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Abstract: Poplar is one of the most widespread fast-growing forest species. In Northern Italy,
plantations are characterized by large interannual fluctuations, requiring frequent monitoring to
inform on wood supply and to manage the stands. The use of radar satellite data is proving useful for
forest monitoring, being weather independent and sensitive to the changes in forest canopy structure,
but it has been scarcely tested in the case of poplar. Here, L-band ALOS2 (Advanced Land Observing
Satellite-2) dual-pol data were tested to detect clear-cut plantations in consecutive years. ALOS2
quad-pol data were used to discriminate among different age classes, a much complex task than
detecting poplar plantations extent. Results from different machine learning algorithms indicate that
with dual-pol data, poplar forest can be discriminated from clear-cut areas with 80% overall accuracy,
similar to what is usually obtained with optical data. With quad-pol data, four age classes were
classified with moderate overall accuracy (73%) based on polarimetric decompositions, three 3 age
classes with higher accuracy (87%) based on HV band. Sources of error are represented by poplar
areas of intermediate age when stems, branches and leaves were not developed enough to detect
by scattering mechanisms. This study demonstrates the feasibility of monitoring poplar plantations
with satellite radar, which represents a growing source of information thanks to already-planned
future satellite missions.

Keywords: poplar; forest; ALOS2; SAR; polarimetric decomposition; age classes; plantation;
machine learning

1. Introduction

Poplar cultivation in Italy is the most relevant source of wood for industrial use. The
extent of cultivated lands is insignificant compared to forest land, representing only 1.3%
of the national territory. Nevertheless, poplar plantations constitute the most important
segment of industrial timber production for plywood, packaging, pulp and paper and wood-
based panels industries, providing more than 50% of the industrial hardwood domestic
supply [1–3].

This wood production is thus very relevant, especially with respect to the Italian furni-
ture industry. Over one million cubic meters of industrial roundwood are processed annu-
ally and used in Italy for the production of high-quality plywood [4,5]. Conventional poplar
cultivations in Northern Italy are found in floodplains and characterized by intensively
managed monospecific plantations, with short rotations cycles (9–12 years) and around
300 trees per hectare [2,6]. The Italian poplar stands amount for about 46,000 hectares and
are mainly located in the Po River valley plain (Northern Italy) [7]. Poplar cultivation has a
lower energy demand than other agriculture crops, and it is important for climate change
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adaptation and mitigation thanks to poplars’ high capacity to absorb CO2 and accumulate
it in wood [8].

Poplar stands are relevant elements of the Italian ecological network, providing mi-
crohabitats [9] and being used as windbreaks. Poplars have a role in both soil protection
and water regulation. Poplars reduce erosion of riparian soils during flood events and are
useful in phytoremediation [10]. Certification of the sustainable management of wood plan-
tations according to Forest Stewardship Council® or the Programme for the Endorsement
of Forest Certification Schemes has been carried out in Italy for more than a decade and
involves about 15% of specialized poplar cultivation. Poplar is one of the most widespread
fast-growing tree species used for forest plantations. The fast growth, short rotation and
dependency on the timber price market cause large interannual fluctuations in poplar
extent and distribution [7]. Therefore, poplar plantations monitoring requires a frequent
update of information, which is not feasible for the National Forest Inventories due to their
low periodicity [5]. This frequent monitoring, which should include the plantation extent
and the age classes, can be carried out using remote sensing tools, given the increased
availability of satellite imagery that provide frequent data covering large areas.

Multispectral imagery, collected from either satellite or airborne platforms, is the main
data source used in monitoring poplar plantations with remote sensing data. Ref. [1] found
that the Copernicus satellite Sentinel-2, with a spatial resolution of 10 m, is well suited
to identify the canopy cover in poplar stands from 5 to 10 years old. Ref. [7] conducted
a large-scale assessment of poplar plantations based on tessellation stratified sampling
on very high spatial resolution orthophotos (50 cm), identifying the different age classes
based on canopy cover. Ref. [5] developed a deep learning approach for mapping poplar
plantations using the Sentinel-2 time series and compared the results obtained with a
fully connected neural network with those obtained with a traditional logistic regression.
Ref. [11] recently mapped poplar plantations in France based on the Sentinel 2 time series.
Ref. [12] classified different crown cover classes of poplar stands using texture features and
vegetation indices derived by very high spatial resolution Ikonos and Quickbird data.

Much less research has been carried out using Synthetic Aperture Radar (SAR) satellite
data in poplar monitoring, with an example provided by [13], who identified poplar
plantations using Sentinel 2 time series and then used Sentinel 1 to distinguish between
two age classes. However, SAR data are extensively used in vegetation classification,
including in natural areas, forest plantations and agriculture areas. SAR can be used either
alone [14–16] or joined to optical data to increase the accuracy of the results [17–20]. The
advantage of using SAR is first related to its ability to acquire information in any weather
condition, thus even in presence of cloud cover when optical data are useless. With the
notable growth of available SAR missions, data access has become easier, and multiple
advancements in SAR methodologies and newly developed applications have occurred in
recent years [21].

The ALOS-2 Japanese satellite has an on-board PALSAR-2 sensor, a Synthetic Aperture
Radar (SAR), which emits microwave and receives the reflection from the ground to acquire
information. Since it does not need sources of light, the SAR provides images regardless
day or night. The frequency is L-band, which is less affected by clouds and rain. In addition,
it can reach to the ground, partially penetrating through vegetation to obtain information
regarding the vegetation and ground surface. The ALOS-2/PALSAR-2 mission began in
2014; it has different acquisition modes each with specific polarization, incidence angle,
resolution and swat.

Imaging radars can have different polarization configurations, and data can be ac-
quired in single-, double- or full-polarization modes. Polarization refers to the direc-
tion of travel of an electromagnetic wave vector: vertical, horizontal or circular. A
single-polarization SAR system transmits and receives a single polarization, resulting
in a horizontal-horizontal (HH) or vertical-vertical (VV) imagery. A dual-polarization
system might transmit in one polarization but receive in two, resulting in either HH and
HV or VH and VV imagery. A quad-polarization system would alternate between transmit-
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ting H and V waves and would receive both H and V, resulting in HH, HV, VH and VV
imagery and increased information content. According to different sensor architectures,
SAR systems can thus acquire information in different polarimetric modes, providing infor-
mation of the electrical and geometric properties of the observed surface in forests. The tree
leaves and branches are randomly oriented geometric structures that scatter and depolarize
the signal that bounces multiple times among them. Together with the other SAR sensor
characteristics, such as system frequency (directly related to the penetrating capability) and
spatial sampling (related to spatial resolution on the ground), the amount of polarimetric
information content can have impacts on the accuracy of the analyses. Previous research
on SAR has indicated that quad-polarization data outperforms dual-polarization data in
classification tasks [22].

The availability of different SAR polarizations enables the application of polarimet-
ric decomposition techniques, which provide a measure of the relative contributions of
backscatter from different scattering mechanisms. Therefore, the targets’ structure informa-
tion can be deduced as the sum of all scattering components. Typically, surface scattering
relates to rough surfaces (e.g., water bodies, bare soil), double-bounce scattering corre-
sponds to dihedral corners (e.g., ground-wall corners), volume scattering relates to random
oriented dipoles (e.g., tree canopies) and helix scattering is associated with man-made
structures [23]. Specifically, the Freeman-Durden [24] decomposition models the covari-
ance matrix as the contribution of three scattering mechanisms: The resulting three bands
represent the power scattered by the double-bounce, by the volume and by the surface-like
scattering components, respectively. This decomposition can be successfully applied to
SAR observations under the reflection symmetry assumption. However, areas exist in a
SAR image where this condition does not hold. Reference [25] proposed an additional
term corresponding to non-reflection symmetric case to account for the co-pol and the
cross-pol correlations which generally appear in heterogeneous areas such as complicated
shape targets. The Yamaguchi decomposition [25] models the covariance matrix as volume,
double-bounce, surface and helix scatter components.

Different studies have successfully employed polarimetric data from various SAR
sensors for classification: When available, these SAR data usually improve the target recog-
nition. For instance, Ref. [26] used polarimetric decomposition techniques applied to ALOS
data for land use land cover mapping, Ref. [27] explored decomposition methods of C-band
SAR data in forest density classification, Ref. [28] used L-band decomposition SAR data to
assess the tree growth of industrial forest plantations and Ref. [29] used SAR decomposition
methods to classify wetland vegetation. The features extracted from remote sensing im-
agery, either SAR or multispectral data, can be used as input in classification models, such
as those to classify poplar stands and detect age classes. In forest studies, advancements
in statistical classification models include decision trees and machine learning algorithms,
such as Classification and Regression Tree (CART; [30]), Random Forests (RF; [31]) and
Support Vector Machine (SVM; [32]). All of these algorithms have been demonstrated in
previous forest research to improve the classification or regression accuracy and, often, to
outperform traditional classification approaches [33–37].

Based on this background, the general aim of this research is to test the use of SAR
satellite remote sensing polarimetric data to support planning and management activities
in the specific case of poplar plantations. Two objectives were selected to demonstrate the
utility of SAR satellite images in applied forestry.

The first objective is to detect poplar clear-cut areas (herein, cut areas is synonymous
to clear-cut). In Italy, the plantation cut usually occurs in the fall/winter months at the
end of the growing season and prior to the next one. Two ALOS2 SAR Fine Beam Dual
polarization (HH, HV) images were thus acquired in dates before (15 July 2017) and after
(18 June 2018) the cut; dual-pol images were selected considering their frequent availability
in archives.

The second objective is to classify the poplar plantations in different age classes.
An ALOS2 SAR quad-polarization image dated 4 October 2017 was used. This data
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type has a larger information content but is less available. Meeting these objectives can
result in the production of strategic information for forestry management and planning
activities, such as the evaluation of timber productivity and harvesting time, the planning
of new plantations setup, the provision of data for carbon accounting and the support
to post-damage assessments considering the frequent destructive storms occurring in
Northern Italy.

2. Materials and Methods
2.1. Study Area and Field Data

The study area is in the lower Po River valley, at the border of the Veneto and Emilia
Romagna Italian northern regions, in the Ferrara province. The area is located near Viadana,
Mantova (44◦55′N; 10◦35′E), and hosts hybrid poplar plantations target to plywood pro-
duction. The plantation density ranges from 200 to 300 trees ha−1, with rotations around
10–12 years. The climate is humid subtropical: Winters are cool and damp, with January
mean temperatures ranging between 0 and 5 ◦C and frequent fog and mist. Summers are
hot and humid, with July mean temperatures ranging between 22 and 25 ◦C. Frequent
thunderstorms and sudden hailstorms have the potential to produce large hail, dump large
quantities of rain and be highly destructive to agriculture [38].

For this research, poplar plantations have been classified in four age classes, deter-
mined by the level of canopy cover, according to [39], by means of photointerpretation of
very high-resolution airborne imagery (spatial resolution < 50 cm) available for the years
2014, 2015 and 2016. A subsequent check was carried out to obtain an error-free photoin-
terpretation using Google Maps images available for late summer 2017 and spring 2018
following the methodology applied in [6]. Furthermore, about 3% of the photo-interpreted
poplar plantations were selected by means of stratified sampling with proportional alloca-
tion and visited on the ground. In this additional ground survey, each tree was enumerated
and the diameter at breast height and the tree height were recorded, together with year of
plantation, clone type and tree spacing; the age classes were confirmed using tree cores,
with no errors detected with respect to the initial class assignment [5–7,40]. Before the
testing phase, stands having a total area < 0.5 ha and an area/perimeter ratio < 25 m
were excluded from the analysis to avoid the inclusion of excessively fragmented areas. A
few areas showing internal anomalies in Google Earth imagery in the June 2017–March
2018 period were also excluded as those stands were internally managed with different
practices, leading to evident internal heterogeneity in texture and reflectance. A total of
366 stands remained to perform calibration and validation of the classification models
(Figure 1). For the first objective, namely the classification of cut areas, all the stands cut
in the 2017–2018 period were selected from the ground dataset (N = 28). For the second
objective, namely the classification in age classes following the approach of [39] driven by
poplar industry requirements, the full ground dataset was used (366 polygons), composed
by: Class 1 (1 year old; 46 polygons); Class 2 (2–3 years old; 91 polygons); Class 3 (4–6 years
old; 87 polygons); Class 4 (≥7 years old; 139 polygons).

2.2. Remote Sensing Images

The Japanese Space Agency ALOS2 satellite carries an L-band Synthetic Aperture
Radar (SAR) which can acquire images in different modes [41]. The dual-polarization (HH
and HV) images dated 15 July in 2017 and 18 June in2018 were downloaded as Fine Beam
Mode (Single Look Complex) scenes (https://www.eorc.jaxa.jp/ALOS/en/index_e.htm,
accessed on 11 October 2022) and processed using the European Space Agency (ESA)
Sentinel Application Platform (SNAP).

https://www.eorc.jaxa.jp/ALOS/en/index_e.htm
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Figure 1. In the upper left box, the location of the study area in the Italian Po valley is shown. The 
main image is a RGB color composite obtained using the Yamaguchi decomposition of the quad-pol 
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Figure 1. In the upper left box, the location of the study area in the Italian Po valley is shown. The
main image is a RGB color composite obtained using the Yamaguchi decomposition of the quad-pol
ALOS2 SAR scene (R: surface scattering: G: volumetric scattering; B: double bounce). The poplar
stands used as ground truth in the classification models are evidenced in red.

The processing steps included Calibration, selection of Gamma naught for the analysis,
speckle filtering (3 × 3 Frost filter; [42]), SAR simulation to produce the distortions mask
and Range Doppler terrain correction using the Shuttle Radar Topography Mission Digital
(SRTM) Elevation Model at 1 Arcsec. The final resolution was set equal to 14.5 m; no
distortion effects were detected. The ALOS2 decibel values were linearized, and stand-
level statistics were extracted from the two polarizations, including minimum, maximum,
mean, standard deviation, polarization subtraction (HH − HV) and polarization addition
(HH + HV). The ALOS2 quad-pol image, dated 4 October in 2017, was downloaded as
Single Look Complex. Calibration was set to produce complex outputs and, subsequently,
to produce the coherency T3 matrix. A Refined Lee 7 × 7 polarimetric speckle filter was
applied to reduce speckle, and the Freeman-Durden and Yamaguchi decompositions were
computed. The Range Doppler terrain correction was applied to the outputs using the
1 Arcsec SRTM digital elevation model, setting final spatial resolution equal to 6 m.

Stand level statistics were extracted including minimum, maximum, mean and stan-
dard deviation. For all the remote sensing imagery, only pixels included for >75% inside
the areas were extracted and used in the analysis.

2.3. Data Analysis and Classification Algorithms

For the objective of poplar cut stands detection, the two ALOS2 dual polarization
2017 and 2018 scenes, before-cut (poplar forest) and after-cut (bare soil/low vegetation),
respectively, were used. To generate the ground truth for calibration and validation, pixels
were extracted from the 28 stands that, according to field data, resulted as cut during that
period. Pixels were extracted from both images to provide the classification algorithm
with examples of the poplar forest occurring before the cut, and bare soil/low vegetation
occurring after the cut. For each scene, five features were available: the HH, HV, HH-HV,
HH + HV polarizations and RFDI index. Four area-based statistics (minimum, maximum,
mean and standard deviation) were then computed for each of the five features, resulting
in a total of 20 predictors per scene. All computations were performed with the European
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Space Agency SNAP toolbox and the R software [43]. The CART algorithm, with leave-
one-out (LOO) validation procedure, was used to discriminate the poplar forest from the
bare soil/low vegetation in a binary classification exercise that exploited the 70% of ground
truth for training and 30% for validation.

To detect age classes, the ALOS2 quad-polarization image was used. The follow-
ing 11 features were available: 4 polarizations (HH, HV, VH, VV), 3 Freeman-Durden
decompositions and 4 Yamaguchi decompositions. In the Freeman-Durden decomposi-
tion, band 1 represents the double bounce, band 2 represents the volume and band 3
represents the surface scattering. In the Yamaguchi decomposition, the first three bands
correspond to the same scattering components as Freeman-Durden, while band 4 represents
the helix scattering.

Pixels from stands of the different age classes, according to ground truth, were ex-
tracted from each feature, and four area-based statistics (minimum, maximum, mean, stan-
dard deviation) were computed for each of the 11 features, obtaining a total of 44 predictors
used for training (70%) and validation (30%) of the models. Classification tests were sepa-
rately carried out for polarizations, Freeman-Durden, and Yamaguchi derived predictors,
using a 10-fold cross validation approach. MARS and Random Forests were used to classify
the four poplar age classes. After the first results, the information from classes 1 and 2
was joined, thus obtaining 3 classes only: class A < 3 years age; class B 4–6 years age; class
C > 7 years age. MARS, Random Forest, and Support Vector Machine algorithms were
used to classify these three classes.

In this research, different machine learning algorithms were tested to evaluate their
impact on the accuracy of the results. The CART decision tree is a non-parametric machine
learning model for regression and classification problems [31]. A decision tree makes
sequential, hierarchical decisions about the outcome variable based on the predictor data.
Subgroups of observations with homogeneous explanatory variables but distinct response
variables are selected and extracted by CART to find the best solution. CART can handle
both numerical and categorical data. It uses clear Boolean logic, and no assumption is
made on training data or prediction residuals. Moreover, it is efficient in large dataset
analysis, robust against collinearity and has in-built feature selection that removes irrele-
vant predictor features. The Multivariate Adaptive Regression Splines (MARS; [44]), is a
nonparametric regression procedure that combines piecewise linear basis functions. MARS
fits an adaptive non-linear regression, computing the functions in pairs and connecting
them to a knot; it does not assume a priori a specific function and is characterized by high
analytical speed and simplicity of the produced models [45]. These characteristics make
MARS suited for ecological applications in which the variables may not always be normally
distributed. The Random Forest (RF; [46]) is a machine learning algorithm employed in
many different application domains. RF is a tree-based ensemble algorithm that gener-
ates hundreds or even thousands of alternative models (hence, ‘forests’). In building a
tree, instead of using the best split among all variables, the best split among a subset of
randomly chosen variables is used (hence, ‘Random’). To incorporate the results from the
hundreds of models, RF regression uses averaging. An advantage of RF is that it only
has two parameters to tune—the number of random features for each split (mtry) and the
number of the trees/models to build (ntree)—and having few parameters makes the result
highly repeatable. Unlike some other tools, there is no assumption on data distribution.
The embedded Out-of-Bag (OOB) strategy separates one-third of the samples aside for
evaluation each time when a model is built provides unbiased internal error estimation.
The support vector machine (SVM; [47]) is a supervised non-parametric statistical learning
technique. Input vectors are non-linearly mapped to a very high-dimension feature space,
and in this feature space a linear decision surface is constructed. Special properties of the
decision surface ensure high generalization ability of the learning machine. SVM is known
for the ability to generalize well even with limited ground truth, and it is often used to
improve the classification of remotely sensed imagery.
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For the classification tests, both CART and MARS were set without weights and
interactions between predictors; for SVM, the polynomial kernel setting was selected; for
Random Forest, the ntree parameter was set to 500 and the mtry value was equal to the
number of predictors. All classification tests were carried out by partitioning the field data
into calibration (70%) and validation (30%) datasets and using the Leave-one-out approach.

The classification results were evaluated using the overall accuracy and for the 3-class
and 4-class tests, considering the imbalance in samples amount per class, also with the
F-score. F-score balances both the concerns of precision and recall in one number; with
precision quantifying the number of positive class predictions that actually belong to the
positive class, and recall quantifying the number of positive class predictions made out of
all positive examples in the dataset.

3. Results

The first aim was to distinguish the cut plantations using dual-pol SAR images. To this
end, the CART algorithm was trained and validated with samples representing two classes:
the poplar forest stands and the stands that were cut, with remaining bare soil or very
low spontaneous vegetation. In total, 28 samples for each class were extracted from the
dual-pol 2017 pre-cut and 2018 post-cut images, respectively; area statistics were computed
and used as input in CART.

Among the predictors, CART selected only the HV mean, identifying a threshold
value (0.002265 linearized dB) for the forest/non-forest distinction. The overall accuracy
of this binary detection, validated with LOO procedure, was equal to 80%. The HV mean
threshold value was used to classify the dual-pol 2018 image as forest/non-forest and
explore the results with respect to the age classes reported by the 2018 ground survey
(366 samples).

The results (Figure 2) showed that 100% of cut plantations (Bare soil—0) were correctly
classified, 96% of new planted stands (Forest—1, age 1 year) were wrongly classified as
cut plantations, 69% of areas of age class 2 (Forest—2, age 2–3 years) were wrongly as cut
plantations, and 8% of stands in class Forest—3 (>4 years age) and 9% in class Forest—4
(>7 years age) were correctly classified as cut plantations. Thus, using a threshold and the
dual-pol SAR imagery, even if the validated overall accuracy was notable (80%), only the
cut plantations and stands above 4 years old were optimally classified.
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The second aim was to classify four poplar age classes using the full-pol 2018 SAR
image, according to [39] (Section 2.1; Class 1—1 year-old—46 samples; Class 2—2/3 years
old—91 samples; Class 3—4/6 years old—87 samples; Class 4—≥7 years old—139 samples).
Tests were carried out using MARS and Random Forest, and area-based statistics were
extracted from 11 predictors represented by the four polarizations, the three Freeman-
Durden and the four Yamaguchi decompositions of the full-pol SAR image. The results
from 10-fold cross validation are reported in Table 1, together with the predictors selected
by the Variable Importance approaches incorporated in the algorithms. Only predictors
that contributed >20% to the result are reported, with the percentage of contribution.

Table 1. Overall accuracy (OA) and F-score for the classification of 4 poplar age classes with MARS
and Random Forests models. The predictors contributing >20% to the result are reported in italic.

4 Poplar Age Classes

Input MARS Random Forests

Polarizations
OA: 0.681

F-score: 0.604
Mean_HV (100%)

OA: 0.686
F-score: 0.607

Mean_HV (100%)
Mean_HH (40.1%)
Min_HV (21.1%)

Freeman-Durden
decompositions

OA: 0.725
F-score: 0.664

Mean_volume (100%)
Mean_ double_bounce (29%)

OA: 0.734
F-score: 0.724

Mean_volume (100%)
StDev_double_bounce (40.1%)

Yamaguchi decompositions

OA: 0.731
F-score: 0.685

Mean_volume (100%)
Mean_double_bounce (31%)

OA: 0.725
F-score: 0.718

Mean_Helix (100%)
Mean_volume (94.8%)
StDev_Helix (53.8%)

Mean_double_bounce (37.5%)

The results indicate that the polarimetric decompositions helped to slightly increase
the accuracy, with respect to that obtained using simple polarizations. Irrelevant differences
occurred between the two decomposition types, and a very slight increase in accuracy was
reached when using RF, according to the F-score. The volume decomposition was the most
important result.

The tests were then repeated after aggregating the ground truth in three “new” age
classes (class A < 3 years age; class B 4–6 years age; class C > 7 years age) using MARS,
Random Forests and SVM algorithms. The overall accuracies obtained with 10-fold cross
validation are reported in Table 2, together with the F-score and the Variable Importance
results (available only for MARS and Random Forests).

In this case, according to OA, MARS and SVM showed similar performances, while
Random Forest scored the best overall accuracies, with a notable increase in accuracy (>10%)
when using the polarizations. However, the F-score, considering unbalanced sampling,
shows that all results are in a very close range. The mean area statistics resulted in the most
frequently used one, and results were mostly based on the mean volume derived from
decompositions. The confusion matrices for the classifications of the three age classes are
reported in Table 3.
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Table 2. Overall accuracy (OA) and F-score for the classification of 3 poplar age classes, obtained with
MARS, Random Forests and SVM models using 10-fold cross validation. The Variable Importance
are also reported in italic for MARS and Random Forests.

3 Poplar Age Classes—Overall Accuracy
[Class A ≤ 3 Years Age; Class B 4–6 Years Age; Class C ≥ 7 Years Age]

Input MARS Random Forests SVM

Polarizations
OA: 0.79

F-score: 0.78
Mean_HV 100.0%

OA: 0.87
F-score: 0.76

Mean_HV 100.0%
Mean_HH 34.5%
Min_HV 20.8%

OA: 0.77
F-score: 0.74

NA

Freeman-Durden
decompositions

OA: 0.76
F-score: 0.74

Mean_volume 100.0%

OA: 0.78
F-score: 0.76

Mean_volume 100.0%
StDev_double_bounce

38.3%
Max_volume 21.4%

OA: 0.77
F-score: 0.75

NA

Yamaguchi
decompositions

OA: 0.77
F-score: 0.75

Mean_volume 100.0%

OA: 0.79
F-score: 0.77

Mean_Helix 100.0%
Mean_volume 95.5%
StDev_Helix 55.2%

Mean_double_bounce
22.1%

OA: 0.79
F-score: 0.76

NA

Table 3. Confusion matrices for the 3 age class classifications using different MARS, Random Forests,
and SVM algorithms and all the available predictors, with a 10-fold cross validation approach.

3 Poplar Age Classes—Confusion Matrices
[Class A ≤ 3 Years Age; Class B 4–6 Years Age; Class C ≥ 7 Years Age]

Input MARS Random Forests SVM

Polarizations

classA classB classC Tot classA classB classC Tot classA classB classC Tot

125 14 2 141 125 13 3 141 121 15 3 139

14 51 18 83 14 47 7 68 15 44 13 72

5 24 113 142 5 29 123 157 7 31 117 155

143 89 133 366 143 89 133 366 143 90 133 366

Input MARS Random Forests SVM

Freeman-Durden decomposition

classA classB classC Tot class
A classB class C Tot classA classB classC Tot

119 18 2 139 127 17 1 145 125 16 3 144

19 46 19 84 11 49 17 77 14 47 16 77

5 25 113 143 5 24 115 144 6 26 113 145

143 89 134 366 143 89 133 366 145 89 132 366

Input MARS Random Forests SVM

Yamaguchi decomposition

classA classB classC Tot classA classB classC Tot classA classB classC Tot

121 15 2 138 124 15 2 141 127 15 2 144

16 51 23 90 14 49 14 77 12 46 15 73

6 23 109 138 5 26 117 148 5 28 116 149

143 89 134 366 143 89 133 366 144 89 133 366

4. Conclusions

The present research demonstrates the feasibility of monitoring poplar plantations with
SAR polarimetric data, specifically detecting interannual cuts and classifying stands of different
ages, thus producing valuable information to forest management and planning activities.

The detection of cut areas was based on two dual-pol (HH, HV) SAR ALOS2 images,
which provided the inputs to train and validate the CART classification algorithm. Dual-pol
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data were used as they were available in the pre- and post-cut period, differently from
quad-pol images. CART selected a threshold value from HV polarization to perform the
discrimination between the cut areas and poplar forest, with 80% overall accuracy. It
is recognized that the HV polarization is more sensitive than HH to the forest structure
parameters that are sensed at the L-band thanks to HV’s signal penetration capability [48,49].
This fact explains the selection of the single HV input in the classification. Ref. [50] similarly
found that a simple HV-based threshold approach was enough to identify forest cutting.
This CART result—even if not especially accurate—can be considered valuable because
recently planted and young poplar stands represent a major source of confusion due to their
limited height and scarce foliage density. For new poplars plantations (stands with less
than 1 year age), the crown cover is usually <5% of the plot and reaches about 25% in the
third year; only poplars > 4 years show a cover > 75% [12]. This problem became evident
when the sources of error were investigated: The majority of areas planted less than 3 years
ago, especially those planted a few months ago, were misclassified as bare soil. In Chinese
forests, the authors of [51] found that the sensitivity of L-band SAR backscatter to structure
fluctuated with canopy density; while the authors of [52] showed that SAR backscattering
in white poplar was sensitive to the leaf area index. These observations are in line with
the scarce accuracy found for the lower age classes, which include areas with a limited
canopy cover and poplars with a thin structure that cannot be easily sensed with ALOS2
data. The majority of previous studies based on the commonly used optical satellite data
solely focused on mature poplar plantations (5–10 years; [1]), stated that it is impossible
to discriminate poplars < 3 year of age [5], or observed similar issues for younger age
classes when try to discriminate poplar stands from other cover types, obtaining similar
accuracy with very high spatial resolution imagery [12]. The results presented here are
similar to those obtained with the optical data, with the advantage that SAR systems are
weather-independent, facilitating winter data acquisitions. Moreover, considering that SAR
can potentially provide additional structure information, its use in poplar cut detection is
strongly suggested. In fact, SAR data are widely used in monitoring the development of
other forest plantations [50,53,54]. In addition, the use of a single threshold represents an
easy approach that facilitates the detection of cutting occurring in poplar stands over the
course of years, although results based on dual-pol ALOS2 cannot be considered reliable
for the 1–3-year age classes. It is expected that this result could be improved if quad-pol
images are available in the needed dates, given their larger information content.

The classification in age classes, based on quad-pol data, followed two steps: The
first one attempted to discriminate the four original age classes provided from ground
truth according to [39]. The results indicate a moderate overall accuracy (included in the
0.68–0.73 range), and slightly lower values when considering the F-score (0.60–0.72 range),
with higher F-score values obtained with RF algorithm. The higher accuracy range was
reached when using polarimetric decompositions as inputs. These moderately accurate
results are explained in the light of the previous consideration regarding low age poplar
classes, which represent a major source of confusion in classification. It is interesting to
note that, when looking at the importance of input variables, the HV band contributed
most when using polarization inputs, while the volume scattering contributed most when
using decompositions inputs. This was true except in one case (considering OA result
with RF algorithm) for which the Yamaguchi helix scattering decomposition, which is
usually employed in very complex and heterogeneous urban areas [55], resulted the most
important predictor in the classification. Further analyses are needed to interpret this result,
which might be linked to the mix of regularly organized targets (trunks) in plantation
and the variable understory vegetation and soils targets, composing a heterogeneous and
complex target.

In the second step, we aggregated the ground data to obtain three age classes (<3 years;
4–6 years; >7 years), reducing the difficulty of the classification task but still providing
important information in managing plantations and planning the poplar cuts. The overall
accuracy increased, reaching the 0.76–0.79 range in all cases regardless the inputs used



Remote Sens. 2022, 14, 5202 11 of 14

(polarimetric bands or decompositions) or the classification algorithm. Similarly, the F-
score ranged between 0.74 and 0.77. In one single case, according to overall accuracy
result based on polarimetric bands and RF, the accuracy reached the higher 0.87 value.
However, considering the F-score that mitigates the unbalance sampling, the results are
all very close each other regardless the used algorithm or the input predictors. In all the
tests, the worst results were obtained for the intermediate age class when stems and leaves
were not developed enough to detect by scattering mechanisms. Nevertheless, this is
the least interesting class for management purposes, as the priority information targets
mature stands ready for cut or recently planted stands to monitor their extent. The variable
importance approach incorporated in MARS and RF algorithms confirmed the well-known
importance of the HV polarization for forest and biomass detection [56,57], as well the value
of the volumetric scattering, which, at the L band, is directly related to the development of
branches and trucks and thus to the maturity of the forest.

These classification results are notable, considering that in previous research, the
resulting values were lower or similar for the detection of mature stands only [1,12] or for
the classification of only two age classes [13]. These positive results are certainly linked
to the value of the quad-pol ALOS2 data. Different forest studies have highlighted that
quad polarization mode performs better than dual and single polarization in land cover
classification [58,59]. ALOS2 quad-pol data are often used to estimate forest structure
parameters [60,61], including in plantations [62], and to understand the level and extent
of disturbances and regrowth dynamics in forests [63]. Minimal differences occurred
with the different machine learning algorithm, basically showing their equivalence in
such classification exercises. In addition, minimal differences occurred when using the
decompositions instead of bands. However, considering that the computation of the
decompositions can be easily performed in open software, their testing is suggested. It
is also noteworthy that the better performances were obtained in the previous four-class
classification test. When available, the full-pol data are preferable with respect to the
dual-pol as they include increased information content and higher spatial resolution. SAR
data availability will surely increase in the near future according to the already-planned
international satellite new missions, representing an opportunity to improve the monitoring
of forest resources and plantations such as poplar.
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