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Abstract: The detection and counting of lunar impact craters are crucial for the selection of detector
landing sites and the estimation of the age of the Moon. However, traditional crater detection methods
are based on machine learning and image processing technologies. These are inefficient for situations
with different distributions, overlaps, and crater sizes, and most of them mainly focus on the accuracy
of detection and ignore the efficiency. In this paper, we propose an efficient lunar crater detection
(ELCD) algorithm based on a novel crater edge segmentation network (AFNet) to detect lunar craters
from digital elevation model (DEM) data. First, in AFNet, a lightweight attention mechanism module
is introduced to enhance the feature extract capabilities of networks, and a new multiscale feature
fusion module is designed by fusing different multi-level feature maps to reduce the information loss
of the output map. Then, considering the imbalance in the classification and the distributions of the
crater data, an efficient crater edge segmentation loss function (CESL) is designed to improve the
network optimization performance. Lastly, the crater positions are obtained from the network output
map by the crater edge extraction (CEA) algorithm. The experiment was conducted on the PyTorch
platform using two lunar crater catalogs to evaluate the ELCD. The experimental results show that
ELCD has a superior detection accuracy and inference speed compared with other state-of-the-art
crater detection algorithms. As with most crater detection models that use DEM data, some small
craters may be considered to be noise that cannot be detected. The proposed algorithm can be used
to improve the accuracy and speed of deep space probes in detecting candidate landing sites, and the
discovery of new craters can increase the size of the original data set.

Keywords: crater detection; image segmentation; moon; deep learning; remote sensing

1. Introduction

Impact craters constitute an important property of the lunar surface. Impact craters
provide significant information for lunar evolution [1,2]. For example, the distribution
and number of craters are often used to estimate the relative age of the Moon [3–5], and
craters also provide important landmark information to accurately guide spacecraft to
land [6,7]. The discovery of impact craters on the lunar surface is very important for
studying the Moon, for example, by using the manual analysis and comparative evaluation
of craters’ images with different features to identify the permanently shadowed lunar polar
regions [8]. In the study of crater counting, some crater catalogs have been formed manually
by planetary scientists, such as the crater catalog of the Moon (diameter 5∼20 km [9],
diameter ≥ 20 km [10]). However, the manual discovery of craters is time-consuming
and laborious, and because experts may disagree on the interpretation of image data, the
manual marking of craters also faces consistency and repeatability challenges.

Several automatic crater detection algorithms have been proposed to detect craters, and
these can be roughly grouped into two categories. The first kind of method is unsupervised-
based algorithms, which use digital image processing technology to detect craters, and the
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second kind of method is supervised-based algorithms, which employ machine learning or
deep learning to extract impact craters.

Unsupervised-based automatic crater feature extraction algorithms are mainly based
on traditional image processing methods, including Hough transforms [11–13], template
matching [14], edge detection, convex grouping [15], and other recognition techniques. For
example, the performance of a Hough transform applied to large scale crater counting
was evaluated [13] in terms of its ability to automatically detect craters down to sub-km
sizes on high-resolution images of the Martian surface. The Canny edge detector is widely
used in computer vision to locate sharp intensity changes and to find object boundaries
in an image. The combined adaptive Canny algorithm, which uses histograms of images
and multi-scale Gaussian filtering, was used in [16] to achieve a crater matching rate of
better than 85%. However, for irregular, incomplete shapes and areas with a high degree
of overlap, the detection accuracy of such methods is poor. Furthermore, Chen et al. [17]
used terrain analysis and mathematical morphology methods to identify different types
of impact craters, which fit the crater edge based on the Moon’s digital elevation model
(DEM) data. In contrast, the mathematical fitting method is more reliable than the Hough
ring transform algorithm, but its computational complexity is higher for the identification
of large, dense craters.

Automatic crater supervised-based technology has developed rapidly through ma-
chine learning and deep learning methods. Machine learning-based methods often involve
building a classifier to recognize candidate craters, and common classifiers, such as the
principal components analysis [18], decision trees technique [19], support vector machine,
and other hybrid methods [20], are used to classify candidate craters. To improve the
classification accuracy of small craters, Kang et al. [21] combined a histogram of oriented
gradient features and the support vector machine classifier to extract small-scale impact
craters from charge-coupled device images. Furthermore, based on the scale of training
samples generated from the surface imagery and digital elevation models of the Moon, [22]
proposed an active machine learning approach to automatically detect candidate craters by
training a classifier with better performance. These methods are able to recognize craters
or non-craters with a high classification accuracy. However, they need to extract features
manually when training a classifier to detect craters. For large-scale and high-density crater
detection, most of them have poor recognition accuracy and robustness. Some of them
cannot count craters or locate the positions of craters.

Deep learning, especially when based on convolution neural networks (CNNs), has
achieved great success in solving problems with image classification, image segmenta-
tion [23,24], and synthetic aperture radar (SAR) automatic object detection [25,26] in the
remote sensing fields. The CNN is a key representative network structure in deep learning
techniques. Such techniques are different from machine learning techniques, which are
more efficient and portable without a set of human-designed features [27]. Impact crater
detection based on deep learning is an important method in the vision-based navigation
systems and is used to solve the task of pinpoint landing on the Moon. Some works [28,29]
have used CNN feature extraction and standard image processing technologies to detect
and match the observed craters, which were used as visual landmark measurements by
the navigation filter. Moreover, image segmentation [23,30] and object detection methods
based on CNNs, e.g., faster region-CNN (R-CNN) [31] and mask R-CNN [32], are used to
solve crater detection problems. For example, Tewari et al. [32] utilized the mask R-CNN
framework to detect craters from optical images, digital elevation maps, and slope maps
by post-processing to eliminate duplicate craters and extract the craters’ global locations.
Moreover, to improve the detection accuracy of small-impact craters, [33] proposed an
end-to-end high-resolution feature pyramid network framework, denoted as HRFPNet.
HRFPNet uses a new backbone with a feature aggregation module to enhance the feature
extraction capability of small craters from thermal infrared imaging on Mars. However,
most object detection-based methods need to consider the generation of the number of
candidate boxes. For highly overlapping and dense craters, the quality of the generation of
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a large number of duplicate bounding boxes may affect the recognition speed and accu-
racy of crater detection. Therefore, most object detection schemes display relatively poor
performances and high levels of computational complexity in crater detection.

Crater detection is also solved as a semantic segmentation problem, in which the
rims or edges of craters can be extracted by pixel-level classification, and the crater po-
sition and size can be obtained by a post-pipeline method. For example, a semantic
segmentation method based on the fully convolutional neural network was proposed [34].
This method uses different feature maps with multi-scale receptive fields to detect multi-
scale impact craters from remotely sensed planetary images. Moreover, semantic seg-
mentation models [35–37] based on U-net [38] have been presented to detect craters.
Silburtet et al. [35] proposed DeepMoon based on the U-net network structure to recognize
lunar craters from DEM data. This method can successfully identify about 45% of newly
discovered craters in its validation data. However, the U-net network structure loses large
amounts of detailed information in the encoder of the network, which leads to poor crater
image contour recovery in the decoder process. To improve the accuracy of crater detection,
a new network structure, ERU-Net [36], introduced the deep residual network module to
improve the crater feature extraction ability. This successfully achieved a recall rate of 81.2%
and a precision rate of 75.4% in lunar crater recognition when training 30,000 DEM data
images. Furthermore, to explore craters on Mars, DeLatte et al. [37] employed segmentation
convolution neural networks based on U-net for automatic crater detection from Martian
daytime infra-red images. This method identified 65–75% of craters in common with a
human-annotated dataset, and [39] used the ResUNET [30] model to detect craters with
the global maps and infra-red imagery for Mars. However, resources in the deep space
environment are limited [40]; thus, automated crater detection methods require a balance
between model computational complexity and identification efficiency. Most of the above
methods ignore the computational complexity of the model.

The deep learning-based algorithms described above have different improved opti-
mization approaches for different crater tasks. However, the majority of object detection
schemes perform relatively poorly as they are constrained by their vanilla network archi-
tectures or semantic segmentation. By comparing the network complexity and recognition
results, it can be seen that crater detection methods based on the semantic segmentation
model are more efficient than the end-to-end object detection model. However, most
semantic segmentation-based crater detection methods mainly focus on the accuracy of
recognition and neglect the reasoning speed of the network. Moreover, due to crater images
having different distributions, degrees of overlap, and sizes on the surface of the Moon, and
because the crater data may be imbalanced, crater detection algorithms based on semantic
segmentation networks may suffer from significant performance degradation. Therefore,
achieving a fast and effective crater detection method with a high level of precision based
on a semantic segmentation model represents a challenging scenario.

To address this issue, in this study, we establish an efficient lunar crater detection
(ELCD) algorithm that addresses the requirements for accurate and fast crater detection. In
the ELCD algorithm, first, the crater edge is segmented by the attention mechanisms and
multiscale feature fusion networks (AFNet). Then, the crater position and size are extracted
by postprocessing based on the crater extract algorithm (CEA). In AFNet, a light-weight
attention mechanism is used to improve the feature extraction ability of the network, and a
new multiscale feature fusion (MFF) module is designed in the upsampling process of the
network to reduce the loss of detail in the semantic segmentation results. In addition, we
consider the crater data imbalance of the classification and distributions and design a new
crater edge segmentation loss (CESL) function for network training. The proposed loss
function improves the optimization ability and convergence speed of the network through
adaptive balance weights.
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The main contributions of the paper are as follows:

• We propose an efficient crater detection network based on a new semantic segmenta-
tion network architecture, AFNet, which uses the lightweight attention mechanism
and multiscale feature fusion module to provide better and faster detection of lunar
impact craters.

• To improve the optimization capability of the network, we present the crater edge
segmentation loss function, which considers the imbalance of classification and dis-
tributions of crater data to calculate the loss value using the different degrees of
imbalance in the data.

• The experiment is conducted on the PyTorch platform [41] with lunar DEM data to
verify the effectiveness of the ELCD. The results show that the ELCD outperforms
the state-of-the-art crater detection models in terms of its detection accuracy and
inference speed.

The rest of this paper is organized as follows: Section 2 describes the proposed
network architecture, the design of the crater edge segmentation loss function, the crater
edge extraction algorithm, and the details of the experiment. Section 3 provides the
experimental results, and Section 4 presents our discussion. Eventually, in Section 5, we
conclude our work.

2. Materials and Methods

The workflow description of two stages of the lunar crater detection method using
DEM data is shown in Figure 1. The workflow includes two parts: (i) crater edge prediction
by the semantic segmentation network AFNet and (ii) crater edge extraction with the
post-pipeline method. The details of the ELCD are as follows. The workflow input is the
lunar crater DEM image. The DEM contains abundant 3D morphology and topography
morphological characteristics, and it is insensitive to light [27]. The workflow output is
the crater’s positional information, such as its longitude, latitude, and radius, which is
determined by the crater edge extraction algorithm. First, crater images with different
degrees of size, overlap, and distribution are transferred to the crater edge segmentation
network to undergo crater edge prediction. Then, the network prediction results are
processed with a post-processing pipeline based on the match template method to obtain
the location information and radial size of craters.

Figure 1. Workflow of two stages used in the crater detection method based on the semantic
segmentation network and the crater edge extraction method. The network input is the DEM image.
The digital elevation model (DEM) image is first processed by AFNet to recognize crater edges by
pixel-level classification. Then, the prediction result of the crater images from network training is
processed by a post-processing pipeline based on the match template method to detect the location
information and radius size of craters.

2.1. AFNet

To obtain efficient crater edge prediction results, we formally describe the crater edge
detection network architecture, as shown in Figure 2. The AFNet includes three parts: the
network encoder, feature fusion, and decoder. In Figure 2, the black line is the network
encoder, the blue line denotes the process of feature fusion, and the orange line represents
the network decoder process. The network input is the gray DEM image, which has
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a fixed size of 256 × 256 pixels, and the output is the pixel-level classification for the
prediction result.

Figure 2. AFNet framework based on the improved VGG-16. The input is the DEM image transferred
to the network encoder process (green trapezoid). First, the DEM image is processed with a 1/N
downsampling rate with an attention mechanism module (pink circle) and five convolution blocks.
Then, feature maps with different resolutions are saved and fused by the multiscale feature fusion
module (blue line) with element-wise summation (green

⊕
) and the data blending block (blue

squares) through the decoder process (yellow squares) to get a more fine-grained output feature map.
The final output result denotes the network prediction results with pixel-level classification.

In encoder processing, we use the visual geometry group-16 (VGG-16) [42] as the
backbone to extract the crater features. This allows us to obtain a bigger receptive field
using fewer parameters compared with other network structures. The backbone network
includes five feature extraction blocks, denoted as L = {L1, L2, . . . , Li}, where i is the
number of feature extraction blocks. At the end of each feature extract block, we introduce
the attention mechanism module to extract the important features of the crater. In L1 and
L2, each feature extraction block contains two convolution layers: an attention machine
module and a max-pooling layer. L3, L4 and L5 contains three convolution layers, an
attention machine module, and a max-pooling layer, and all convolution layers use a 3 × 3
convolution kernel in each block.

In feature fusion, to obtain a more fine-grained feature map in the network decoder,
we designed a simple and efficient MFF to obtain more fine-grained output feature maps.
The four fusion modules f usionj are shown in Figure 2 and j = {1, 2, 3, 4}. The MFF first
uses the element wisdom summation (green in Figure 2) to fuse a low-resolution feature
map and a high-resolution feature map in each step of the upsampling process (decoder).
Then, the obtained fusion feature map is blended and transferred to the decoder process as
an input for the next step (blue squares in Figure 2).

In decoder processing, the bilinear interpolation operation is used to restore the size
of the feature maps by four decoder blocks, Decoderk, k = {1, 2, 3, 4} (yellow squares in
Figure 2). We use 2× upsampling and fuse more rice feature map information in each
decoder to restore the feature map to its original size.
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2.2. Attention Mechanism Module

The original impact craters have different density distributions, sizes, and degrees
of overlap in the different lunar regions. A description of the characteristics of crater
DEM data used in network training is given in Figure 3. When the crater DEM images
are processed by random clipping, they may have an incomplete shape. These crater
characteristics bring performance challenges to the semantic segmentation network.

D
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un
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tr

ut
h

(a) (b) (c) (d) (e) (f)
Figure 3. The different characteristics of craters on the surface of the Moon from DEM data. The top
figure is the original crater images, and the bottom figure denotes the labeled images denoted as the
ground truth. (a–c) show the distribution of sparse craters, (d–f) denote the distribution of dense
craters, (b–f) represent the different degrees of crater overlap, (c–f) show the incomplete craters.

In the encoder, to improve the feature extraction ability of the network, we introduce
the attention mechanism through efficient channel attention (ECA) [43], which is attached to
the end of each feature extraction block of the proposed network to enhance the extraction
of important features. Efficient channel attention with the lightweight module has great
potential to produce a trade-off between performance and complexity. This only involves a
handful of parameters while bringing a clear performance gain. The ECA block is termed an
attention mechanism, as shown in Figure 2 with a pink circle. In the ECA, 1D convolution
with a kernel size of 3 was used to achieve information exchange between channels. The
details of the ECA block attached to the end of the five feature blocks are given in Figure 4.
The ECA module was placed behind the activate function rectified linear unit (ReLU) in
each feature extraction block. Figure 4a denotes the location of the ECA in the feature
extraction block {L1, L2}, and Figure 4b shows the location of the ECA in the feature
extraction block {L3, L4, L5} in the decoder process of the network. The ECA can combine
the crater channel and spatial attention to enhance crater feature aggregation, which can
enhance the extraction of salient crater features.

2.3. Multiscale Feature Fusion Module

Visual features with a coarse spatial resolution can be obtained by the encoder process.
During the network encoder process, shallow crater networks can learn some local features
because of the low perception threshold, and the deeper convolution layer can obtain
more abstract features. With the deepening of the network, the receptive field of the
network becomes larger, but because of the down-sampling operation, a great deal of
detailed information may be lost. The purpose of the decoder process is to obtain a
segmented prediction image with the same input size through the upsampling operation.
Traditional segmentation networks use the simple upsampling module with skipped lateral
connections to restore the feature map, which may cause the restored feature map to lack
detailed features. To overcome the problem of poor image contour recovery in the decoder
process, we designed a simple and efficient multiscale feature fusion module to fuse more
low-layer features in each decoder block. The four multiscale feature fusion modules
f usionj, j = {1, 2, 3, 4}, are shown in Figure 5. We first obtained feature maps of different
resolutions from the network encoder process. Then, we fused two close feature maps as
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the upsampling input for the MFF to obtain an output feature map with more fine-grained
information.

(a) ECA in L1, L2

(b) ECA in L3, L4, L5

Figure 4. ECA module. (a) ECA module in L1 and L2, (b) ECA module in L3, L4, and L5.

(a) Direction Fusion

(b) Indirection Fusion

Figure 5. Multiscale feature fusion module. (a) is the direct fusion with the same feature map
resolution and size. (b) denotes indirect fusion with feature maps of two different resolutions.

The MFF included two cases, direct fusion and indirect fusion, as shown in Figure 5.
Figure 5a shows direct fusion for two feature maps of the same resolution: f usion1 −
f usion3. Figure 5b denotes indirect fusion with two different resolution feature maps:
f usion4. In direct fusion, a low-resolution feature map denoted as Lp and high-resolution
feature map represented as Hp have the same resolution. They use direct fusion by the
element summation operation to obtain the fusion feature map. However, the size of the
feature map is often different and usually has a two-fold difference in size after the encoder
process. Therefore, processing is done through the indirect fusion module. In the indirect
fusion module, the low-resolution feature map is not the same as the high-resolution feature
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map. Lp is first processed with the size alignment module to obtain the same resolution
as Hp. Then, the two maps are fused by element summation to obtain the fusion feature
map. Finally, the fusion feature map is transferred to the blending block (blue squares
in Figure 2) to obtain the final fusion output, the indirect fusion feature map denoted as
IFp or the direct fusion feature map indicated as DFp, as the branch input for upsampling
processing.

The size alignment module includes a 1 × 1 convolution kernel to reduce the dimen-
sions and a 3 × 3 convolution kernel. This stride is set to 2 to adjust the map to the same
size as Hp. The blend module contains the simple two 3 × 3 convolution kernel network
to blend the fusion results. The final fusion feature maps have richer low-layer features,
which could help us to obtain high-quality output prediction results in the encoder process.

2.4. Crater Edge Segmentation Loss Function

In the crater prediction network, crater images can be divided into foreground images
and background images by pixel-level segmentation. In a crater image, the foreground im-
age is the segmented object (crater edge), and the background image represents everything
but the object. However, most crater detection methods based on segmentation networks
use traditional loss functions, such as the cross-entropy (CE) loss function [35–37], to train
the network, and they cannot overcome the variation in size and the serious crater data
imbalance problem, resulting in a performance decrease. The CE can be computed as

CE(pi, yi) =

{
−log(pi), yi = 1
−log(1− pi), otherwize

(1)

where pi is prediction value of the network, yi is the ground-truth, and pi ∈ [0,1], y∈ {0,1}.
However, in cross-entropy loss, the weight of each sample is the same, and the CE

loss is overwhelmed when facing the data classification imbalance. Later, the focal loss
(FL) function [44] considering the classification imbalance in dense object detection was
proposed to improve the network performance. The FL is defined as

FL(pi) = −α(1− pi)
γlog(pi) (2)

where α is a weighting factor, α ∈ [0,1] for class 1 and 1 − α for another class; (1− pi)
γ

denotes the modulating factor; and γ denotes the tunable focusing parameter. The FL can
balance the importance of positive and negative examples and differentiate between easy
and hard examples by modulating the two factors α, and γ.

Inspired by the FL [44], we propose a novel crater edge segmentation loss function to
optimize the proposed network. In contrast to FL, only the classification imbalance of data
was considered when designing the loss function. In this paper, two data imbalance factors
were considered, including the classification imbalance and the distribution imbalance of
crater data, and the modulating factor of the loss function was set adaptively. We first
calculated the imbalance characteristics of the crater data, which are shown in Figure 6. We
used the data imbalance ratio (IR) to represent the crater data classification imbalance. This
is the ratio between the numbers of majority class samples (background) and the minority
class samples (object). The crater classification imbalance is shown in Figure 6a. Moreover,
we counted the distribution imbalance ratio (DR) as the number of craters in each label’s
image, as shown in Figure 6b.

We set the parameters α′ and γ′ adaptively based on the DR and IR of the crater data
for the CESL. The proposed craters edge segmentation loss function can be computed as

CESL(pi) = −α′(1− pi)
γ′ log(pi) (3)

where α′ is used to adjust the weights of different categories, and γ′ is employed to
differentiate between easy and hard examples. In this work, our goal was to accurately
detect lunar craters. Some crater images are easy to distinguish, while others are difficult



Remote Sens. 2022, 14, 5225 9 of 23

to distinguish. Simple examples show that the distribution of some craters is sparse and
complete with little overlap, making these craters easy to detect. These crater images
are shown in Figure 3a,b. The hard example shows that, in the lunar crater image, the
distribution of craters is dense with high overlap, and the shape is incomplete. These crater
images are shown in Figure 3b,c. α′ and γ′ were calculated based on the average value in
each trained batch. IRb and DRb are the classification imbalance ratio and the distribution
imbalance ratio in the b-batch of network training.

(a) Crater Classification Imbalance (b) Crater Distribution Imbalance

Figure 6. Data distribution statistics of impact craters. We randomly generated 30,000 crater training
images to show the imbalanced distribution. (a) is the crater image classification imbalance, the
x-axis is the data imbalance ratio (IR) [45], and the y-axis denotes the frequency distribution of the
IR. (b) shows the distribution imbalance ratio (DR) of the craters, the x-axis denotes the number
of craters in each training image, and the y-axis represents the frequency distribution of the crater
number in the DEM images.

In our crater data, we found that classification imbalance was common in the training
data of each DEM image, and we calculated the max IR to be about 266 times and the
average IR to be about 26 times, as shown in Figure 6a. In the crater training image, the
densest crater image has 112 craters, and the average crater number is 20, as shown in
Figure 6b. We defined the data imbalance degree in three cases based on the imbalance
characteristics of craters, namely, low classification imbalance, median classification imbal-
ance, and high classification imbalance. To balance the proportions of the data distribution,
we calculated the ratio of three imbalance degree cases, which are more balanced when
the ratio is about 3:2:1 in the crater training data, and the range of the corresponding IR is
IR > 40, 20 < IR <= 40, and IR > 40. The value of α′ was set by the degree of imbalance,
where IRb was used to adjust the data imbalance with different weights. α′ was set as

α′ =


0.2, IRb < 20
0.3, 20 < IRb <= 40
0.4, IRb > 40

(4)

Moreover, in general, highly overlapping, dense data may have a bad effect on crater
classification. Thus, we also considered the craters’ sparse distribution characteristics to
improve the crater classification accuracy by setting the different values of γ′. The craters’
sparse distribution characteristics DR were represented by the crater number in the DEM
images. We defined DRb by the crater number in the DEM images to set γ′. The parameter
γ′ is defined as

γ′ =


2, DRb < 20
1, 20 < DRb <= 100
1.5, DRb > 100.

(5)
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2.5. Crater Extraction Algorithm

The crater image segmentation results were obtained by AFNet. The results included
activated pixels corresponding to the locations of the crater rims. We were able to extract
crater positions and sizes from the crater image segmentation results through the post-
pipeline method with the crater extraction algorithm based on the template matching
method. Most impact craters are circular on the lunar surface. The craters are detected by
the ring feature in the extraction algorithm. However, for overlapping craters, traditional
methods (such as Hough transform, Candy) [46] cannot detect rings in the segmentation
results efficiently. We used the more efficient match template algorithm in scikit-image [47]
(an image processing library implemented in Python programming language) to extract
crater positions. This method was used in [36,37] for crater edge extraction.

The proposed CEA received the prediction map I of the crater segmentation network
and output the crater evaluation results. The crater extraction pipeline process is as follows.
First, a prediction result is filtered by the binary threshold β, described as

pi =

{
1, pi ≥ β

0, pi < β
(6)

where pi is the pixel intensity. pi is set to 1 when pi is greater than β; otherwise, pi is set to
0. Then, the match template algorithm is applied to match the crater over a radius range
with a maximum radius rmax and minimum radius rmin. The match template threshold Pm
is used to choose the high confidence target. Lastly, an evaluation of whether the crater is
correctly identified is carried out.

We detected the minimum radius rmin of the craters as 5 km and the maximum radius
rmax as 40 km from the network prediction result by the CEA. This algorithm iteratively
slides generated rings through the target, and it calculates the match threshold at each
(x, y, r) coordinate to eliminate false target results, where (x, y) is the centralization of the
generated ring, and r is the radius. Any (x, y, r) ring with a match probability greater
than Pm is classified by the coordinate and radius constraints to get the correct crater,
expressed as

[(xi − x̃j)
2 + (yi − ỹj)

2]/min(ri, r̃j)
2 < Dx,y (7)

|ri − r̃j|/min(ri, r̃j) < Dr (8)

where (xi, yi) is the position of the crater ci extracted from the prediction image I, xi, yi are
the latitude and longitude of I, respectively, and ri is the radius of the crater ci. For the
ground-truth image Ĩ, (x̃i, ỹi) presents the position corresponding to the crater ci, x̃i is the
latitude of the crater, ỹi is the longitude of the crater, and the radius of crater ci is r̃i. Dx,y
is the error threshold of the longitude and latitude, and Dr is the radius error threshold.
When the detection crater meets these limits, it is regarded as the correct crater; otherwise,
it is considered a false crater.

The pseudo-code of the efficient lunar crater detection ELCD algorithm includes
crater edge prediction by the semantic segmentation network AFNet and the post-pipeline
method with CEA, as described in Algorithm 1.

The input of the network contains the test DEM data Y with a pixel size of 256× 256
for the DEM image, the number of batch image processes |Z(k̃)|, the crater classification
number Nclass, the trained network model M, and the ground-truth of the crater image Ỹ.
The outputs are the position and size of the crater and the evaluation of the crater detection
results. First, the batch data Y(i) of crater images in test set Y are transferred to the trained
model M by the AFNet to obtain the prediction results preddem of the network. Then, the
prediction feature map preddem is processed by binary threshold processing β, using the
match template threshold Pm to filter out matching craters. The correctly identified craters
are evaluated by the error constraints shown in Equations (7) and (8), and the results of the
evaluation are counted using statistical functions Count(). Finally, the position and size of
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the crater Pos and the evaluation results Det of the correctly identified craters are obtained
using the mean results for the test crater DEM data Y.

Algorithm 1: Efficient Lunar Crater Detection Algorithm
Input :
A set of DEM images, test dataset Y;
Each batch test data Y(i) has |Z(k̃)|DEM images;
Each DEM image yi ∈ Y(i) has a size of 256× 256 pixels;
The category of pixel segmentation is Nclass ;
The trained network model M;
The ground-truth in the test dataset Ỹ;
Output :
the information about the position and size Pos, and the crater detection results Det;
begin

Ẑ = [];
Load test dataset Y;
Pre− processing test dataset Y by normalization;
model.eval();
for Each batch Y(j) in Y(i) do

for Each image y in Y(j) do
origdem = y[0];
truedem = y[1];
model.cuda(), origdem.cuda(), truedem.cuda();
preddem = M (origdem);
Ẑ.add (preddem);

end
end
Match = []; // the results of the crater match template
Pos = []; // the information about the crater’s position and size
Det = []; // the crater detection results
Match-template(); // calculate template matching
Count(); // statistical crater detection performance
for Each DEM zk in Ẑ do

if Nclass = 2 and zk > β then
zk ← 1.0;

else
zk ← 0.0;

end
if Match-template(zk) > Pm then

Match.add (longitude, latitude, radius);
end
Choose the correctly identified craters by Equations (7) and (8);
Output result Ps, Dt← Count (Match, ỹk), ỹk ∈ Ỹ;
Pos.add(Ps);
Det.add (Dt);

end
Pos = mean(Pos);
Det = mean(Det);

end
Output : Pos, Det

2.6. Experiments

In this section, we describe the experiments conducted to verify the performance of
the proposed algorithm. The experiments involved the experimental setup, experimental
datasets, evaluation metrics, and comparison algorithms. The details are given below.

2.6.1. Experimental Setup

The experiment was performed on a single GPU (NVIDIA GeForce RTX 3060, 64GB
RAM, 8 core CPU) with CUDA 11.0 and PyTorch 1.7.1. The CE-Adam [48] optimizer was
used to improve the capability of the network model, and the learning rate was set to 1 ×
10−4. The number of iterations in the network was set to epoch 100, and the batch size was
set to 32. We conducted crater detection experiments on the lunar DEM datasets, where
the input DEM image was 256 × 256 pixels in size. The crater edge semantic segmentation
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network AFNet and crater edge extract results were evaluated using relevant evaluation
criteria, as detailed in Section 2.6.3.

2.6.2. Datasets

In our experiment, we used lunar DEM data from the Lunar Reconnaissance Orbiter
(LRO) and the Kaguya merged digital elevation model. The resolution of the DEM was
about 59 m/pixel [49], and it spanned 180◦ W to 180◦ E and 60◦ S to 60◦ N . The global
DEM map was downsampled to 118 m/pixel with a size of 92,160 × 30,720 pixels. This
was used to randomly generate crater images that were 256 × 256 pixels in size.

Two lunar crater catalogs were used for the ground truth. The first catalog was termed
Head [10], where the size of the crater was larger than 20 km in diameter. The other
catalog was taken from Povilaitis [9], and the crater diameter size was 5–20 km. We used
the combined catalog, termed Head-LROC, to train our model in this paper. The total
numbers of Head and Povilaitis craters were 5186, and 19,337, respectively. The different
distributions and diameter sizes of craters based on the Head-LROC catalog are shown in
Figure 7. We can see that around 51.5% of craters had a diameter of less than 10 km, which
accounts for more than half of all data. Moreover, around 78.8% of craters had a radius of
less than 20 km, representing about three-quarters of all crater data. Only 1.3% of craters
had a radius of greater than 100 km.

Figure 7. The distribution proportions of the different radius craters in the Head-LROC catalog [9,10].

In the experiment, the original crater images and ground-truth images were generated
by the global DEM map and two lunar crater catalogs. The numbers of generated training
sets, validation sets, and test sets were 30,000 DEM images, 3000, and 3000, respectively.
The training set was processed by the random invert method. We randomly inverted θ to
the DEM image using random number probability p, p ∈ [0,1], where θ is defined as

θ =


0◦, 0 <= p < 0.25
90◦, 0.25 < p <= 0.5
180◦, 0.50 < p <= 0.75
270◦, 0.75 < p <= 1.

(9)

2.6.3. Evaluation Criteria

In two-stage crater detection algorithms, the performance of the prediction network
may affect the final crater edge extraction result. When other parameters were fixed, the
clearer the crater edge was segmented, the better the crater edge extraction result was. Thus,
we first evaluated the performance of the proposed crater edge segmentation network,
AFNet. The four metrics from common semantic segmentation criteria [23,24] were used
to evaluate the proposed network model. We computed four metrics, the pixel accuracy
(PA), mean pixel accuracy (MPA), mean intersection over union (MIoU), and frequency
weighted intersection over union (FWIoU), to evaluate the performance of AFNet. Via an
ablation study, we can prove the validity of our proposed model and the improved crater
edge segmentation loss function.
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After obtaining the crater image segmentation results, the crater positions and sizes
can be obtained through the crater extraction algorithm. To evaluate the crater detection
performance of the proposed ECLD algorithm, we used an evaluation method that is
commonly used in machine learning to evaluate the precision (P), recall (R), and Fλ-score
(F1 or F2) for each identified crater basis. The detection precision is the ratio of matching
numbers Nmatch to detection numbers Ndetect of craters. The recall was computed by the
ratio of matching numbers Nmatch to the number of human-annotated Ncsv, and the Fλ-
score was used to balance the precision and recall. For the Fλ-score, λ denotes the tune
parameter. When λ > 1, the recall is more important; otherwise, when λ < 1, the precision
is more important for the model’s evaluation. The detailed calculation process is described
in [35,36].

Many truly existing craters were not marked in the ground truth; they were regarded
as false negatives. In addition, in this paper, we used the combined lunar crater catalog
Head-LROC [9,10]. The label of the training dataset was incomplete in the crater catalog,
and some newly discovered craters were identified through network prediction. We
calculated the discovery rate, that is, the false-positive rate for crater recognition. We used
two methods to evaluate newly discovered craters. R1

new, R2
new was computed as

R1
new =

FP
FP + TP

(10)

R2
new =

FP
FP + TP + FN

(11)

where R1
new denotes the ratio between the newly discovered craters and all recognized

craters. TP denotes true positives and FP denotes false positives. The second evaluated
method used was R2

new, which shows the proportion of newly discovered craters to all
impact craters, and FN indicates false negatives.

In the process of lunar crater recognition, the performance of the model was evaluated
from the accuracy computation by the positions and sizes of the recognized craters. We
calculated the latitude error (Elo), longitude error (Ela), and radius error (Er) to evaluate
the network model using

Elo =
abs(lop − lot)

2× (rp + rt)
(12)

Ela =
abs(lap − lat)

2× (rp + rt)
(13)

where lop denotes the predicted longitude value, and lot is the corresponding true longitude
value of the crater. In Equation (13), lap is the latitude value of the predicted crater, and the
latitude value of the corresponding true crater is denoted as lat.

The radius error (Er) was calculated as follows:

Er =
abs(rp − rt)

2× (rp + rt)
(14)

where rp denotes the radius of the predicted crater, and the corresponding true radius of
the crater is indicated as rt.

2.6.4. Compared Algorithms

The proposed algorithm ELCD was compared with five different crater detection algo-
rithms using image segmentation technology that contained DeepMoon [35], ERU-Net [36],
D-LinkNet [23], and SwiftNet [24]. The general procedure used for each algorithm was
as follows:
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• DeepMoon [35]: The basic idea of this algorithm is that deep learning based on the
U-net network architecture is used to train the lunar crater DEM data to discover
lunar craters.

• ERU-Net [36]: To improve the detection accuracy of lunar craters, ERU-Net introduced
the residual network module to the U-Net network architecture to enhance the crater
feature extraction ability.

• D-LinkNet [23]: D-LinkNet with high efficiency is often used for comparisons in crater
detection. D-LinkNet is a semantic segmentation neural network that combines the
encoder–decoder structure, dilated convolution, and a pre-trained encoder to carry
out road extraction tasks.

• SwiftNet [24]: To verify the inference speed of the proposed model, we added SwiftNet
to compare the network models. SwiftNet is a real-time semantic segmentation method
based on residual network frameworks, which can achieve real-time detection for
road-driving images.

3. Results
3.1. Ablation Study

The ablation study on the AFNet explored the influences of different network struc-
tures and loss functions on the crater recognition accuracy. The proposed modules and
three loss functions (LFs), CE, FL, and the proposed loss function CESL, were compared in
the ablation study. The comparison network was initialized by using VGG-16 pre-training
weights and normal initialization, where the X denotes the use of the module, and VGG-16
denotes the basic network structure to give a better comparison. The results of the ablation
study were obtained by evaluating PA, MPA, MIoU, and FWIoU in the crater validation
data. The results are shown in Table 1, and the values in bold are the best values in each
compared column.

In Table 1, we can see that the VGG-16-ECA increased by 0.1 and 0.2 MIoU in the
CE and FL loss functions, and the MIoU increased by 0.1 and 0.2 MIoU compared with
VGG-16 in VGG-16-MFF. When adding the attention machine module VGG-16-ECA and
the efficient multiscale feature fusion module MFF, the MIoU obtained values of 73.0%,
74.4%, and 75.3% for the CE, FL, and CESL loss functions in AFNet. The AFNet network
under the CESL achieved the best performance of 96.8%, 82.8%, 75.2%, and 94.3% for
PA, MPA, MIoU, and FWIoU, respectively. The CESL considers crater data imbalance in
classification and distributions and can balance the importance of positive and negative
examples by adaptively setting the loss function weights. The proposed CESL loss function
obtained a better performance in the compared network structures relative to CE and FL.

We also show several feature maps of a crater image sample at decoder4 with the
VGG-16, VGG-16-ECA, and AFNet network structures in Figure 8. We found that the
output features had a clear distinction in AFNet and VGG-16-ECA compared with VGG-16.
Some chance information was strengthened, while other chance information was weakened.
AFNet and VGG-16-ECA included the attention mechanism ECA, which strengthens some
important features to quickly distinguish the edges of craters from their backgrounds.

Table 1. Ablation experiment of the proposed modules on the DEM data.

Network Structures LFs ECA MFF PA (%) MPA (%) MIoU (%) FWIoU (%)

VGG-16 CE 96.3% 80.0% 72.1% 93.5%
VGG-16-ECA CE X 96.4% 80.6% 72.9% 93.7%
VGG-16-ECA FL X 96.6% 81.6% 73.9% 94.0%
VGG-16-MFF CE X 96.5% 81.1% 73.5% 93.9%
VGG-16-MFF FL X 96.6% 81.8% 74.1% 94.0%
VGG-16-ECA-MFF (AFNet) CE X X 96.5% 80.7% 73.0% 93.8%
VGG-16-ECA-MFF (AFNet) FL X X 96.7% 82.0% 74.4% 94.1%
VGG-16-ECA-MFF (AFNet) CESL X X 96.8% 82.8% 75.2% 94.3%
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(a) VGG-16 (b) VGG-16-ECA (c) AFNet

Figure 8. Comparison of partial output results of different network structures in decoder4. (a) Partial
output feature maps with the basic model VGG-16, (b) partial output feature maps with VGG-16-ECA,
(c) partial output feature maps with AFNet.

3.2. The Evaluation Results for AFNet

In the iterative process of network training, the values of PA, MPA, MIoU, and FWIoU
for AFNet in the validation set are shown in Figure 9. The accuracy of all evaluation criteria
increased with the epoch. When the network was in about epoch 35 of network training,
the network began to converge. The proposed model achieved a pixel accuracy of 96.8%,
as shown in Figure 9a; the mean pixel accuracy was 82.8%, and the MIoU was 75.2%, as
shown in Figure 9b. The FWIoU was 94.3%, as shown in Figure 9c. The training loss of the
AFNet is shown in Figure 9d. We can see that the initial loss function was very small under
the VGG-16 pre-training weight initialization, and the network had a faster convergence
speed to allow it to obtain the best performance.

(a) PA (b) MPA and MIoU

(c) FWIoU (d) Training Loss

Figure 9. Semantic segmentation results on the validation set and training set of DEM data, (a–c) show
the results of the validation set and c denotes the results of the training set. (a) is PA, (b) represents
the MAP and MIoU, (c) denotes the FWIoU, and (d) is the training loss of the training set.
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The network prediction results with AFNet are shown in Figure 10. The top figure
denotes the ground truth of the DEM images, and the bottom figure shows the edge
segmentation results. In lunar catalogs, some crater labeling is incomplete with small and
shallow craters missing, and some obvious craters are not labeled, which may affect the
crater detection accuracy. However, AFNet was used to recognize the crater edges through
the classification of each pixel. We can see that the proposed AFNet network was able to
segment crater edges with different characteristics.
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Figure 10. Crater edge segmentation prediction results based on the AFNet for the DEM data. The
figure shows the ground truth of the DEM images, while the bottom figure denotes the crater edge
segmentation prediction results.

3.3. The Evaluation Results for the ELCD

We evaluated the performance of the ELCD based on the edge segmentation network
and crater extraction algorithm by detecting the crater radius, latitude, and longitude.
Moreover, we computed the precision, recall, F1, F2, and the errors in the latitude, longitude,
and radius of the crater for the match template method. In order to compare with other
crater methods, we calculated the detection results of craters with a radius of 5–40 km.
The error threshold of the longitude and latitude Dx,y was set to 1.8, the radius error
threshold Dr was set to 0.1, and the binary threshold β was set to 0.1. We tuned the match
threshold Pm of the match template. For further details about the parameter setting process,
refer to [35]. We evaluated the various metrics when the parameter of the match template
threshold Pm ranged from 0.3 to 0.8 with an interval of 0.05. The average crater edge
extraction resulted in different match threshold values Pm, as shown in Table 2. The best
value in each compared row is presented in bold, and the gray column indicates the best
tuning parameters.

In Table 2, we can see that the values of precision, F1, and F2 increased as Pm increased,
while the values of recall and other metrics decreased as Pm increased. A high precision
rate of 92.1% was obtained when Pm was 0.75 and the error values of Elo, Ela, and Er were
also minimal. When γ was set to 0.3, the value of recall was maximal and more new craters
were obtained under the maximum error values of Elo, Ela, and Er. New craters accounted
for 41.9% and 70.2%, as shown by R1

new and R2
new. F1 can balance the value of precision and

recall. The best F1 was 79.4% when Pm was set to 0.5, where the precision was 80.6%, the
recall was 81.9%, and the error values of Elo, Ela, and Er were relatively small, at 12.0%,
9.8%, and 6.6%, respectively. F2 pays more attention to the recall evaluation. When Pm was
0.45, F2 obtained the best value of 80.9%. In this paper, in accordance with [35,36], we used
F1 and F2 to evaluate the ELCD algorithm.

The precision and recall curves of the ELCD algorithm are shown in Figure 11, where
the upper green triangle represents the maximal point, and the yellow triangle denotes
the minimal value point. Figure 11a is the score of precision and recall with the different
match thresholds Pm. The focus of these two lines is that Pm is about equal to 0.5, which is a
balance point between precision and recall. The relation curve of the precision and recall
curves is shown in Figure 11b.
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Table 2. Crater edge extraction results of test sets in terms of various match thresholds Pm.

Metrics 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
Precision 27.1% 54.6% 70.5% 77.3% 80.6% 83.7% 86.0% 90.3% 91.4% 92.1% 91.4%

Recall 87.6% 85.4% 84.7% 83.4% 81.9% 78.4% 73.4% 67.2% 58.4% 45.6% 28.7%
F1 40.0% 64.7% 74.9% 78.3% 79.4% 79.0% 77.2% 74.9% 69.2% 58.5% 41.6%
F2 58.4% 74.9% 80.0% 80.9% 80.6% 78.3% 74.6% 69.9% 62.0% 49.8% 32.6%

R1
new 41.9% 29.9% 21.4% 17.1% 14.9% 12.7% 11.1% 8.1% 7.2% 6.6% 6.9%

R2
new 70.2% 41.6% 26.4% 19.9% 16.7% 13.5% 11.0% 7.2% 5.5% 4.0% 2.9%

Elo 17.5% 13.9% 12.7% 11.3% 12.0% 10.7% 9.3% 9.4% 8.8% 9.6% 8.2%
Ela 17.0% 13.7% 11.3% 10.6% 9.8% 9.2% 8.3% 7.7% 7.4% 7.0% 6.8%
Er 13.0% 9.2% 8.0% 7.3% 6.6% 5.7% 4.8% 4.6% 4.2% 4.1% 3.7%

(a) P/R score with the Pm

(b) P− R curve

Figure 11. Precision/recall curve for the crater detection results.

3.4. Comparison of Multiple Crater Detection Methods

In this section, we present an evaluation of the comparison results with ELCD under
different crater detection methods using the test set. Pm = 0.5 is balance point between
precision and recall. As shown in Figure 11a, we used the result where Pm was 0.5 as
a comparison of ELCD. We also measured the computation complexity with different
network architectures. In this paper, the billions of floating-point operations (FLOPs),
network parameters (Params), and the number of processed frames per second (FPS)
were used to evaluate the computational complexity of the trained networks. In the FPS
computation, in accordance with [24], we set the test batch size as 1.

The average crater extraction results under various crater detection algorithms are
shown in Table 3. In Table 3, we can see that the DeepMoon increased the recall and
the proportion of newly discovered craters, and ERU-Net obtained a low detection error
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for the crater radius, respectively. SwiftNet and D-linkNet had relatively poor detection
accuracy levels, but they had the lowest FLOPs and network parameters. The crater
detection algorithm required not only a high detection accuracy due to autonomous landing
requirements for deep space probes in the deep space environment, but the crater detection
algorithm should have a fast detection speed. The SwiftNet and D-linkNet network
structures were designed for the real-time target detection of road-driving images. They
have fewer parameters, low FLOPs, and high FPS during the running of the network to
meet the needs of real-time detection. However, as the SwiftNet and D-linkNet network
structures are simple network structures, they are inefficient for complex crater detection
problems, and they perform poorly in lunar crater detection compared with other networks
such as DeepMoon, ERU-Net, and the proposed algorithm. DeepMoon and ERU-Net
achieved good crater detection results compared with the SwiftNet and D-linkNet network
structures, but they require more computational resources, and the network computation
speed of FPS is also lower.

Table 3. Comparison of the detection results of test sets under various crater detection algorithms.

Algorithms P R F1 F2 R1
new R2

new Elo Ela Er FLOPs (G) Params (M) FPS (HZ)

DeepMoon [35] 56.0% 92.0% 66.2% 72.9% 40.0% 42.0% 14.0% 11.0% 8.0% 74.3 10.28 8.7

ERU-Net [36] 75.4% 81.2% 78.1% 78.5% 18.3% 21.5% 9.9% 10.0% 7.8% 183.3 23.7 4.3

D-LinkNet [23] 77.2% 68.3% 61.2% 55.1% 17.3% 17.1% 10.1% 10.0% 7.3% 6.0 21.0 46.4

SwiftNet [24] 77.1% 52.6% 61.4% 56.1% 17.0% 13.3% 22.9% 19.9% 13.2% 3.2 11.8 60.2

ELCD (our) 80.6% 81.9% 79.4% 80.6% 14.9% 16.7% 12.0% 9.8% 6.6% 43.7 21.8 73.2

In Table 3, the proposed algorithm is shown to achieve better crater detection precision
(P) and F1, F2 scores than the DeepMoon, SwiftNet, D-linkNet, and ERU-Net network
structures with minimal Ela and Er errors. Moreover, ELCD has a faster inference speed
than the other algorithms. The proposed model combines the encoder, feature fusion, and
decoder processes to achieve good network parallelism to speed up the network inference
speed. The proposed ELCD has lower FLOPs than the DeepMoon and ERU-Net methods,
and the total FLOPs in ELCD were shown to be about 1.7 times and 4.1 times lower than
the values of DeepMoon and ERU-Net, respectively. For the FPS measure, although the
parameters of the ELCD were not lower than those of DeepMoon and ERU-Net, the total
FPS of the ELCD was about 8 times and 17 times higher than the values of DeepMoon
and ERU-Net, respectively. Thus, the proposed ELCD algorithm achieved the best crater
detection results with relatively few parameters and a low network complexity. It can
achieve a balance between crater detection precision and network computation efficiency.

A comparison of the results obtained with different crater detection methods is shown
in Figure 12. Each row represents the detection result of all compared crater methods for the
same types of crater data. Each column represents the performance of the same detection
method in different types of craters with varying degrees of classification and distribution
imbalance. IR is the classification imbalance ratio, and DR denotes the distribution imbal-
ance ratio, which was computed by the number of craters in each image label. The details
are presented in Section 2.4. The greater the DR is, the denser the crater images are, and
relatively speaking, the smaller the IR is. The original DEM image shown in Figure 12a,b
is the ground truth, and Figure 12a–g denotes the compared algorithms. The blue circle
denotes the correctly detected craters, the green circle is the newly detected craters, and
the red circle is unrecognized craters. We can see that D-LinkNet and SwiftNet performed
poorly for crater detection, especially for dense crater data. There are many incorrectly
detected craters marked as red circles in Figure 12f,g. DeepMoon and ERU-Net could detect
most of the labeled craters in contrast to D-LinkNet and SwiftNet, but they performed
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poorly for large craters. For example, in IR = 9.3, DR = 49 and IR = 7.5, DR = 49, DeepMoon
could not detect the large crater that is represented by the red circle in Figure 12d,e. In the
third column, we can see that the proposed model increased the accuracy of crater detection
compared with the other models for craters of different densities and sizes, as shown in
Figure 12c. Moreover, the proposed model was able to detect some new unlabeled craters.
However, small craters with a high degree of overlap in the DEM data were difficult to
identify with high precision using DEM data for all compared algorithms. The proposed
model regarded such craters as noise and could not detect them well.
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(a) Origin Image (b) Ground-truth (c) ELCD (d) DeepMoon (e) ERU-Net (f) D-LinkNet (g) SwiftNet

Figure 12. Comparison of the results of test sets using different crater detection methods for DEM
data. (a) The original lunar DEM images in the test set. (b) The ground-truth DEM image. (c) The
detection results obtained with DeepMoon based on U-net [35]. (d) The recognition results obtained
with the ERU-Net network [36]. (e) The detection results obtained with D-LinkNet with the ResNet-18
network [23]. (f) The detection results obtained with SwiftNet (g), designed by the paper [24]. In
the figure, the blue circles represent correctly recognized crates, the green circles denote new craters
discovered by compared methods, and the red circle indicates unrecognized craters.

4. Discussion

With the application of deep learning techniques, great progress has been made in
automated impact crater detection. The proposed method builds an efficient crater edge pre-
diction network with a lightweight attention mechanism module and a multiscale feature
fusion module to recognize crater edges from digital elevation models. The experimental
results show that the presented method achieves high precision and recall rates and a
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fast detection speed when undergoing lunar crater detection, mainly due to the following
reasons: (1) we used the digital elevation model as the crater data, which contain abundant
3D morphology and topography morphological characteristics and are insensitive to light;
(2) the proposed crater edge segmentation network is an efficient model to improve the
accuracy of crater detection. The proposed network uses a lightweight attention mechanism
module to enhance the feature extraction capability of the network encoder and designs a
multiscale feature fusion module that fuses multi-level different resolution feature maps
to reduce information loss in the network encoder; and (3) considering the imbalance of
classification and different density distributions of craters, we proposed an efficient crater
edge segmentation loss function to optimize the network performance.

In the experimental results, Table 1 shows that the multiscale feature fusion module
can increase the crater detection accuracy, and it shows that the proposed crater loss
function can achieve the best crater edge segmentation results. Figure 8 shows that the
attention mechanism module can strengthen some chance information about craters and
weaken other chance information, which can strengthen the importance of crater features
to allow the edges of craters to be quickly distinguished from their backgrounds. Figure 9
shows that the CESL can improve the ability of the network to obtain optimal solutions and
can speed up the convergence of the improved model. The final crater detection results
show that the proposed model, which includes the attention mechanism module and the
multiscale feature fusion module, can achieve more fine-grained segmentation for crater
edges with different characteristics, as shown in Figure 10. In Table 3 and Figure 12, which
shows a comparison of the different crater detection methods, the proposed model is shown
to achieve the best detection performance with minimal errors in Ela and Er. Compared
with other real-time target detection methods, this method has a faster reasoning speed.
Compared with the survey of the global lunar orbiter laser altimeter (LOLA) dataset of the
Moon, the algorithm can detect the marked craters on the lunar surface more accurately
and can detect some undiscovered craters. There are some false and ambiguous markers
in the global LOLA dataset, and the proposed algorithm can correct false positives in the
original data. Moreover, the newly discovered craters can increase the size of the original
data set.

The discovery of impact craters is important for studying the evolution of the Moon.
There are many small craters on the Moon’s surface, and they influence the estimation of
the Moon’s age. However, the study still has some limitations with regard to small crater
detection. Most crater digital elevation models have a lower resolution than the optical
image and other higher-resolution images. Some craters that are too small appear as points
in DEM images, and they are likely to be ignored or considered to be noise and thus cannot
be detected successfully using a digital elevation model. The optical image has a high
resolution, but it is sensitive to illumination. Thus, determining how to avoid the impact
of light on impact craters in optical images or fusing the optical image and the digital
elevation model to improve the small crater detection accuracy deserve further attention in
the future.

5. Conclusions

In this paper, an efficient lunar crater detection algorithm, AFNet, based on the
segmentation convolutional neural network was proposed to improve the crater detection
accuracy and speed. Based on the VGG-16 network architecture, a lightweight attention
mechanism module was introduced to enhance the extraction of important crater features
in the network encoder. The proposed model uses a new feature fusion method that
fuses multi-level different feature maps obtained from the network encoder to reduce
the information loss of the output map in the network decoder. Then, considering the
classification and distribution imbalance of the crater data, the crater edge segmentation
loss function was used to improve the optimization performance of the proposed model.
Last, the crater positions were extracted by the crater edge extract algorithm based on
the match template method. The proposed model was applied to two crater catalogs and
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compared with four state-of-the-art crater detection algorithms. The results demonstrate
that the ELCD achieved an inference speed of about 73 HZ and a precision of 80.6% for
lunar crater detection in a DEM image with 256 × 256 pixels on GeForce RTX 3060, and
it obtained the best accuracy of 79.4% for F1 and 80.6% for F2 compared with the other
crater detection models. Moreover, the ELCD can be used to discover new craters and
expand the size of the original data set. It is hoped that this algorithm will further improve
the accuracy of lunar age estimation and the positioning accuracy of spacecraft landing.
For future work, the network structure should be further optimized so that the model can
improve its real-time detection speed and achieve a high crater detection accuracy in the
detection of impact craters of different sizes.
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