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Abstract: In recent years, the resolution of remote sensing images, especially aerial images, has
become higher and higher, and the spans of time and space have become larger and larger. The
phenomenon in which one class of objects can produce several kinds of spectra may lead to more
errors in detection methods that are based on spectra. For different convolution methods, downsam-
pling can provide some advanced information, which will lead to rough detail extraction; too deep
of a network will greatly increase the complexity and calculation time of a model. To solve these
problems, a multifunctional feature extraction model called MSNet (multifunctional feature-sharing
network) is proposed, which is improved on two levels: depth feature extraction and feature fusion.
Firstly, a residual shuffle reorganization branch is proposed; secondly, linear index upsampling
with different levels is proposed; finally, the proposed edge feature attention module allows the
recovery of detailed features. The combination of the edge feature attention module and linear index
upsampling can not only provide benefits in learning detailed information, but can also ensure the
accuracy of deep feature extraction. The experiments showed that MSNet achieved 81.33% MIoU on
the Landover dataset.

Keywords: land-cover detection; hyperspectral; remote sensing images; feature fusion

1. Introduction

Remote sensing image processing technology has played an important role in the
study of urban and rural land conditions [1,2]. Accurate information on land cover is
a key data resource for urban planning and other fields [3]. Semantic segmentation in
aerial orthophoto images is very important for the detection of the real-time situations
of buildings, plants, and surface water. Existing land-cover segmentation models still
have some defects. Among the archaic remote sensing image segmentation practices,
the valuation measure from mathematical statistics has been widely used. Methods that
use this obtain the mean and variance of each category in the target area by learning the
receptive field so as to obtain the classification results. Other relevant methods rely on the
spectral discrimination ability [4] of a training model to obtain the spatio-temporal features
of an image. However, with the progress of science and technology, the resolution of remote
sensing images continues to improve, and the spectral features are becoming more and
more complex; as a result, small differences in different objects of the same category will
have a great impact on the segmentation results. Therefore, only using spectral features to
extract targets is often not enough. Classification algorithms based on machine learning,
such as width learning [5], non-deep neural networks [6], and so on, are not suitable for
large amounts of data. When used for detection, target maps only undergo a small amount
of linear or nonlinear transformation, but the classification of complex detailed information
and high-order semantic information by the above means can be terrible. Especially for
hyperspectral remote sensing maps with large feature differences and numerous space–
time indices, the above classification results are not satisfactory. For this type of land
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detection analysis [7], aerial images are widely used. There are many ways to occupy land,
and the influence of tall architecture on low architecture is complex and changeable; for
vegetation, areas covered by shrubs are difficult to separate from forest areas [8]. In addition,
a wide variety of trees grow in different ways and soil types. Water is divided into living
water and dead water, including natural pools and man-made ponds, but ditches and
riverbeds are excluded. These features make it very difficult to extract features from remote
sensing images. Last but not least, the above traditional methods [3,5,9] usually require
manual calculation of the statistics of the obtained parameters, which further increases the
complexity of deeper feature learning. Remote sensing images are developing towards
higher resolutions and larger space–time spans. The same object with different spectra and
different objects with the same spectrum can make classification more difficult. To sum up,
the conventional means of land detection have limited feature-mining abilities and fail to
adapt to different datasets.

In recent years, deep learning has been widely used in the field of remote sens-
ing image analysis for land cover [9–12] and other applications [13]. When it comes to
deep learning, since Long et al. [14] published a full convolution neural network (FCN,
2015), many achievements of scientific research based on pixel classification have emerged.
For instance, Ronneberger et al. [15] proposed a UNet that can obtain detailed contextual
information. The pyramid aggregation proposed by Zhao et al. [16] can integrate the
contextual information of different regions so as to enhance the mechanisms to learn the
overall characteristics, similarly to PSPNet [17] and DeepLabV3+ [18]. However, the exces-
sive amounts and complexity of calculations made by the model restrict the experimental
equipment and cause a certain waste of resources [19]. Therefore, Andrew and others
proposed MobileNet (lightweight network) to alleviate the computational pressure, but the
full release of the efficiency of the model is still a major problem faced by researchers.
For example, Zhang et al. [20] proposed a channel shuffle module in 2017, which released
the potential of the model by shuffling and recombining; Yu et al. proposed a feature fusion
module (FFM) [21] and attention refinement module (ARM) [22] in 2020 to balance accuracy
and speed; the selective kernel proposed by Li et al. in 2019 used an attention mechanism
on the convolution kernel, allowing the network to select its own suitable convolution
kernel. The difficulty in this kind of research is the enhancement of the accuracy of the
model on the premise of limiting the weight of the model. Fully releasing the performance
of the model [23] is our research direction.

Considering the existing problems, a multifunctional feature-sharing network for land-
cover segmentation is proposed in this paper. For depth feature mining, an SFR module is
proposed. Inspired by the residual structure [24], we take the output result of the shuffle
unit as the input of ResNet and change the numbers of input and output channels. In this
way, even if the SFR blocks are stacked many times, the amounts of calculations (flops) can
be strictly limited to about 1G. Another branch that we propose is a linear index upsampling
branch with different levels to guide upsampling after continuous downsampling, which
saves the process of learning upsampling. At the same time, the outputs after two SFR
modules and three SFR modules are processed by the EFAModule and then fused with the
output of the last downsampling of this branch to extract logical features and reply high-
resolution detailed information to improve the learning effects of the detail features and
edge information. The introduction of the EFAModule can alleviate the mutual occlusion
caused by different objects with the same spectrum and can also greatly avoid the influence
of the shadows of high-level objects on low-level waters. The experimental results show
that this branch can ensure the accuracy of deep feature extraction, and the fusion of the
two branches has better performance: The average intersection union ratio (MIoU) of the
multi-functional feature-sharing network is higher than that of other networks. In general,
this work has three contributions:
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• One branch is a linear index upsampling branch with different levels. There is no
need to learn upsampling. A trainable convolution kernel is used for convolution
operations to acquire a complex feature map, which not only limits the amounts of
calculations, but also ensures the integrity of high-frequency information.

• The other branch combines a shuffle unit with a skip connection. Channel rearrange-
ment makes the extraction of information more well distributed, and the residual
structure ensures the accuracy of deep semantic information extraction. This branch
extracts key features and pays attention to the dependencies between contexts by using
the logical relationships [25] between information within a class and between classes.

• After processing of the two SFR modules, the EFAModule is introduced to extract
logical features and reply high-resolution detailed information, and good results in the
learning of detailed information and edge information of a feature map were achieved.

The network structure enables the model to better integrate global information, and en-
hances the extraction of intra-class information and inter-class information. The MLNet
model improves the average accuracy (MIoU) by 1.19–6.27%, with only 10–20% of the
weight of other models, such as PSP and Deeplabv3+.

2. Land-Cover Segmentation Methodology

With the improvement of remote sensing image resolution, the amount of detailed
information in remote sensing images has also greatly increased. Therefore, frameworks
that are applicable to land cover have great room for progress from the perspectives of
detailed information and upsampling feature fusion [26]. Fully releasing the efficiency of
models based on the above is the research direction of this paper.

2.1. Network Architecture

This paper proposes a special image segmentation network. Firstly, we propose a
residual shuffle reorganization branch. This branch learns the deep-level information of
images in the order of the channels, pays attention to the logical relationship between
intra-class information and inter-class information, and reduces misclassifications of the
same object and misdetection of different objects. Secondly, we propose a linear index up-
sampling branch with different levels, and it does not need to learn upsampling. A trainable
convolution kernel is used for the convolution operation to generate a dense feature map
and fully extract the semantic information of the target feature map. Then, the EFAModule
is introduced to strengthen the recognition of class information and accurately segment
the edge information. The feature map processed by the SFR and EFAModule is fused
with the downsampled feature map of the linear index upsampling branch with different
levels, which effectively limits the amounts of calculations on the premise of ensuring
the integrity of high-frequency information [27]. Finally, the output of the linear index
upsampling branch with different levels is fused with the output of the SFR branch, and the
final prediction map is generated [28]. The two-way fused MSNet has better performance,
and its mean intersection over union (MIoU) is higher than that of other networks. Its
hidden units in each graph convolutional layer are explicitly indicated in Table 1, and its
overall architecture is described in the following (Figure 1):

Table 1. Hidden units in each graph convolutional layer.

Branch 1 Branch 2 Middle Branch

3 × 3 conv shuffleNet ×2 +PReLU, 16 1 × 3 conv, 3 × 1 conv
maxpool shuffleNet ×2 +PReLU, 28 3 × 1 conv, 1 × 3 conv

groups conv + point conv shuffleNet ×2 +PReLU, 40 EFAModule
deconv ×2 shuffleNet ×2 +PReLU, 56

softmax
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Figure 1. Diagram of the structure of MSNet.

2.2. SFResidual

Inspired by shufflenet [29], we took the output of the shuffle unit as the input of the
residual structure to form the SFResidual module, as shown in Figure 2. The shuffle unit’s
shuffling can cover the global information and make the extraction of information more
uniform [30]; the residual structure uses the classic “skip connection”, which can efficiently
complete the recognition task with a large number of classifications, so the introduction of
the residual structure can make up for the deficiencies of a lightweight network. The fusion
of the two can greatly improve the spectral recognition ability, alleviate the problem of
image misclassification, and greatly improve the accuracy of segmentation. The structure is
shown in Figure 3.

Shuffleunit

Shuffleunit

Shuffleunit

Shuffleunit

x

PReLU

PReLU
F(x)+x

F(x)

+

identity

x

Figure 2. Structure of the SFResidual module.
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Figure 3. Structure of the shuffle unit.
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2.3. LIU Branch

Note that with more convolutional layers, more corresponding features will be ex-
tracted, but a very deep network will cause gradient disappearance and gradient expulsion.
VGG-16 uses convolutions to simulate fully connected layers, which can effectively alleviate
this problem, so we propose a linear index upsampling branch with different levels (LIU)
to optimize VGG-16 [31,32] and to achieve a better improvement.

2.4. EFAModule

Generally speaking, dilation convolution is used to prevent the loss of spatial hier-
archical information. A convolution with a dilation rate of 2 and a convolution kernel of
3 actually becomes a 7× 7 convolution, which will also produce grid effects when increas-
ing the receptive field. In order to reduce the influence of similar problems, an EFA unit
is proposed based on the lightweight structure of BiSeNet [33]. As shown in Figure 4, we
adopt a two-branch model composed of strip convolution. One branch is used to obtain
local information, and the other branch introduces dilation parameters to obtain edge
semantic information. The comprehensive extraction of multiscale information enhances
the ability to learn the module’s edge information.

3x3Conv, w/2

1x3Conv 3x1Conv(D)

3x1Conv 1x3Conv(D)

1x1Conv, w

+

Figure 4. Structure of the EFA unit.

The output graph (after ABunit processing) is pyramid pooled to obtain a characteristic
graph with the number of C1 channels and converted into the dimensions of (H · W, C1)
and (C1, H · W), as shown in Figure 5; then, they are cross-multiplied. The resulting graph
is processed with the softmax function, and the two processing results after the softmax
are cross-multiplied to obtain a large characteristic graph with dimensions of (H · W,
H · w). The characteristic image is cross-multiplied, and it is then reshaped with the image
before softmax (H · W, C1); finally, concatenation is performed on the channel dimension.
After the fusion, the module’s logic information extraction ability is significantly enhanced,
and the accuracy of edge information and detailed information recognition is improved [34].
For example, buildings covered by tree shadows are no longer misclassified as background,
and the segmentation of water edges is no longer affected by coasts and ships. The detailed
structure of the edge feature attention module is shown in Figure 5.
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Figure 5. Edge feature attention module.

In summary, the linear index upsampling branch with different levels not only limits
the amount of calculation, but also ensures the integrity of high-frequency information.
The SFResidual module extracts key features and pays attention to the logical relationship
between information within a class and between classes so that it can more fully focus
on the dependencies between contexts. The edge feature attention module can provide
high-resolution detailed information, and it has achieved good results in the learning of
the detailed information and edge information of a feature map.

3. Land-Cover Segmentation Experiment
3.1. Dataset
3.1.1. Land-Cover Dataset

The way in which we verified the model for land-cover segmentation proposed in this
paper was by using a dataset that we made. The dataset came from Google Earth. Google
Earth is a virtual Earth software developed by Google. It presents satellite photos, aerial
photos, and a GIS in the form of three-dimensional models. The authors first obtained
1000 large images with a resolution of 1500× 800 px on Google Earth on 20 March 2021;
these were cut into 23,915 small images with a resolution of 224× 224 px. These large
images had a large space span and a variety of shooting angles. They were roughly divided
into the following categories: private villas in wealthy areas of North America and Europe,
villages and forests in Western European countries, and China’s coastal rivers. In summary,
the dataset covered a wide area, including many environments with complex terrain, and it
was suitable for investigating the true detection capabilities of the model. As shown in
Figure 6, these images were manually labeled as 3 types of objects: buildings (white, RGB
[255, 255, 255]), water (blue, RGB [0, 180, 255]), and background (black, RGB [0, 0, 0]).
The work of making the labels corresponding to the original images was carried out with
Adobe Photoshop 2020.
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(a)

(b)

villa area hamlet seaside riverwaycoast

buildings waters backgrounds

Figure 6. Land segmentation dataset: (a) a remote sensing image; (b) an artificial label.

The semantic segmentation of this dataset presented great difficulties. In addition,
there were some more difficult problems [35]. Buildings are stationary objects, but the
differences in their height are large. The projection of the shadows of high buildings will
affect the edge contour segmentation of low buildings, and the same is true for tall trees;
remote sensing images with projections that are similar in appearance, indistinguisha-
bility is likely. As shown in the figures below, some vehicles were similar to buildings.
Although they are small in size, large areas of stationary vehicles are easily misclassified
as buildings; a close-to-horizontal viewing angle can cause trees to hide the water, which
would make a training set more difficult to learn; the tops of some buildings are similar
in color to vegetation, and can easily be misclassified as the background; the same water
area (private swimming pool) has two colors of blue and green, making it more difficult to
segment water objects. In summary, this dataset is relatively difficult to learn [36], and it
is also difficult to use it to perform accurate land-cover segmentation and perfect target
classification, as shown in Figure 7.

(a)

(b)

Figure 7. Land segmentation dataset. (a) Original image; (b) artificial label.

To facilitate the experiments, all pictures were cut in a certain order—from left to right
and from top to bottom, and there was no area overlap during the segmentation; images
with only one category were excluded to obtain a final dataset of more than 12,000 images
(224× 224 px). The dataset is randomly divided into a training set and a test set at a ratio
of 7:3.
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3.1.2. Public Dataset

This dataset consisted of 310 aerial images in the Boston area, each with 1500 × 1500 pixels,
and it contained hyperspectral, multispectral, and SAR-type images (the reader can search
for the ’Massachusetts Roads Dataset’ on the official website to find it easily). The complete
dataset contained 34,000 hectares. We cut the dataset into 10,620 small images (256 px),
which were divided into a training set and verification set according to the ratio of 7:3.
There were only the buildings (white, RGB [0, 0, 0]) and the background (black, RGB
[255, 255, 255]) in it, as shown in Figure 8.

(a)

(b)

building background

Figure 8. Public dataset. (a) Original image; (b) artificial label.

3.1.3. Four-Class Public Dataset

For the sake of verifying the effect of the proposed network in the segmentation task,
the LandCover dataset [37] was used, as shown in Figure 9. The dataset was composed
of images chosen from remote sensing photos covering 216.27 square kilometers of land
in Poland. It contained four types of labels: buildings (red, RGB [128, 0, 0]), woodlands
(green, RGB [0, 128, 0]), water (gray, RGB [128, 0, 0]), and background (black, RGB [0, 0, 0]),
as shown in Figure 9. The dataset had 33 pictures with a resolution of 25 cm (about
9000 × 9500 px) and 8 pictures with a resolution of 50 cm (about 4200 × 4700 px). It
was definitely not easy to accurately segment this dataset. In addition to the difficulties
mentioned above, there was still a problem with how we could accurately define these
four types of objects. “Building” refers to a regular solid object with a certain height that
will not move; “vegetation” refers to tall trees, flower beds, green belts, etc., but does
not include pure grassland; “water” includes rivers and streams, but does not include
waterless ponds. The projections of these objects blocked each other, which could easily
cause false detection. In Figure 8, the objects encircled by the yellow ellipse are single trees,
which are easy to misclassify as forests. The low shrubs marked by the yellow rectangle
are also easily misclassified as forests; buildings marked with blue rectangles are easily
misclassified as background; those marked with pink ellipses are greenhouses, which can
easily be mistaken for buildings, but they should be classified as background. To sum up, it
is not easy to perfectly classify land cover in this dataset.



Remote Sens. 2022, 14, 5209 9 of 20

(a)

(b)

Figure 9. An example from the LandCover dataset. (a) Original image; (b) artificial label. The parts
shown by the dotted line belong to the background class, though they are easily misclassified.
The objects encircled by the solid line are the target classes, though they are easily misrecognized
as background.

We processed datasets as follows: All images were cut in a certain order without
overlapping and omission to create images with 224× 224 px. Pure-color pictures were
removed, and the remaining images were randomly divided into the training set, validation
set, and test set according to the ratio of 7:3.

3.2. Evaluation Index

In this experiment, we selected three evaluation indicators: the pixel accuracy (pixel
accuracy, PA), mean pixel accuracy (MPA), and mean Intersection over union (MIoU). They
are calculated as follows:

PA
pii

k
∑

i=0

k
∑

j=0
pij

, (1)

MPA=
1

K + 1

k

∑
i=0

Pii
k
∑

j=0
Pij

, (2)

MIoU=
1

K + 1

k

∑
i=0

Pii
k
∑

j=0
Pij +

k
∑

j=0
Pji − Pii

, (3)

where k is the number of categories, pii is a pixel, and its correct mark is i, but its prediction
is j if the correct sign is i. When i 6= j, pii is a true positive, pij is a false negative, pji is a false
positive, and pjj is a true negative. True positive: for a real example, the model prediction
provides a positive example, and it actually is a positive example. False negative: For a false
counterexample, the model predicts that it is a counterexample, but it is actually a positive
example. False positive: for a false positive example, the model predicts that it is a positive
example, but it is actually a negative example. True Negative: for a true counterexample,
the model predicts that it is a counterexample, but it is actually a counterexample. Pixel-like
precision indicates the ratio of the intersection of the real index and the predicted index
of each class in the three classifications [38,39]; the average pixel accuracy is the ratio
of the intersection of the real value and the predicted value to the real value [40]; the
average intersection and union ratio is an important index for measuring the effect of land
segmentation [41]. It refers to the ratio of the intersection and union of the real value and
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the predicted value, and then the average value is taken [42]. This index can reflect the
quality of a network and the advantages and disadvantages of a model well.

3.3. Supplementary Experimental Procedures

This experiment was based on the public platform PyTorch. In this work, we used
the ’poly’ learning rate strategy [43] and the Adam optimizer. We believed that Adam
optimizer was the most suitable for this dataset and network—if the data were dense, the
SGD optimizer was adopted. Although it takes a long time and is easily trapped at saddle
points, it can quickly reach the maximum value. On the contrary, the Adam optimizer
can converge quickly, and the rising curve is relatively stable. The experiments showed
that the Adam optimizer can make the most of the model in terms of the density of the
land segmentation dataset. Too high of a learning rate will lead to too a large span, and
it is easy to miss the best advantage; too low of a learning rate will lead to too slow of
a convergence speed. The training effect was the best when the learning rate = 0.001 in
this experiment, so the learning rate was set to 0.001. When the power was lower than 0.9,
the rising speed of the first 100 epochs was too slow, and when the power was higher than
0.9, the last 150 epochs were completely saturated. So, the basic learning rate was set to
0.001, the power was set to 0.9, and the upper iteration limit was set to 300. The momentum
and weight decay rates were set to 0.9 and 0.0001. Considering the actual situation of GPU
memory in this experiment, the batch size of the training was set to 4. All experiments were
carried out on a Windows 10 system with an Intel (R) corei5 10400F/10500 CPU, 2.90 GHZ,
16 G memory, and NVIDIA GeForce RTX 3070s (8GB) graphics card. This experiment used
Python version 3.8 with cuda10.1. We used the cross-entropy loss function [14] to calculate
the loss of the neural network. Shannon proposed that the probability of the occurrence of
information decreases with the increase in the amount of information, and vice versa. If the
probability of an event is P(x), the amount of information is expressed as:

I(x) = − log(P(x)). (4)

Information entropy is used to express the expectation of the amount of information:

H(x) = −
n

∑
i=1

P(xi) log(P(xi)). (5)

If there are two separate probability distributions and P(x) and Q(x) can describe
the same random variable, we can use the relative entropy (in this paper, the predicted
value and the loss value of the label) to quantify the difference between the two probabil-
ity distributions:

DKL =
n

∑
i=1

p(xi) log(
q(xi)

p(xi)
), (6)

loss = −DKL=
n

∑
i=1

p(xi) log(p(xi))−
n

∑
i=1

p(xi) log(q(xi)), (7)

where xi is the sample, p and q are two independent probability distributions of random
variables, and n is the number of samples. The gradient descent algorithm was used in
the training process. By comparing tags and predictions, the parameters were updated
through backpropagation. The optimal parameters of the training model were all saved.
For the problem of land segmentation and cover, the effect of the cross-entropy loss function
was better than that of the mean square error loss function [44], so the cross-entropy loss
function [45] was used in this experiment.
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3.4. Analysis of the Results

The optimal values are bold. As shown in Table 2, the main module used the SHResid-
ual module as the backbone network, and the training parameters of all models were
set to the same values. According to the information in the table, the EFAModule was
improved by 1.03% because of the module’s ability to recover detailed information and
capture boundary information. The branch composed of the DCModule and EFAModule
improved by 4.03%. The GDC_branch, which was connected with the DCModule and
EFAModule, was able to greatly improve the segmentation effect. This combination paid
attention to contextual information, detail features, and boundary information at the same
time, which improved the accuracy of the final MSNet by 5.71% (learning rate = 0.001,
power = 0.9, weight decay rate = 0.0001, batch = 4, epoch = 300).

Table 2. Ablation experiment.

Method PA (%) MPA (%) MIoU (%) Flops (G) Parameters (M)

SFR 87.69 87.96 75.62 0.96 0.039
EFA 79.56 77.96 70.62 0.05 0.0001
LIU 88.75 88.51 79.59 134.27 73.34

SFR + EFA 88.48 87.27 76.65 1.01 0.039
SFR + LIU 88.09 88.56 78.13 20 17.5

SFR + LIU + EFA 89.84 89.62 81.33 21.86 18.7

The maps that included the EFAModule obviously avoided many misclassifications
and achieved a better edge segmentation effect, which was beneficial in that it was possible
to extract logical features and output high-resolution detailed information. In comparison
with the SFRModule alone, the combination did not misdetect the underground with
respect to the buildings. Obviously, the combination of SFR, LIU, and the EFA basically
allowed all of the misclassifications and edge blur to be avoided, which largely improved
the segmentation effect. A diagram of the effects in the ablation experiment is shown in
Figure 10.

(c) (d) (e) (f)(b)(a)

Figure 10. Diagram of the effects in the ablation experiment.(a) Real image; (b) label; (c) SFR;
(d) SFR + LIU; (e) SFR + EFA; (f) MSNet.
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To compare the performance of each model, the models were tested under the same
conditions. Figure 11 shows a chart comparing the effects of MSNet and the other models.
In the first and second sets of images, under the influence of vehicles, lawns, and other
objects, networks such as FCN and SegNet showed different degrees of misdetection. Seg-
Net mistakenly recognized the background as the buildings. The problem of edge blurring
in images assessed with ExtremeC3Net was obvious, but our model achieved accurate
segmentation. In the third set of images, the low buildings above the swimming pool
were easily recognized as the background, though networks such as SegNet and PSPNet
had obvious omissions in their recognition of buildings. In the fourth and fifth groups of
images, although there was interference from the boat and the cement on the land by the
sea, our model still achieved a more accurate segmentation of the water, whereas the other
models misclassified the boat and the cement on the land as buildings, especially SegNet
and ExtremeC3Net. In fact, the boat and the cement on the land should have been classified
as background. In the sixth set of images, the blue buildings were easy to recognize as
water, as they were by ExtremeC3Net, but our model still avoided such mistakes. This was
caused by the synchronous learning of intra-class information and inter-class information
by the SFRModule; by combining it with the EFAModule, the high-frequency detailed
information was restored and the accuracy of the edge segmentation was ensured. Finally,
the fusion with LIU caused our model to achieve a great effect. As shown in Figure 11,
the actual segmentation effect of MSNet was better than that of the other networks (learning
rate = 0.001, power = 0.9, weight decay rate = 0.0001, batch = 4, epoch = 300) And the heat
map of this data set is shown as Figure 12.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 11. Comparison of the actual segmentation results. (a) Real image; (b) label; (c) SegNet;
(d) FCN8s; (e) FCN32s, (f) PSPNet; (g) ExtremeC3Net; (h) DABNet; (i) MSNet.
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(a)

(b)

Figure 12. Feature space analysis of MSNet: (a) real Image; (b) thermodynamic diagram

Table 3 shows the evaluation metrics of each model, and the PA represents the pixel
accuracy of each category in the three categories. In comparison with FCN-32s, SegNet,
DABNet, UNet [33], EspNet [46], ShuffleNetv1 [20], and the other models, MSNet was able
to achieve the best results, which were 1.19% higher than the second best index.

Table 3. Results of the land-cover test set.

Method PA (%) MPA (%) MIoU (%) Parameters (M) Flops (G)

UNet 86.89 85.66 75.18 17.27 40
SegNet [47] 87.95 88.35 75.95 29.44 40.07

FCN8s 89.43 88.51 79.59 134.27 73.35
FCN32s [48] 89.75 88.35 79.37 134.29 73.34
PSPNet [16] 89.29 89.75 80.14 48.94 44.3
DABNet [49] 89.55 89.90 79.89 0.75 2.82

EspNetV2 [50] 89.46 89.59 79.95 1.24 0.66
OcrNet [51] 89.97 89.51 80.09 70.35 40.4

ExtremeC3Net [52] 88.69 88.05 78.04 0.04 1.27
MSNet 89.84 89.62 81.33 18.7 21.86

The MIoU curve of the model is shown in Figure 13 below. In the first 50 generations of
ExtremeC3Net [52], the growth rate was very fast—better than that of MSNet (MFNet) after
100 generations—but the MSNet curve could be steadily maintained above other models.
The same was true for the training loss curve (Figure 14). In the first 50 generations, it was
significantly higher than that of DABNet, and it was stable at the bottom of all curves after
100 generations. From the point of view of the convergence speed and long-term effect,
MSNet had great superiority.
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Figure 13. The MIoU of the models.
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Figure 14. The loss of the models.

We provide a “feature space analysis” to show the segmentation of MSNet. In the
Figure 12, red represents the segmentation object and blue represents the background.
Through the graphic analysis of the thermal diagram, it could be seen that MSNet’s segmen-
tation of the buildings at the lower-left corner was more accurate in the first image, but the
shadows at the upper-left corner were wrongly detected as buildings. For the second image,
MSNet was able to accurately detect the overall scope of the water area, but the center of
the water area had a false detection.

For the sake of verifying the generalization ability of the model, further experiments
were carried out on the public land-cover dataset. The dataset consisted of 310 aerial images
in the Boston area, each with 1500× 1500 pixels and an area of 225 hectares. The entire
dataset covered about 34,000 hectares. It was cut into 10,620 small images (256× 256),
which were divided into a training set and verification set at a ratio of 7:3 [45]; this dataset
had only the building (white, RGB [0, 0, 0]) and the background (black, RGB [255, 255, 255])
types. Without data enhancement, the settings of the various hyperparameters, except for
the batch size of 3, were the same as those in the previous experiment. For the first set
of images, it was obvious that MSNet’s edge segmentation effect was much better than
those of FCN32s and DeepLabV3Plus. For the second, third, and fourth sets of images,
the abilities of PSPNet and DABNet to segment small and dense buildings were relatively
poor, but our model had accurate recognition of those buildings, including their edge
information and detailed information. In terms of indicators, it was 1.01% better than
the second best model and 9.44% better than the lowest model. The experimental results
are shown in Table 4 and Figure 15 (learning rate = 0.001, power = 0.9, weight decay
rates = 0.0001, batch = 4, epoch = 300).
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Table 4. Generalization experiment on the public land-cover dataset.

Method MIoU(%) Parameters (M) Flops (G)

UNet 69.5 17.27 40
SegNet 72.17 29.44 40.07
PSPNet 77.08 48.94 44.3

ENet [53] 70.52 0.35 0.45
DeeplabV3+Net 75.28 91.77 64.42

DABNet 75.14 0.752 1.27
Pan [54] 74.48 23.65 1.27

BiseNetV2 [55] 74.63 3.62 3.2
MSNet 79.90 18.7 21.01

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 15. Diagram comparing the effects of the MIoU values of different models. (a) Real image;
(b) label; (c) SegNet; (d) FCN32s; (e) DeepLabV3+; (f) PSPNet; (g) DABNet; (h) MSNet.

To verify the performance of the model with other categories of datasets, further
experiments were carried out on a public water-cover dataset (Figure 16). The data in
this paper came from high-resolution remote sensing images selected from Google Earth,
and the number of images in the data was 26,200. In order to make the data more au-
thentic, we used a wide range of distributions, and in terms of river selection, we chose
rivers with different widths and colors and small and rugged rivers. On the other hand,
we selected complex environments surrounding the rivers, including hills, forests, urban
areas, farmlands, and other areas, which could fully test the generalization performance
of the model. Some of the images of the river that were collected are shown in Figure 15.
The average size of the Google Earth images was 4800× 2742 pixels, and this was cut to
224× 224 for model training. The training set and test set contained 20,960 and 5240 images,
respectively. This dataset had only the building (red, RGB[128, 0, 0]) and the background
(black, RGB [255, 255, 255]) types. Without data enhancement, the settings of the various
hyperparameters, except for the batch size of 3, were the same as those in the previous
experiment. For the first set of images, it was obvious that MSNet’s edge segmentation
effect was much better than those of SegNet and DeepLabV3Plus. There were also obvious
fractures in SegNet’s effect for the first and second sets of images. For the third and fourth
groups of maps, SegNet and DABNet mistakenly detected the grassland and buildings
as water areas, and DeeplabV3+ mistakenly detected an intersection of rivers as the back-
ground. The edge detection accuracy of PSPNet was relatively low, and it also mistakenly
detected a water area as the background. However, MSNet could not only distinguish
water areas from grasslands, buildings, and other backgrounds, but could also accurately
extract edge information. In terms of indicators, it is 2.82% better than the second better
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model and 10.4% higher than the worst model. The experimental results are shown in
Table 5 and Figure 15 (learning rate = 0.001, power = 0.9, weight decay rates = 0.0001,
batch = 4, epoch = 300).

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 16. Diagram comparing the effects of the MIoU values of different models. (a) Real image;
(b) label; (c) SegNet; (d) FCN32s; (e) DeepLabV3+; (f) PSPNet; (g) DABNet; (h) MSNet.

Table 5. Generalization experiment on a public water-cover dataset.

Method MIoU (%) Parameters (M) Flops (G)

UNet 89.5 17.27 40
SegNet 95.17 29.44 40.07
PSPNet 97.08 48.94 44.3

ENet [53] 70.52 0.35 0.45
DeeplabV3+Net 97.28 91.77 64.42

DABNet 97.14 0.752 1.27
Pan [54] 97.48 23.65 1.27

BiseNetV2 [55] 97.93 3.62 3.2
MSNet 98.94 18.7 21.01

In order to include all objects in the scene, the four-class public dataset introduced
above Figure 15 was selected for a generalization experiment. As shown in Figure 17,
for the first set of images, UNet directly missed all buildings in the lower-left corner.
FCN32s and DeepLabV3plus missed the detection to varying degrees. DABNet mistakenly
detected buildings as plants. MSNet did not have these problems, as it benefited from SFR’s
synchronous learning of intra-class information and inter-class information. For the second
set of pictures, SegNet mistakenly classified the plants in the lower-left corner as buildings,
and UNet, ExtremeC3Net, and the other networks mistakenly classified the background
in the middle of the figure as plants. MSNet did not have this error. For the third and
fourth sets of pictures, UNet confused plants with water, and the edge detection of the
buildings was relatively fuzzy. The learning of the edge information of DeepLabV3plus and
ExtremeC3 was not ideal, and the error was large. However, MSNet basically avoided the
problems of edge blur and false recognition, which showed the superiority of the two-way
fusion model. So, it can be seen intuitively that MSNet’s MIoU was higher than that of
Unet by 14.3% and higher than that of FCN32s by 1.14%, as shown in Table 6.
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 17. Comparison of the actual segmentation results. (a) Image; (b) label; (c) UNet; (d) SegNet;
(e) FCN32s; (f) DeeplabV3Plus; (g) ExtremeC3; (h) DABNet; (i) MSNet. The part marked with a solid
line represents a missing detection or a mistaken detection of the background as a real object, and the
part marked with a dotted line indicates that different categories of real objects were confused.

Table 6. Results of the four-class public dataset.

Method MIoU (%) PA MPA

UNet 64.49 73.31 79.91
SegNet 68.67 85.09 87.14
FCN32s 77.65 89.54 89.32

DeeplabV3+Net 76.86 87.85 87.07
DABNet 73.33 86.46 87.39

ExtremeC3Net 71.75 85.99 85.11
MSNet 78.79 90.21 88.64

The results show that the average intersection ratio and the other indicators of MSNet
were higher than those of the other models. Therefore, the generalization and effectiveness
of MSNet were proven. MSNet combined a shuffle unit with a skip connection, the channel
rearrangement caused the extraction of information to be more well distributed, and the
residual structure ensured the accuracy of the extraction of deep semantic information,
which paid attention to the logical relationship between information within a class and
information between classes. The combination of this branch and the LIU greatly improved
the accuracy of segmentation, allowed information to be extracted from a deeper level,
and caused better results to be achieved. A comparison of the actual segmentation results is
shown in Figure 15, and the details of the indices are shown in Table 6. In this experiment,
the hyperparameters were set as follows: learning rate = 0.0001, power = 0.9, weight decay
rate = 0.0001, batch = 4, epoch = 300.

4. Conclusions

In this work, in order to optimize the effect of land division, a new three-way parallel
feature fusion network called MSNet was proposed, and it focused on the enhancement of
contextual information and compatible intra-class information and inter-class information
to improve the model. The proposed LIU focused on contextual features and strengthened
the learning of detailed information; a branch composed of the SFRModule and EFAModule
was able to take into account the identification of intra-class information and inter-class
information, filter redundant information, extract key features, and focus on the learning
of boundary information. The two-way feature-sharing network was proven to have a
good segmentation effect. However, the segmentation effect of the network is not ideal
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when faced with a large number of categories and more complex datasets. When buildings
are captured from different angles, it cannot guarantee that the contours of the predicted
map perfectly match those of the original image. It can only ensure the accuracy of the
location. The same is true for water areas. To increase the accuracy, many studies’ results
have shown that adding an optimized transformer structure can significantly improve the
segmentation accuracy of a model, so the next direction for research is to think about how
the transformer structure can be optimized so that it can have a better effect on fusion with
a convolutional neural network. In addition, the network still needs to achieve a faster
computing speed with fewer parameters.

Author Contributions: Conceptualization, L.W. and M.X.; methodology, J.G. and M.X.; software,
J.G.; validation, L.W. and M.X.; formal analysis, J.G. and M.X.; investigation, J.G., L.W., H.L. and M.X.;
resources, M.X.; data curation, M.X.; writing—original draft preparation, J.G. and L.W.; writing—review
and editing, M.X.and H.L; visualization, L.W.; supervision, L.W.; project administration, M.X.; fund-
ing acquisition, M.X. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of PR China under
Grant 42075130.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data and the code of this study are available from the correspond-
ing author upon request (002311@nuist.edu.cn).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lu, C.; Xia, M.; Lin, H. Multi-scale strip pooling feature aggregation network for cloud and cloud shadow segmentation. Neural

Comput. Appl. 2022, 34, 6149–6162. [CrossRef]
2. Song, L.; Xia, M.; Jin, J.; Qian, M.; Zhang, Y. SUACDNet: Attentional change detection network based on siamese U-shaped

structure. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102597. [CrossRef]
3. Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the archive: How free data has enabled the

science and monitoring promise of Landsat. Remote Sens. Environ. 2012, 122, 2–10. [CrossRef]
4. Bak, C.; Kocak, A.; Erdem, E.; Erdem, A. Spatio-temporal saliency networks for dynamic saliency prediction. IEEE Trans.

Multimed. 2017, 20, 1688–1698. [CrossRef]
5. Noble, W.S. What is a support vector machine? Nat. Biotechnol. 2006, 24, 1565–1567. [CrossRef] [PubMed]
6. Xia, M.; Qu, Y.; Lin, H. PADANet: Parallel asymmetric double attention network for clouds and its shadow detection. J. Appl.

Remote Sens. 2021, 15, 046512. [CrossRef]
7. Potapov, P.V.; Turubanova, S.; Tyukavina, A.; Krylov, A.; McCarty, J.; Radeloff, V.; Hansen, M. Eastern Europe’s forest cover

dynamics from 1985 to 2012 quantified from the full Landsat archive. Remote Sens. Environ. 2015, 159, 28–43. [CrossRef]
8. Geller, G.N.; Halpin, P.N.; Helmuth, B.; Hestir, E.L.; Skidmore, A.; Abrams, M.J.; Aguirre, N.; Blair, M.; Botha, E.; Colloff, M.; et al.

Remote sensing for biodiversity. In The GEO Handbook on Biodiversity Observation Networks; Springer: Cham, Switzerland, 2017;
pp. 187–210.

9. Gao, J.; Weng, L.; Xia, M.; Lin, H. MLNet: Multichannel feature fusion lozenge network for land segmentation. J. Appl. Remote
Sens. 2022, 16, 016513. [CrossRef]

10. Qu, Y.; Xia, M.; Zhang, Y. Strip pooling channel spatial attention network for the segmentation of cloud and cloud shadow.
Comput. Geosci. 2021, 157, 104940. [CrossRef]

11. Lu, C.; Xia, M.; Qian, M.; Chen, B. Dual-Branch Network for Cloud and Cloud Shadow Segmentation. IEEE Trans. Geosci. Remote
Sens. 2022, 60, 5410012. doi: 10.1109/TGRS.2022.3175613. [CrossRef]

12. Chen, B.; Xia, M.; Qian, M.; Huang, J. MANet: A multi-level aggregation network for semantic segmentation of high-resolution
remote sensing images. Int. J. Remote. Sens. 2022. doi: 10.1080/01431161.2022.2073795. [CrossRef]

13. Wang, Z.; Xia, M.; Lu, M.; Pan, L.; Liu, J. Parameter Identification in Power Transmission Systems Based on Graph Convolution
Network. IEEE Trans. Power Deliv. 2022, 37, 3155–3163. [CrossRef]

14. Shokat, S.; Riaz, R.; Rizvi, S.S.; Abbasi, A.M.; Abbasi, A.A.; Kwon, S.J. Deep learning scheme for character prediction with
position-free touch screen-based Braille input method. Hum.-Centric Comput. Inf. Sci. 2020, 10, 41. [CrossRef]

15. Huang, H.; Lin, L.; Tong, R.; Hu, H.; Zhang, Q.; Iwamoto, Y.; Han, X.; Chen, Y.W.; Wu, J. Unet 3+: A full-scale connected unet for
medical image segmentation. In Proceedings of the ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), IEEE, Barcelona, Spain, 4–8 May 2020; pp. 1055–1059.

http://doi.org/10.1007/s00521-021-06802-0
http://dx.doi.org/10.1016/j.jag.2021.102597
http://dx.doi.org/10.1016/j.rse.2012.01.010
http://dx.doi.org/10.1109/TMM.2017.2777665
http://dx.doi.org/10.1038/nbt1206-1565
http://www.ncbi.nlm.nih.gov/pubmed/17160063
http://dx.doi.org/10.1117/1.JRS.15.046512
http://dx.doi.org/10.1016/j.rse.2014.11.027
http://dx.doi.org/10.1117/1.JRS.16.016513
http://dx.doi.org/10.1016/j.cageo.2021.104940
http://dx.doi.org/10.1109/TGRS.2022.3175613
http://dx.doi.org/10.1080/01431161.2022.2073795
http://dx.doi.org/10.1109/TPWRD.2021.3124528
http://dx.doi.org/10.1186/s13673-020-00246-6


Remote Sens. 2022, 14, 5209 19 of 20

16. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–25 July 2017; pp. 2881–2890.

17. Zhou, J.; Hao, M.; Zhang, D.; Zou, P.; Zhang, W. Fusion PSPnet image segmentation based method for multi-focus image fusion.
IEEE Photonics J. 2019, 11, 6501412. [CrossRef]

18. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–25 July 2017; pp. 1251–1258.

19. Miao, S.; Xia, M.; Qian, M.; Zhang, Y.; Liu, J.; Lin, H. Cloud/shadow segmentation based on multi-level feature enhanced network
for remote sensing imagery. Int. J. Remote. Sens. 2022, doi: 10.1080/01431161.2021.2014077. [CrossRef]

20. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In
Proceedings of the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA,
18–21 June 2018; pp. 6848–6856.

21. Qin, X.; Wang, Z.; Bai, Y.; Xie, X.; Jia, H. FFA-Net: Feature fusion attention network for single image dehazing. In Proceedings of
the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7 February 2020; Volume 34, pp. 11908–11915.

22. Hao, S.; Zhou, Y.; Zhang, Y.; Guo, Y. Contextual attention refinement network for real-time semantic segmentation. IEEE Access
2020, 8, 55230–55240. [CrossRef]

23. O Oh, J.; Chang, H.J.; Choi, S.I. Self-Attention With Convolution and Deconvolution for Efficient Eye Gaze Estimation From a
Full Face Image. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA,
USA, 19–20 June 2022; pp. 4992–5000.

24. Xia, M.; Wang, Z.; Lu, M.; Pan, L. MFAGCN: A new framework for identifying power grid branch parameters. Electr. Power Syst.
Res. 2022, 207, 107855. [CrossRef]

25. Khatami, R.; Mountrakis, G.; Stehman, S.V. A meta-analysis of remote sensing research on supervised pixel-based land-cover
image classification processes: General guidelines for practitioners and future research. Remote Sens. Environ. 2016, 177, 89–100.
[CrossRef]

26. Huang, J.; Weng, L.; Chen, B.; Xia, M. DFFAN: Dual function feature aggregation network for semantic segmentation of land
cover. ISPRS Int. J. Geo-Inf. 2021, 10, 125. [CrossRef]

27. Zhao, J.; Du, B.; Sun, L.; Zhuang, F.; Lv, W.; Xiong, H. Multiple relational attention network for multi-task learning. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August
2019; pp. 1123–1131.

28. Cheng, X.; Zhang, Y.; Chen, Y.; Wu, Y.; Yue, Y. Pest identification via deep residual learning in complex background. Comput.
Electron. Agric. 2017, 141, 351–356. [CrossRef]

29. Ren, S.; Sun, J.; He, K.; Zhang, X. Deep residual learning for image recognition. In Proceedings of the CVPR, Vegas, NV, USA,
27–30 June 2016; Volume 2, p. 4.

30. Liu, J.; He, J.; Qiao, Y.; Ren, J.S.; Li, H. Learning to predict context-adaptive convolution for semantic segmentation. In Proceedings
of the European Conference on Computer Vision, Springer: Berlin/Heidelberg, Germany, 2020; pp. 769–786.

31. Sengupta, A.; Ye, Y.; Wang, R.; Liu, C.; Roy, K. Going deeper in spiking neural networks: VGG and residual architectures. Front.
Neurosci. 2019, 13, 95. [CrossRef] [PubMed]

32. Pang, K.; Weng, L.; Zhang, Y.; Liu, J.; Lin, H.; Xia, M. SGBNet: An Ultra Light-weight Network for Real-time Semantic
Segmentation of Land Cover. Int. J. Remote. Sens. 2022, doi: 10.1080/01431161.2021.2022805. [CrossRef]

33. Yu, C.; Wang, J.; Peng, C.; Gao, C.; Yu, G.; Sang, N. Bisenet: Bilateral segmentation network for real-time semantic segmentation.
In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 13 September 2018; pp. 325–341.

34. Li, X.; Li, X.; Zhang, L.; Cheng, G.; Shi, J.; Lin, Z.; Tan, S.; Tong, Y. Improving Semantic Segmentation via Decoupled Body and
Edge Supervision Supplementary. In Proceedings of the ECCV, Glasgow, UK, 23–28 August 2020, Volume 17, pp. 435–452.

35. Mehta, S.; Paunwala, C.; Vaidya, B. CNN based traffic sign classification using adam optimizer. In Proceedings of the
2019 International Conference on Intelligent Computing and Control Systems (ICCS), IEEE, Madurai, India, 15–17 May 2019;
pp. 1293–1298.

36. Hu, H.; Ji, D.; Gan, W.; Bai, S.; Wu, W.; Yan, J. Class-wise dynamic graph convolution for semantic segmentation. In Proceedings
of the European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–17.

37. Boguszewski, A.; Batorski, D.; Ziemba-Jankowska, N.; Dziedzic, T.; Zambrzycka, A. LandCover. ai: Dataset for automatic
mapping of buildings, woodlands, water and roads from aerial imagery. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 19–25 June 2021; pp. 1102–1110.

38. Marugg, J.D.; Gonzalez, C.F.; Kunka, B.S.; Ledeboer, A.M.; Pucci, M.J.; Toonen, M.Y.; Walker, S.A.; Zoetmulder, L.C.; Vandenbergh,
P.A. Cloning, expression, and nucleotide sequence of genes involved in production of pediocin PA-1, and bacteriocin from
Pediococcus acidilactici PAC1.0. Appl. Environ. Microbiol. 1992, 58, 2360–2367. [CrossRef] [PubMed]

39. Xia, M.; Zhang, X.; Weng, L.; Xu, Y.; et al. Multi-stage feature constraints learning for age estimation. IEEE Trans. Inf. Forensics
Secur. 2020, 15, 2417–2428. [CrossRef]

40. Li, S.; Zhao, X.; Zhou, G. Automatic pixel-level multiple damage detection of concrete structure using fully convolutional network.
Comput.-Aided Civ. Infrastruct. Eng. 2019, 34, 616–634. [CrossRef]

41. Seifi, S.; Tuytelaars, T. Attend and segment: Attention guided active semantic segmentation. In Proceedings of the European
Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2020; pp. 305–321.

http://dx.doi.org/10.1109/JPHOT.2019.2950949
http://dx.doi.org/10.1080/01431161.2021.2014077
http://dx.doi.org/10.1109/ACCESS.2020.2981842
http://dx.doi.org/10.1016/j.epsr.2022.107855
http://dx.doi.org/10.1016/j.rse.2016.02.028
http://dx.doi.org/10.3390/ijgi10030125
http://dx.doi.org/10.1016/j.compag.2017.08.005
http://dx.doi.org/10.3389/fnins.2019.00095
http://www.ncbi.nlm.nih.gov/pubmed/30899212
http://dx.doi.org/10.1080/01431161.2021.2022805
http://dx.doi.org/10.1128/aem.58.8.2360-2367.1992
http://www.ncbi.nlm.nih.gov/pubmed/1514784
http://dx.doi.org/10.1109/TIFS.2020.2969552
http://dx.doi.org/10.1111/mice.12433


Remote Sens. 2022, 14, 5209 20 of 20

42. Chen, Y.; Li, Y.; Wang, J.; Chen, W.; Zhang, X. Remote sensing image ship detection under complex sea conditions based on deep
semantic segmentation. Remote Sens. 2020, 12, 625. [CrossRef]

43. Bock, S.; Goppold, J.; Weiß, M. An improvement of the convergence proof of the ADAM-Optimizer. arXiv 2018, arXiv:1804.10587.
44. Ho, Y.; Wookey, S. The real-world-weight cross-entropy loss function: Modeling the costs of mislabeling. IEEE Access 2019,

8, 4806–4813. [CrossRef]
45. Gordon-Rodriguez, E.; Loaiza-Ganem, G.; Pleiss, G.; Cunningham, J.P. Uses and abuses of the cross-entropy loss: Case studies in

modern deep learning. arXiv 2020, arXiv:2011.05231.
46. Mehta, S.; Rastegari, M.; Caspi, A.; Shapiro, L.; Hajishirzi, H. Espnet: Efficient spatial pyramid of dilated convolutions for semantic

segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 13 September 2018;
pp. 552–568.

47. Badrinarayanan, V.; Handa, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for robust semantic
pixel-wise labelling. arXiv 2015, arXiv:1505.07293.

48. Zhang, S.; Wu, G.; Costeira, J.P.; Moura, J.M. Fcn-rlstm: Deep spatio-temporal neural networks for vehicle counting in city
cameras. In Proceedings of the IEEE International Conference on Computer Vision, Honolulu, HI, USA, 22–25 July 2017; pp.
3667–3676.

49. Li, G.; Yun, I.; Kim, J.; Kim, J. Dabnet: Depth-wise asymmetric bottleneck for real-time semantic segmentation. arXiv 2019,
arXiv:1907.11357.

50. Mehta, S.; Rastegari, M.; Shapiro, L.; Hajishirzi, H. Espnetv2: A light-weight, power efficient, and general purpose convolutional
neural network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA,
USA, 16–20 June 2019; pp. 9190–9200.

51. Yuan, Y.; Chen, X.; Chen, X.; Wang, J. Segmentation transformer: Object-contextual representations for semantic segmentation.
arXiv 2019, arXiv:1909.11065.

52. Park, H.; Sjösund, L.L.; Yoo, Y.; Bang, J.; Kwak, N. Extremec3net: Extreme lightweight portrait segmentation networks using
advanced c3-modules. arXiv 2019, arXiv:1908.03093.

53. Paszke, A.; Chaurasia, A.; Kim, S.; Culurciello, E. Enet: A deep neural network architecture for real-time semantic segmentation.
arXiv 2016, arXiv:1606.02147.

54. Yang, J.; Fu, X.; Hu, Y.; Huang, Y.; Ding, X.; Paisley, J. PanNet: A deep network architecture for pan-sharpening. In Proceedings
of the IEEE International Conference on Computer Vision, Honolulu, HI, USA, 22–25 July 2017; pp. 5449–5457.

55. Yu, C.; Gao, C.; Wang, J.; Yu, G.; Shen, C.; Sang, N. Bisenet v2: Bilateral network with guided aggregation for real-time semantic
segmentation. arXiv 2020, arXiv:2004.02147.

http://dx.doi.org/10.3390/rs12040625
http://dx.doi.org/10.1109/ACCESS.2019.2962617

	Introduction
	Land-Cover Segmentation Methodology
	Network Architecture
	SFResidual
	LIU Branch
	EFAModule

	Land-Cover Segmentation Experiment
	Dataset
	Land-Cover Dataset
	Public Dataset
	Four-Class Public Dataset

	Evaluation Index
	Supplementary Experimental Procedures
	Analysis of the Results

	Conclusions
	References

