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Abstract: Without any prior knowledge, it has always been a serious challenge to accurately detect
infrared targets under a maritime harsh environment (MHE). To solve this problem, the main
contribution of this paper is to use the improved visual attention model (VAM) preselector and anti-
jitter spatiotemporal filter (ASF) discriminator to detect infrared targets in the MHE. The proposed
method consists of image preprocessing, the single frame detection of suspected targets and a multi-
frame judgment of real targets. First, in the process of single-frame image processing, a combination
of the Gaussian difference filtering and local minimum filtering is applied to overcome the uneven
background brightness distribution and improve the saliency of the target. Second, an intensity
standard deviation method is designed to determine the unevenness of the background. According
to the difference in background smoothness, an appropriate “center-surround difference” operation
is selected to suppress sea wave interference, and the single frame suspected target candidate region
is obtained. Third, in order to “align” the multi-frame image sequence, a method for correcting the
position of the inter-frame jitter is proposed. The inter-frame jitter is measured and compensated by
the inter-frame block matching results. Finally, according to the three assumptions of multi-frame
spatiotemporal filtering, single-frame false targets are filtered out and combined with the OTSU
method to segment the real target area. To evaluate the performance index of the proposed method by
comparing it with the four other state-of-the-art methods for dealing with the MHE. The experimental
results show that the algorithm achieves the maximum detection rate (DR) on the premise of being far
lower than the false alarm rate (FAR) of the comparison method. The final experimental results also
confirmed that the proposed algorithm is more suitable for infrared target detection in diverse MHEs.

Keywords: infrared target detection; visual attention model; multi-frame spatiotemporal filtering;
image segmentation

1. Introduction

Stable environmental adaptability has always been the bottleneck problem of the
infrared search and tracking (IRST) system in the maritime rescue and surveillance process.
Therefore, the research on the maritime infrared target detection algorithm under different
severe sea conditions is an urgent task. However, the research on infrared target detection
methods under the MHE is not mature. The backlight environment is the most common and
unavoidable. Once the target on the sea is just between the sunlight and the infrared camera,
the backlight infrared image will be captured. Due to the effect of sunlight and waves,
compared with ordinary images, there is an uneven background brightness distribution,
resulting in high significant highlight noise points. In addition, the saliency of the target
will be weakened and the background interference will be enhanced, which makes it more
difficult to detect the target accurately, resulting in a lower search and rescue rate. The
purpose of this paper is to design a target detection algorithm with a low false alarm rate, a
high detection rate, which is not time consuming and has a strong robustness.
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With the development of infrared imaging technology, infrared target detection tech-
nology has attracted more and more attention from researchers. For example, the in-
frared target detection methods in the spatial domain mainly include the local contrast
method [1,2], which requires the target to be highly significant in the local area, and the
maritime backlight image analysis finds that the target local contrast characteristic is not
prominent. The multiscale fuzzy metric method [3,4] is to eliminate a large amount of
background clutter and noise through a fuzzy metric, and a simple adaptive threshold
is selected to segment the target. This method is susceptible to missed alarms caused by
high bright spots and a strong background interference. Infrared target detection methods
in the frequency domain mainly include the wavelet transform method [5,6], which uses
a wavelet basis to convolve the original image to obtain and transform coefficients in
different directions, and the application target has strong high-frequency information in
multiple directions to filter out the background. The spectral residuals method [7] assumes
that the image information is composed of prior knowledge information and significant
part information. The logarithmic spectrum of the salient part is obtained by subtracting
the information of the prior knowledge from the information of the logarithmic spectrum
image, and then the Fourier transform of the image is applied to remove the redundant
background, and finally, the saliency map is segmented to obtain the target. The method
is suitable for the detection of small and weak targets under a strong background. When
the target area is large, it is easy to filter out the real target. The method does not have
a strong robustness or stability. In the spatiotemporal domain, infrared target detection
methods mainly include the spatiotemporal saliency approach [8,9] and pipeline-filtering
algorithm [10,11]; these methods rely on extracting target information from continuous
frames. However, none of these methods can resist the interference caused by the jitter
between frames. The low-rank tensor completion theory [12,13] considers that the inherent
spatial correlation between image pixels indicates that the background is in a continuous
manner and highly correlated. On the contrary, the targets are regarded as the object of
breaking the local correlation. Therefore, the segmentation of the target from the back-
ground can be regarded as the recovery of the low-rank matrix. The low-rank tensor
completion theory mainly includes methods based on the low rank matrix recovery theory.
At first, Gao proposed the IPI [14] model, then Guo proposed the ReWIPI [15] model and
Zhang proposed the NRAM [16] model. Based on the dictionary representation method,
Li initially proposed the LRR [17] model, then Lu proposed the OLDSBD [18] model and
Zhang proposed the SRWS [19] model. Based on the tensor recovery theory and method,
Dai extended the IPI to the IPT [20] model, Zhang proposed the ECASTT [21] model and
Kong proposed the NTFRA [22] model. The disadvantage of these methods is its poor
robustness to complex environments with a lot of noise. Obviously, this method is difficult
to apply in a backlight image. At present, deep learning [23,24] has once become a hot
topic. For example, Gao constructed an infrared target detection neural network based on
low-dimensional and high-dimensional feature matching [25]. Zhao proposed an infrared
small target detection based on the Generic Countermeasures Network (GAN) [26]. Dai
implanted the traditional local contrast into the deep network to achieve infrared target
detection [27]. However, the method has extremely high requirements on the quality and
quantity of the training samples. If the limited training sample is not enough to contain
more information, the target will not be accurately distinguished. Additionally, deep
learning methods will consume more time. The VAM [28,29] is a computer model based
on the human visual perception system. The model can successfully focus on the region
of interest when the human eye is observing a particular scene. In the actual process of
searching and detecting the marine target, the target area is generally also a prominent
area that easily attracts visual attention. Compared with the above algorithm, the main
advantage of this model is that it adopts a multi-feature processing method, which can
detect the target with a large difference of gray and contrast at the same time; also, the
“center-surround difference” operator can highlight different significant information, so
that the required information can be extracted selectively. The method integrates multiple
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feature channels; we can extract the corresponding feature map by analyzing the backlight
image features. The main contributions of this paper are as follows:

(1) The orientation feature, contrast feature, infrared thermal feature and frequency
domain feature of the target are analyzed, a preprocessing method combining the
Gauss difference filter and local minimum filter is constructed to improve the target
saliency in the backlight scenario.

(2) An intensity standard deviation method is designed to distinguish the background
non-uniformity; the purpose is to select a suitable “center-surround difference” op-
erator to suppress the interference of highlight points according to the background
smoothness. It also reduces the time consumption of a traditional VAM.

(3) According to the space–time characteristics of the maritime target, three hypotheses
are proposed to realize the multi-frame space–time filtering of the image, to further
eliminate the strong background and sea clutter interference.

(4) Considering that the imaging system will produce an inter-frame jitter in the process
of practical application, this paper proposes a method of inter-frame jitter position cor-
rection to “align” the image sequence, so as to improve the real target detection rate.

The remaining part of this paper is organized as follows. In Section 2, the characteristics
of backlight maritime infrared images are analyzed and described, and a preprocessing
method to improve the target saliency is proposed. The suspected target pre-screening
method and the real target judgment strategy is introduced in detail. In Section 3, we first
introduce the experimental data set, then verify the effectiveness of the improved strategy
and carry out a comparative experiment. Finally, the limitations of the proposed method
are given. An overall conclusion is drawn for a summary of this paper in Section 4

2. Materials and Methods

In this section, we analyze the characteristics of backlight maritime infrared images
and propose a preprocessing method that can improve the saliency of the target.

2.1. Image Feature Analysis

Image feature analysis is the key step to achieve an accurate detection of the target.
The primary purpose is to find the difference between the target and the background in the
MHE. This paper mainly analyzes the typical infrared maritime image in Figure 1 from
the image’s direction features, contrast features, infrared thermal features and frequency
domain features.
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Figure 1. Typical infrared maritime backlight image.

First, calculate the local orientation characteristics of the entire image by
Equations (1) and (2), as shown in Figure 2. Where the Gx and Gy represent the hori-
zontal and vertical gradient amplitudes calculated by the Sobel operator, respectively. β
represents the compensation angle. θ represents the gradient distribution. The results show
that the target has no unique orientation feature compared with the background.

β =


0◦, arcsin Gx > 0 and arcsin Gy > 0

180◦, arcsin Gx < 0
360◦, arcsin Gx > 0 and arcsin Gy < 0

(1)

θ = arctan
Gy

Gx
+ β (2)
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Figure 2. Orientational gradient distribution diagram.

Second, the contrast of the entire image is calculated by Equation (3): g f g f represents
the average gray level of the foreground and gbgb represents the average gray level of the
background. For the convenience of the observation, the competitive area with the same or
a higher local contrast as the target area is marked as green, as shown in Figure 3.

Contrast =
max

[
g f , gb

]
min

[
g f , gb

] (3)
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Figure 3. Infrared image feature analysis and preprocessing method under MHE.

It can be found that strong backgrounds such as sea waves and bridges also have
strong contrast characteristics in a local area, and the target does not have the strongest
local significance. Third, from the infrared thermal map calculated in Figure 4, the backlight
image has an uneven background brightness distribution due to the influence of the sea
waves and sunlight, and the target contour and edge information are seriously damaged.
A further observation found that the overall target is at the lowest gray level.
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Figure 4. Infrared thermal image of maritime target in backlight environment.

Finally, this article analyzes from the perspective of the frequency domain and applies
Fourier transform and inverse Fourier transform technology to process the backlight
maritime infrared image. The processing result is shown in Figure 5. The (a1–d1) is
high-frequency information and (a2–d2) is low-frequency information.

We can find that the strong background is at the lowest frequency position and the
noise, such as sea waves, is at the highest frequency position.

2.2. A preprocessing Method to Improve Target Intensity

According to the feature analysis, the paper proposes a preprocessing algorithm that
can improve the saliency of the target. The overall process is shown in Figure 6.

First of all, according to the gray-level feature analysis results, the target is at the lowest
gray level. Secondly, according to the results of the frequency domain feature analysis of
the image, it is possible to highlight the saliency of the target by filtering out the highest
and lowest frequency information, and a Gaussian difference filter is constructed. Finally,
the local minimum image and the Gaussian difference filtering result image are multiplied
by Equation (4) to generate the required preprocessed image that can improve the saliency
of the target. The ORI represents the original image, Min_Conv and GS_Conv represent the
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local minimum kernel and Gaussian convolution kernel, respectively, PRI represents the
preprocessed result image and the preprocessed result image is shown in Figure 7.

PRI = |ORI ⊗Min_Conv|≥0×|ORI ⊗ GS_Conv|≥0 (4)
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Figure 7. Preprocessed results of images in Figure 1a–d, respectively.

It can be found that the target basically occupies the highest gray value from Figure 7,
and the intensity and quantity of the sea wave noise and strong background noise are
significantly reduced.

In Figure 8, it is found that the number of competitive regions with the same or higher
local contrast with the target region is significantly decreased after preprocessing. Therefore,
the preprocessing method is more beneficial for subsequent target detection.
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At present, there are many computational VAMs in the field of optical image process-
ing, and these models have been successfully applied in target detection [30–32]. Based on
the improved VAM preselector and ASF discriminator, this paper proposes an algorithm
for infrared target detection under the MHE. The overall structure and process of the
proposed algorithm are shown in Figure 9, which is mainly divided into a suspected target
pre-screening stage and a real target judgment stage.
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Figure 9. Overall structure and flow of the proposed algorithm.

2.3. Suspected Target Pre-Screening Stage

First, according to the analysis results in Section 2.1, the target and the background
have similar orientation features, so the orientation pyramid in the VAM is abandoned
to decrease the clutter interference and reduce the complexity of the algorithm. Based
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on the characteristics of the target with a stronger local contrast and global gray after
preprocessing, the intensity feature is selected to construct the pyramid. Second, the
“center-surround difference” operation has always been a crucial step of the VAM. The core
is to perform the difference processing at different scales, and the purpose is to achieve
feature extraction. The traditional VAM method is to define the center scale c (c = {2,3,4})
and the surround scale s, where s = c + σ (σ = {3,4}). The result of processing the data set
in Figure 1 is shown in Figure 10. It can be found that the saliency of the target under
different scale operations is not the same. For the data sets (a) and (b), the “center-surround
difference” operation results of the 4–7 and 4–8 layers make the target have the strongest
significance, as shown in the green box in Figure 10. However, the results of the 2–5
and 2–6 layers in data sets (c) and (d) make the target the most significant, as shown in
the red box in Figure 10. Therefore, a different “center-surround difference” operation
should be adopted for infrared images in the MHE. Further analysis found that the data
sets (a) and (b) are more unevenly distributed in the local area than the data sets (c) and
(d). Therefore, the corresponding “center-surround difference” operation can be selected
according to different background intensities to reduce the background interference. The
gray scale varies dramatically at multiple locations with non-uniformity in Figure 1a,b. On
the contrary, the slow and uniform grayscale change in Figure 1c,d. The intensity standard
deviation can effectively characterize the degree of heterogeneity of the background. To
avoid the impact of the target and the strong background (bridge), our designs for a random
intensity standard deviation method to determine the non-uniformity of the background
are shown in Equation (5).
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RISD =

√
(∑k

i=1(Si)−max(Si)−min(Si))2

k
(5)

where k represents the number of random samplings of the block regions, Si is the local
standard deviation of each block and RISD is the random intensity standard deviation of
the entire image. More than 20,000 maritime infrared images under different sea wave
intensities are selected, and the statistical results obtained are shown in Figure 11. It can
be seen from Figure 11 that the intensity standard deviation of (a) and (b) is significantly
higher than that of (c) and (d). The maximum intensity standard deviation of the smooth
background is 0.1111.
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Figure 11. Intensity standard deviation under different sea wave background.

In contrast, the minimum standard deviation of the intensity of the non-uniform
background is 0.1363. Therefore, it can be found that the intensity standard deviations of
the two categories of images are significantly different. The selected threshold is the average
of the maximum standard deviation of the smooth background and the minimum standard
deviation of the rough background (threshold 0.1237). Experiments have confirmed that it
has the best experimental effect.

2.4. Real Target Judgment Stage

Figure 12(a1–d1) shows the saliency map obtained by applying the VAM proposed
by ITTI; (a2–d2) is the saliency maps obtained after the suspected target screening stage.
It can be found that the proposed above method significantly reduces the interference of
sea waves noise, and also attenuates the saliency of some backgrounds. However, further
observation shows that some background interference is still not eliminated after the above-
improved method. To solve this problem, this paper proposes a method based on the
inter-frame jitter position correction and multi-frame spatiotemporal filtering to judge the
suspected target and get the real target. Our proposed three hypotheses are based on the
temporal and spatial characteristics of the target.

(1) The target shift between adjacent frames will not be too large;
(2) The intensity of the target in the saliency map of adjacent frames does not differ greatly;
(3) The target will appear continuously within a certain time frame.

When one of the above three hypotheses is not satisfied, it is judged as the clutter
interference. Only when the above three hypotheses are satisfied at the same time, we
judge it as the real target, as shown in Figure 13.
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Figure 12. (a1–d1) are the saliency maps obtained by the VAM method proposed by ITTi, (a2–d2) are
the saliency maps after applying the above improved method.
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Figure 13. Three cases of false targets based on spatiotemporal characteristics.

Considering that in the actual sea surface target search task, the slight jitter of the imag-
ing system will cause a strong frame jitter. However, the commonly used anti-shake mea-
sures are difficult to ensure the complete elimination of the jitter between frames [33–35],
so it is easy to cause an excessive shift of the target between adjacent frames due to the
vibration of the imaging platform, resulting in a missed detection. Therefore, before ap-
plying the multi-frame spatiotemporal filtering method, this paper proposes a method of
inter-frame jitter position correction, which measures the jitter of adjacent frames through
the inter-frame block matching results of the former frame and the current frame. The
detailed steps are as follows:

Step one: find the two most significant regions from the saliency map generated in the
current frame; the corresponding position of the original image is the block to be matched,
as shown in Figure 14.
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Figure 14. Determine the location of the block to be matched in the original image.

Step two: calculate the highest normalized cross-correlation matching coefficient NCC
between the two block images of the current frame and the former frame, as shown in
Equation (6). C represents the current frame data, F represents the former frame data and C
and F represent the average value of the corresponding data. The best matching position is
the pixel position of the maximum NCC calculated from the whole image. The difference
between the best matching position and the position of the block images of the current
frame is inter frameshift at this time. If the inter frameshift of the two blocks to be matched
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is highly similar, it is regarded as valid data, and the shift is recorded as
→

I JCm and
→

I JCs,
respectively. Once the similarity is not high, the inter-frame jitter shift generated by the
blocks with a lower similarity is discarded.

NCC(x, y) =
∑m,n

[
C(m, n)− C

][
F(x + m, y + n)− F

]√
∑m,n

[
C(m, n)− C]2[ F(x + m, y + n)− F]2

(6)

Step three: once the difference between the horizontal and vertical inter-frame jitter
shift of the image to be matched is less than a certain number of pixels, it is judged as valid

data with a low similarity, and the average inter-frame jitter shift
→

AI JC of the entire image
is calculated, as shown in Equation (7).

→
AI JC =


→

I JCm+
→

I JCs
2 ,

→
I JCm−

→
I JCs ≤ (5, 5)

0,
→

I JCm−
→

I JCs > (5, 5)
(7)

After compensating for the interframes jitter, the sequence image is realigned and the
multi-frame spatiotemporal filtering is realized according to the three hypotheses of the
target space–time characteristics. This paper applies Equation (8) to develop hypothesis (1),

where
→
LF is the centroid position vector of former frame saliency image, and

→
LC is

the centroid position vector of the current frame saliency image; MaxShift is maximum
matching frameshift.

Hypotheses (2) is developed by Equation (9), Norm is the normalized function, F(m,n)
is the gray value of the centroid position of the saliency map in the former frame and C(m,n)
is the gray value of the centroid position of the saliency map in the current frame. If the
suspected target can satisfy the above two hypotheses and achieve continuous inter-frame
matching, it is judged as the real target and the OTSU method is applied to segment the
target area. Otherwise, it is judged as a false target and the gray value of the current area is
cleared. Figure 15 shows seven saliency images selected from a video sequence after an
inter-frame jitter position correction. The target area is marked with a green frame, and the
two clutter is marked with red and blue, respectively.∣∣∣∣∣∣∣∣→LF−

→
AI JC−

→
LC
∣∣∣∣∣∣∣∣2 ≤ 5

√
2 (8)

Norm[F(m, n)− C(m, n)] ≤ 0.1 (9)
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Figure 15. Determine the location of the block to be matched in the original image.

First of all, it can be found that the target has always had a strong saliency, and the
intensity of the target has been maintained at 0.94–0.96. Second, the target has a small
amount of inter-frame shift, which is about one to two pixels. Finally, the target appears
continuously in the six saliency images, so it can be determined as the target if the above
three assumptions are satisfied. For the clutter marked by a red line, it keeps a similar
saliency in the first two frames and disappears suddenly in the third frame, so it cannot
achieve the specified matching times, and finally the suspected target is determined as the
background interference. For the clutter in the blue line, it maintains a strong saliency in
the first five frames, basically at 0.89–0.92. However, at the sixth frame, the significance
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suddenly decreases to about 0.58, which exceeds the set experience threshold of 0.1, so it is
determined as the clutter interference.

In summary, the novelty in the scene and method is the VAM preselector (consists of
image preprocessing and suspected target prescreening) and an ASF discriminator (consists
of real target judgment), a strategy which can first effectively improve the significance
of the target in a single frame image and suppress the intensity of background clutter,
then achieve jitter compensation through adjacent frame images, and finally achieve a
further filtering of a strong sea wave clutter through multiple frame sequence images.
The proposed method realizes the accurate detection of the distressed target under the
backlight scenario.

3. Results and Discussion

In this section, first, we introduce the data set of the algorithm verification. Second, in
order to better support the rationality and effectiveness of the proposed method, this paper
presents three key intermediate results that make the proposed method superior to the state-
of-the-art algorithms in infrared ocean detection: (1) The preprocessed result image and
signal-to-clutter ratio gain (SCRG). (2) The saliency map under a different “center-surround
difference” operation. (3) The amount of clutter and an anti-jitter performance. Finally, the
advantages of the proposed strategy and the comparison algorithm in the detection results
and receiver operating characteristic curve (ROC) are compared.

3.1. Real Target Judgment Stage

This paper analyzes and verifies 20,000 maritime infrared images and selects 8 typical
images in different scenarios for display, as shown in Figure 16. Table 1 shows the descrip-
tion of the experimental environment and typical image scenes. It can be seen that the
data set is collected by infrared cameras from different bands under different wind speeds
and wave strengths. The images include targets of different sizes disturbed by waves, sea
antennas, islands and a lens flare. Therefore, the data set includes the common challenges
of target detection in the MHE, and the good detection performance of these data sets can
verify the effectiveness of the algorithm.
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Table 1. Experimental environment and image description of each image sequence. 

Image Se-

quence 

Number of 

Test Sets 

Experimental Environment and Image Description 

Wind Speed (m/s) Wave Height (m) Infrared Camera 
Background Inter-

ference 

(a) 1025 8.6–9.8 1.8–2.0 Long wave un-refrigeration 

Bridge 

Bright and dark 

spots 

(b) 1342 5.0–5.4 0.3–0.5 Medium wave refrigeration 

Sea-sky line 

Islands 

Sea waves 

(c) 2085 6.0–7.4 0.7–0.9 Long wave un-refrigeration 

Lens flare 

Highlight ocean 

noise 

(d) 4463 2.7–3.0 0.1–0.3 Medium wave refrigeration smooth streaks 

(e) 507 8.6–9.8 1.8–2.0 Long wave un-refrigeration 
Connected dark 

lines 

(f) 768 5.0–5.4 0.3–0.5 Medium wave refrigeration 
Shadow bright and 

dark spots 

(g) 821 2.0–3.4 0.1–0.3 Long wave un-refrigeration Bridge reflection 

(h) 2017 5.0–5.4 0.3–0.5 Medium wave refrigeration 
Sea-sky line 

Sea waves 

Figure 16. (a–h) is a representative images of each image sequence.

3.2. Verify Intermediate Results

In this section, we prove the effectiveness of the proposed three key units, so we show
the intermediate results and performance analysis of each unit.

Unit one: the preprocessing algorithm to improve the target saliency.
The purpose of the preprocessing algorithm is to suppress the interference of the

background and sea waves, thereby enhancing the saliency of the target. Through the
representative image processing results in Figure 17, it can be observed that the target and
background gray levels are reversed, and the target has a strong gray level. It can be seen
from Figure 17a,b,e that the strong background is suppressed and the ocean wave noise is
significantly reduced. The lens flare and background reflections are clearly suppressed in
Figure 17c,g. The connected dark or bright lines are also eliminated in Figure 17d,f,h.

In order to better confirm the performance advantages of the proposed preprocessing
algorithm, we choose SCRG as the evaluation index. SCRG is defined as:

SCRG =
(S/C)out
(S/C)in

(10)
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where S and C are the average target intensity and clutter standard deviation, respectively.
(.)in and (.)out are the original image and the result image. The SCRG index measures the
magnification of the target relative to the backgrounds before and after processing. The
experimental results of the proposed method with the index are shown in Table 2. It can be
found that the processed image has a high SCRG, which reaches the maximum of 52.7 in
the data (f).

Table 1. Experimental environment and image description of each image sequence.

Image
Sequence

Number of
Test Sets

Experimental Environment and Image Description

Wind Speed (m/s) Wave Height (m) Infrared Camera Background
Interference

(a) 1025 8.6–9.8 1.8–2.0 Long wave un-refrigeration Bridge
Bright and dark spots

(b) 1342 5.0–5.4 0.3–0.5 Medium wave refrigeration Sea-sky line
IslandsSea waves

(c) 2085 6.0–7.4 0.7–0.9 Long wave un-refrigeration Lens flare
Highlight ocean noise

(d) 4463 2.7–3.0 0.1–0.3 Medium wave refrigeration smooth streaks

(e) 507 8.6–9.8 1.8–2.0 Long wave un-refrigeration Connected dark lines

(f) 768 5.0–5.4 0.3–0.5 Medium wave refrigeration Shadow bright and
dark spots

(g) 821 2.0–3.4 0.1–0.3 Long wave un-refrigeration Bridge reflection

(h) 2017 5.0–5.4 0.3–0.5 Medium wave refrigeration Sea-sky line
Sea waves
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Figure 18. (a1–h1): operation results of “center-surround difference” applied in ITTI model. (a2–h2): 

the results of the “center-surround difference” operation of different scales in our model. 

Figure 17. (a–h) is preprocessed results of images in Figure 16a–h, respectively.

Table 2. SCRG value after image preprocessing.

Data (a) (b) (c) (d) (e) (f) (g) (h)

SCRG 24.6 25.4 23.5 36.0 26.7 52.7 21.6 50.1

Unit two: the different scales “center-surround difference” operation.
For the background with different smoothness, the “center-surround difference” oper-

ation under different scales can highlight the significance of the target. Figure 18(a1)–(h1) is
the feature map obtained by the “center-surround difference” operation applied in the ITTI
VAM, and (a2)–(h2) is the result of the selecting corresponding scales “center-surround
difference” operation. It can be found that (a2), (b2), (e2), (h2) has less clutter interference
than (a1), (b1), (e1), (h1), and the clutter intensity is also obviously suppressed. Compared
with (c1) and (g1), the target area of (c2) and (g2) is well preserved, which contributes to
the integrity of the target contour in the final detection result.

Unit three: interframe jitter position correction.
Inter-frame jitter compensation is a key step in realizing multi-frame spatial filter-

ing. Only by matching multi-frame image sequences can the target appear the strongest
continuous saliency. To verify the performance of the proposed inter-frame jitter position
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correction method, the mean square error (MSE) of the overlapped saliency map after
adjacent frames position correction is calculated, as shown in Equation (11).

MSE =

√
∑W

x=1 ∑H
y=1(S f (x, y)− Sc(x, y))2

W ∗ H
(11)

W and H represent the width and height of the image, respectively. Sf and Sc represent
the saliency map of the former frame and the current frame, respectively. Since the adjacent
frames are acquired in a short period time (our infrared imaging camera is set to 40 frames
per second), their saliency maps should be similar to each other. Once dislocation is caused
by the jitter between the frames, the MSE between them should be amplified. Figure 19
shows all the correction results of the eight image sequences, including the adjacent frame
MSE value before the correction, the amount of inter-frame correction in the horizontal and
vertical directions and the MSE values of the adjacent frames after applying the proposed
correction method. It can be found that the MSE value after correction is smaller than before
correction, especially in the position where the jitter is relatively large, as the maximum
MSE value before correction reaches 0.9 and after the horizontal and vertical position
correction, the MSE value drops to about 0.2. This proves the effectiveness of the proposed
image correction method and achieves the purpose of aligning the image sequence.

1 
 

 

 
(a1) (b1) (c1) (d1) (e1) (f1) (g1) (h1) 

 
(a2) (b2) (c2) (d2) (e2) (f2) (g2) (h2) 

Figure 18. (a1–h1): operation results of “center-surround difference” applied in ITTI model. (a2–h2):
the results of the “center-surround difference” operation of different scales in our model.
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Figure 19. (a–h) is verification results for inter-frame jitter position correction.

3.3. Comparison of Experimental Results

This paper selects four marine target detection algorithms to compare with the pro-
posed algorithm. These algorithms are aimed at the target detection, which are the absolute
directional mean difference (ADMD) method [36], partial sum of the tensor nuclear norm
(PSTNN) method [37], the novel local contrast descriptor (NLCD) [38] and the multiscale
tri-layer LCM (TLLCM) method [39]. The final detection results of each algorithm are
compared in Figure 20 (we performed morphological dilation on the results to facilitate
observation). The proposed algorithm can overcome strong background interferences such
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as islands, bridges and connected dark lines, as shown in Figure 20a,b,e. At the same
time, it can also be adapted to the sea–sky environment, as shown in Figure 20b,d,h. It can
accurately suppress the interference of sea waves with high-brightness characteristics, effec-
tively reducing the generation of false targets, as shown in Figure 20a–c,e,f,h. In addition,
when the lens flare and bridge reflection appear in the image, as shown in Figure 20c,g, the
proposed algorithm can still accurately locate the target area. These data analysis results
also validated the effectiveness of the proposed strategy to detect large and small targets.
The ADMD method can accurately detect targets in multiple scenes, the reason is that
the ADMD method is based on directional information; false alarms may appear in the
strong background area close to the target characteristics, as shown in Figure 20a,b,e,h. The
PSTNN method can well eliminate the interference of a strong background and perfectly
compensate for the disadvantages of the ADMD algorithm. However, the method to stably
detect the target mainly depends on the whether the image satisfies the target sparsity and
background low-rank assumptions. The local complex scene will lead to more false alarms,
as shown in Figure 20c,f,g,h. For the NLCD method, the backlit image itself has a stronger
interference than the other scenes. This method is more sensitive to pixel-sized noises with
a high brightness (PNHB), so it produces a large number of missing alarms. The NLCD
method is only suitable for backlight scenes with weak ocean waves and strong target
textures. For the TLLCM method, the core of the method is to estimate the background so
as to filter out the background and extract the target. It can be found that the detection effect
is not ideal from the results, only when the target is accurately detected in Figure 20c,g.
However, there will be varying degrees of false alarms and missed alarms for other data
sets. The reason is that the size of the target is different. Once the background is not
estimated, the target will be filtered out.
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Figure 20. (a–h) Comparison of detection results of six detection algorithms.

The Gaussian difference, local minimum detection and multi-scale construction in the
VAM applied in this paper are all based on a convolution calculation. When N represents
the total number of image pixels and p represents the local neighborhood scale, the time
complexity of the proposed algorithm is O(p2N). The time complexity of other methods has
been calculated in their respective literatures. The time complexity and time consumption
of all methods are finally shown in Table 3, from which we can find that the time complexity
of this algorithm is the lowest. We simplified the traditional VAM, mainly reflected in:
(1) based on the analysis results of the image features in Section 2.1, we abandoned the
construction of the orientation pyramids. (2) Based on Section 2.3, this paper uses some, but
not all, intensity pyramids to perform the “center-surround difference” operator. Therefore,
the above two schemes also reduce the time consumption of the traditional VAM, making
the proposed methods meet the requirements of real-time processing. In contrast, other
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methods have the characteristics of a high complexity and long time consumption, so they
are difficult to meet the engineering application.

Table 3. The complexity and time consumption of typical methods.

Method Proposed ADMD PSTNN

Complexity
Time/s

O(p2N)
0.082

O(p2N3K)
0.185

O(n1n2n3log(n1n2) + n1n2
2[(n3 + 1)/2])

0.158

Method NLCD TLLCM

Complexity
Time/s

O(
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p6N)
0.281

O(LR2logR2MN)
4.661

In order to further prove the performance advantages of the proposed algorithm, we
compared the ROC curves of DR and FAR of each algorithm, as shown in Figure 21.
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Figure 21. (a–h) is ROC curves of detection results of eight real sequences.

It can be observed from Figure 21 that the ROC curve of the proposed method reaches
its maximum DR when it is much lower than the FAR of the comparison algorithm. In
contrast, the comparison algorithm can only achieve the maximum DR under a higher FAR,
and not every type of data set can achieve a 100% DR. The TLLCM method has the worst
performing index. The reason is that it is designed according to the local characteristics of
the target and the background. However, targets submerged by strong sunlight usually
lose their local characteristics. Therefore, it performs poorly in this situation. Although the
PSTNN method can accurately detect some targets, it does not use the temporal and spatial
information of the targets to further reduce false alarms. In this way, the maximum DR
can be reached in the case of a large FAR. When the ocean waves are small and the target
has strong texture features, NLCD can have a high detection accuracy. However, once the
sea waves are large and accompanied by a strong background interference, the DR will
be severely reduced. The ROC curve of the ADMD method can achieve a higher DR than
other comparison algorithms, but the problem exposed is that the strong background area
close to the target characteristics cannot be filtered out during the detection of the image
sequence. If we define the best performance as achieving the maximum DR while reducing
the FAR as much as possible, this will verify that the proposed method is most suitable for
detecting infrared targets in the MHE.

3.4. Limitations

Due to the fact that the contrast, gradient and intensity characteristics of the target
in the backlight environment are different from the ordinary environment, the proposed
method is more suitable for target detection in the backlight environment. At present, we
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are solving the problem of accurate image classification in the backlight environment and
general environment, to better serve engineering applications.

4. Conclusions

This paper’s major contribution is to provide an effective improved VAM preselector
and ASF discriminator strategy for effectively extracting targets’ saliency from an infrared
maritime backlight image and help improve the target detection accuracy. Through an
adaptive selection of the appropriate “center-surround difference” operator, the target
saliency is enhanced while reducing the saliency of sea waves and the strong background.
The experimental results also show that this optimized operation can effectively cut down
the number of clutter interference. The inter-frame jitter position correction method used in
the process of multi-frame image processing can effectively overcome the vibration of the
imaging platform. The experimental results also confirm that the MSE value after correction
is reduced from a maximum of 0.9 to 0.2. After applying the multi-frame spatiotemporal
filtering and OTSU method, the real target is accurately segmented from a single frame
of highly suspected targets. The experimental results based on real data sets show that
compared with other algorithms, the proposed algorithm has a higher DR for infrared
marine targets in different wind and wave environments, targets of different sizes and a
strong background interference.
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