 pixels to 128 × 128 pixels also improved
the results for LSTM, because instead of having a single plant per image, we had an
overview of several plants in a 12 m2 area, which better matched the size of the monitored
zones. We also took into account the aspect of temporal variation of the observations, by
feeding the recurrent LSTM network with four successive observations of the same zone.
This was performed in order to better address the CF estimation by introducing a factor of
vegetation evolution in time. The dataset being distributed in time, the recurrent neural
network models performed better than the CNN models for all folds. An input sequence
of four observations was used, because Field C was only photographed four times before
harvest. Longer input sequences should improve the CF estimation.

From an agronomic point of view, based on company field experts and their CF
sampling history, an estimation error below 0.1 or 1000 CF is equivalent to a 3–4 day
variation depending on weather conditions, which highlights an optimal harvest date for
the farmer. The CF estimation was only performed for past and present UAV orthorectified
maps at the time as predicting future evolutions would require combining the current
models with connected weather stations.

Finally, in this study, we showed that large amounts of unlabeled aerial images
from a UAV can be labeled based on parametric and non-parametric models in order to
improve CF estimation and to help generalize neural network prediction on unseen datasets.
Limitations for future improvement can be highlighted since the acquired data only covered
one harvest season and could be subject to weather and/or crop soil type variations.
Furthermore, acquiring aerial images at different heights could also be interesting as
parsley types and varieties may have different leaf shapes and reflect light differently.
Furthermore, more vegetation indexes could be combined with the NDVI, such as the
Normalized Difference Red-Edge (NDRE), which is computed from different wavelengths
and used for crop nitrogen monitoring.

5. Conclusions

In this paper, we described a complete workflow for parsley chlorophyll fluorescence
(CF) estimation, starting from the aerial UAV image acquisition and agronomic data gath-
ering protocol, ending with the CF labeling and prediction by a neural network model.
We assessed the performance of the combination of the non-parametric model and neural
network approaches to train a general model from a few specific ground truth data samples.
The KDE yielded the best results for weak labeling of multispectral images and represents
higher possible data variations, and recurrent neural networks using LSTM cells achieved
a lower RMSE error compared to the CNN architectures. The potential of labeling by
generative techniques gives rise to a multitude of possible research directions, especially in
remote sensing. In future work, we plan to further improve the prediction models and to
use more data acquired with different types of modalities, such as satellite images.
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