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Abstract: Accurately monitoring spatio-temporal changes in lake water levels is important for
studying the impacts of climate change on freshwater resources, and for predicting natural hazards.
In this study, we applied multi-mission radar satellite altimetry data from the Laurentian Great Lakes,
North America to optimally reconstruct multi-decadal lake-wide spatio-temporal changes of water
level. We used the results to study physical processes such as teleconnections of El Niño and southern
oscillation (ENSO) episodes over approximately the past three-and-a-half decades (1985–2018). First,
we assessed three reconstruction methods, namely the standard empirical orthogonal function (EOF),
complex EOF (CEOF), and complex independent component analysis (CICA), to model the lake-wide
changes of water level. The performance of these techniques was evaluated using in-situ gauge
data, after correcting the Glacial Isostatic Adjustment (GIA) process using a contemporary GIA
forward model. While altimeter-measured water level was much less affected by GIA, the averaged
gauge-measured water level was found to have increased up to 14 cm over the three decades. Our
results indicate that the CICA-reconstructed 35-year lake level was more accurate than the other two
techniques. The correlation coefficients between the CICA reconstruction and the in situ water-level
data were 0.96, 0.99, 0.97, 0.97, and 0.95, for Lake Superior, Lake Michigan, Lake Huron, Lake Erie,
and Lake Ontario, respectively; ~7% higher than the original altimetry data. The root mean squares
of errors (RMSE) were 6.07 cm, 4.89 cm, 9.27 cm, 7.71 cm, and 9.88 cm, respectively, for each of
the lakes, and ~44% less than differencing with the original altimetry data. Furthermore, the CICA
results indicated that the water-level changes in the Great Lakes were significantly correlated with
ENSO, with correlation coefficients of 0.5–0.8. The lake levels were ~25 cm higher (~30 cm lower)
than normal during EI Niño (La Niña) events.

Keywords: lake level changes; satellite altimetry; water level stations; CICA; the Great Lakes

1. Introduction

The Great Lakes of North America are the largest group of freshwater lakes on Earth
by area, and provide drinking water, food, and recreation to 40 million people, and bil-
lions of dollars in economic benefits to the region [1]. Lake-level changes are considered
directly representative of water resources, and are sensitive to climate change including
precipitation increases, ice cover decline, water temperature rises, and global-scale El Niño
Southern Oscillation (ENSO) [2], along with anthropogenic influences such as drinking
water processing, industrial use, and channel dredging [3–5]. Quinn found that Great
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Lakes’ water levels had a well-defined seasonal cycle driven primarily by snowmelt in the
spring and summer and lake evaporation in the fall and winter [6]. Burton reported that the
coastal marshes of the Great Lakes could be affected by unique fluctuations in water level
due to seiche activity in the lakes [7]. According to predictions made by Kayastha et al., by
2040–2049 the average annual water levels of Lake Superior, Michigan–Huron, and Erie
are projected to increase by 0.19, 0.44, and 0.28 m, respectively, relative to 2010–2019 [8]. In
recent years, the Great Lakes’ water levels have demonstrated more frequent and intensive
fluctuation. For example, the lowest measurements on record were taken in 2013 for most
of the Great Lakes, i.e., ~30 cm reduction, while Lake Superior and Lake Michigan–Huron
contained ~35 cm less water in 2014, and severe flooding happened in 2017 on Lake On-
tario, exceeding 40 cm increase in water level [9]. Hence, comprehensive spatio-temporal
monitoring of lake-level changes is vitally important in the Great Lakes.

Generally, measurements of lake surface height have mainly relied on satellite al-
timetry [10–12] and in situ water level stations [13,14]. Hwang et al. verified that there
were good agreements between the TOPEX/Poseidon altimetry data and gauge results at
Bosten Lake (western China) and Lake Huron (North America). Wang et al. presented a
robust strategy to estimate the lake level of Ngangzi Co, with an accuracy of ~17 cm for
TOPEX/Poseidon and ~10 cm for Jason-1/2/3. Sun et al. constructed a 27-year lake-level
time series for Zhari Namco, using the TOPEX/Poseidon-Jason1/2/3 and validating tem-
perature, precipitation, lake area, equivalent water height, and in situ gauge data. The
GeoSat data for the Great Lakes were compared to data from water level stations in 1994,
and it was found that the root mean squares of errors (RMSE) could be up to 11.1 cm [15].
Jekeli et al. studied the establishment of vertical data with satellite altimetry and water-
level gauge data on large lakes, and showed a tilt of about 33 cm in the computed data
across the Great Lakes [16]. Kuo et al. estimated vertical crustal motions by combining
geocentric sea-level measurements and water-level gauges in the Great Lakes area, the
uncertainties were estimated at <0.5 mm/year [17]. Cheng et al. calibrated the surface
height of the Great Lakes using Jason-1 and Jason-2, with comparable results to those from
the dedicated sites [18]. In a recent study, a multi-mission satellite radar altimetry-based
database has been established in the Great Lakes region, using GDR and RADS data from
12 radar altimetry satellites (Geosat, GFO, ERS-1/-2, Envisat, TOPEX/Poseidon, Jason-1/-
2/-3, SARAL/Altika, CryoSat-2, Sentinel-3A) covering ~35 years, to improve monitoring
and enhance the Great Lakes Operational Forecasting System [19]. Although satellite
altimetry can provide measurements of spatial water-level changes across these lakes, there
remains limited information due to data gaps and limited coverage from satellite tracks. In
situ water level stations provided long-term continuous measures of fluctuations, but are
limited to certain locations distributed along the shorelines. The limitations of these two
measurement techniques impede comprehensive research of inland hydrology and water
resources, including addressing spatial and temporal dynamics of freshwater storage, flood
forecasting, and other water resource management applications [20,21].

In most previous studies, statistical reconstruction was implemented based on principal
component analysis (PCA), also known as the empirical orthogonal function (EOF) [22,23]
technique. This process is known as optimal space–time reconstruction, and has been
widely applied in sea-level reconstruction due to its simplicity and operability [24–27].
However, from the mathematical perspective, the popular PCA/EOF is a second-order
and stationary statistical decomposition technique, because by definition it considers the
lag-zero auto-covariance of observations to estimate statistically orthogonal eigenvectors
known as orthogonal modes [28]. In reality, the time series of water-level fluctuations
represents dynamical characteristics that include monotonic trends and inter-annual cyclic
variations [29,30]. Therefore, non-stationary techniques such as the complex extension of
PCA/EOF, known as CEOF [31], can be considered to better represent the cyclo-stationary
properties of the water-level time series [32,33]. Forootan and Kusche argued that geo-
physical time series usually contain statistical information considerably higher than the
second order, provided in the higher-order statistical content of the probability distribu-
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tion function (PDF), which can be extracted from the observed results [34–36]. Thus, the
higher-order statistical information is incorporated in the independent component analysis
(ICA) method to separate spatial and temporal geophysical time series into statistically
independent modes, which are likely to be better correlated with independent physical
processes according to the measurements [37–39]. Forootan et al. successfully applied this
technique for reconstructing global terrestrial water-storage fields. Forootan et al. extended
the stationary ICA method to account for cyclo-stationary statistical properties of samples’
time series through the complex ICA (CICA) approach, the performance of which was
tested by analyzing various satellite-derived time series [30]. In the current study, we tested
how CICA can be helpful to reconstruct surface water level changes in the Great Lakes area,
which exhibit considerable fluctuations over different time scales.

The Great Lakes are often referred to as inland seas because of their sea-like char-
acteristics, including rolling waves, sustained winds, strong currents, great depths, and
distant horizons [40]. Therefore, the main motivation of this study was to incorporate
the merits of satellite altimetry and in situ measurements, borrowed from the sea-level
reconstruction, using decomposition-based reconstruction algorithms to obtain spatial
and temporal dynamics of water-level changes in the Great Lakes. Before the reconstruc-
tion, the glacial isostatic adjustment (GIA) corrections (including radial displacement and
geoid changes in the Great Lakes) were applied to ensure data consistency. The CICA
and ordinary EOF and CEOF reconstructions were implemented to produce a long-term
(April 1985–October 2018) dataset of surface height changes across the Great Lakes. The
changes were spatially and temporally dense, and were homogenized with 0.1◦ × 0.1◦

and monthly spatio-temporal resolution. The reconstructions were evaluated in terms of
correlation coefficients and RMSE, by comparison with the water-level changes reported by
in situ stations. We also assessed the interannual water-level fluctuations caused by the
El Niño–Southern Oscillation (ENSO) to assess whether the lakes’ surface heights during
ENSO events were higher or lower than normal.

2. Data and Methods
2.1. Study Area

The Great Lakes, also called the Laurentian Great Lakes, consist of Lakes Superior,
Michigan, Huron, Erie, and Ontario (see Figure 1). They are primarily located in the upper
mid-east region of North America and are on the Canada–United States border, ranging
from 41◦N to 50◦N latitude and 75◦W to 93◦W longitude, with total surface area and total
volume up to 244,106 km2 and 22,671 km3, respectively [41].
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by squares: the green squares show water level stations from NOAA’s Center for Operational
Oceanographic Products and Services (NOAA/NOS/CO-OPS), while the yellow squares are stations
of the Department of Fisheries and Oceans’ Canadian Hydrographic Service (DFO/CHS).

2.2. Radar Altimetry Data

The radar altimetry data used in this study were from the Geophysical Data Records
(GDR) and Radar Altimeter Database System (RADS), from April 1985 to September
2018. GDR mainly includes TOPEX/Poseidon (T/P), Jason-1, Jason-2, Jason-3, ERS-1,
ERS-2, ENVISAT, and SARAL/AltiKa data products (https://www.aviso.altimetry.fr/en/
data/products/sea-surface-height-prodcts/global/gdr-igdr-and-ogdr.html (accessed on
15 December 2020)); RADS mostly covers GEOSAT (GEOdetic SATellite), GEOSAT Follow-
on (GFO), Sentinel-3A, and CryoSat-2 data products (http://rads.tudelft.nl/rads/rads.
shtml (accessed on 15 December 2020)). The temporal coverage provided by the altimetry
data products is indicated in Figure 2.

Remote Sens. 2022, 14, x FOR PEER REVIEW 5 of 19 
 

 

(hC) consisted of instrument corrections (hi), wet troposphere correction (hwet), dry trop-

osphere correction (hdry), ionosphere correction (hiono), and geophysical corrections of 

the solid Earth tide (hse) and pole tide (hpol). The data editing was followed by the 

standard procedure which included: (1) extracting altimetry measurements within the 

Great Lakes by utilizing water masks; (2) removing unreasonable and large outliers 

according to wave-height threshold; (3) separating ice-cover information contaminat-

ing the altimetry observations; (4) dealing with apparently false values by applying 

an alternative median absolute deviation (MAD) method; (5) estimating accurate al-

timetry measurements by applying Gaussian kernel regression (GKR) to remove out-

liers. Finally, we obtained the water-level changes from the multi-mission radar al-

timetry after removing bias between different satellites. 

 

Figure 2. Temporal coverage of the available altimetry data products used in this study. The datasets 

start in April 1985 and end in September 2018. 

2.3. Water Level Stations 

The in situ data from the Great Lakes are among the longest and highest-quality hy-

dro-meteorological datasets in North America, having been collected since 1860. Figure 

1a shows the water-level stations maintained by NOAA/NOS/CO-OPS 

(https://www.glerl.noaa.gov/data/wlevelsl (accessed on 20 December 2018)) and 

DFO/CHS (http://www.isdm-gdsi.gc.ca/isdm-gdsi/twl-mnel (accessed on 20 December 

2018)). At these stations, water levels are recorded at 6-min intervals and archived at 

hourly, daily, and monthly intervals. In the current study, the lake-wide network average 

was used for calculating the lakes’ average surface height. 

2.4. Glacial Isostatic Adjustment 

The Great Lakes formed at the end of the last glacial period, around 14,000 years ago. 

[1,43]. GIA is the result of the natural rebound of the Earth’s crust following the removal 

of the weight of the glaciers that covered the region [44,45]. During satellite altimetry, GIA 

affects the geoid change which is subtracted in Equation (1). Meanwhile, water level sta-

tions established on pedestal rocks are also influenced by the radial displacement from 

GIA. In this study, we used the newly released ICE-6G model to estimate geoid changes 

and radial displacement (https://www.atmosp.physics.utoronto.ca/~peltier/data.phpl (ac-

cessed on 25 December 2018)). 

2.5. Multivariate ENSO Index 

The El Niño–Southern Oscillation (ENSO) is an irregular periodic phenomenon, 

linked with the anomalous state of tropical Pacific atmosphere and wind circulation [2]. 

ENSO can affect global climate, driving storms and exerting a considerable impact on the 
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The primary results from radar altimetry satellites were the ranges, i.e., the distances
between the satellite orbit and the water level measured with respect to the reference
ellipsoid [42]. In order to compute water level, further processing was applied. First,
estimation of surface height anomaly was obtained from Equations (1) and (2), which apply
geophysical and atmospheric corrections:

hLSHA = hLSH − hgeoid = hA − (hR + hC)− hEGM + ε (1)

hc = hi + hwet + hdry + hiono + hse + hpol (2)

where hLSHA is geocentric lake surface height anomaly (LSHA); hLSH and hgeoid represent
lake surface height (LSH) and the EGM2008 geoid height, respectively; hA, hR, and hC refer
to the orbital height above the reference ellipsoid, the altimeter range, and the altimeter
range corrections, respectively. The corrections applied to the altimeter range (hC) consisted
of instrument corrections (hi), wet troposphere correction (hwet), dry troposphere correction
(hdry), ionosphere correction (hiono), and geophysical corrections of the solid Earth tide
(hse) and pole tide (hpol). The data editing was followed by the standard procedure which
included: (1) extracting altimetry measurements within the Great Lakes by utilizing water
masks; (2) removing unreasonable and large outliers according to wave-height threshold;
(3) separating ice-cover information contaminating the altimetry observations; (4) dealing
with apparently false values by applying an alternative median absolute deviation (MAD)
method; (5) estimating accurate altimetry measurements by applying Gaussian kernel

https://www.aviso.altimetry.fr/en/data/products/sea-surface-height-prodcts/global/gdr-igdr-and-ogdr.html
https://www.aviso.altimetry.fr/en/data/products/sea-surface-height-prodcts/global/gdr-igdr-and-ogdr.html
http://rads.tudelft.nl/rads/rads.shtml
http://rads.tudelft.nl/rads/rads.shtml
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regression (GKR) to remove outliers. Finally, we obtained the water-level changes from the
multi-mission radar altimetry after removing bias between different satellites.

2.3. Water Level Stations

The in situ data from the Great Lakes are among the longest and highest-quality hydro-
meteorological datasets in North America, having been collected since 1860. Figure 1a
shows the water-level stations maintained by NOAA/NOS/CO-OPS (https://www.glerl.
noaa.gov/data/wlevelsl (accessed on 20 December 2018)) and DFO/CHS (http://www.
isdm-gdsi.gc.ca/isdm-gdsi/twl-mnel (accessed on 20 December 2018)). At these stations,
water levels are recorded at 6-min intervals and archived at hourly, daily, and monthly
intervals. In the current study, the lake-wide network average was used for calculating the
lakes’ average surface height.

2.4. Glacial Isostatic Adjustment

The Great Lakes formed at the end of the last glacial period, around 14,000 years
ago. [1,43]. GIA is the result of the natural rebound of the Earth’s crust following the removal
of the weight of the glaciers that covered the region [44,45]. During satellite altimetry, GIA
affects the geoid change which is subtracted in Equation (1). Meanwhile, water level
stations established on pedestal rocks are also influenced by the radial displacement from
GIA. In this study, we used the newly released ICE-6G model to estimate geoid changes
and radial displacement (https://www.atmosp.physics.utoronto.ca/~peltier/data.phpl
(accessed on 25 December 2018)).

2.5. Multivariate ENSO Index

The El Niño–Southern Oscillation (ENSO) is an irregular periodic phenomenon, linked
with the anomalous state of tropical Pacific atmosphere and wind circulation [2]. ENSO
can affect global climate, driving storms and exerting a considerable impact on the amount
of precipitation [46,47]. The Great Lakes are situated between storm tracks, and warmer
and possibly drier conditions can develop during El Niño events [48]. Therefore, some
of the lakes demonstrate higher than normal interannual variations of lake level and
increased risk of localized flooding during warm ENSO phases. Here, the Multivariate
ENSO Index (MEI) Version 2 was applied to represent the strength and timing of ENSO
phases (https://psl.noaa.gov/enso/mei/index.htmll (accessed on 20 December 2020)).
Positive MEI values represent the warm ENSO phase (i.e., El Niño), while negative MEI
values indicate the cold ENSO phase (i.e., La Niña).

2.6. The Reconstructed Methods

The target of our reconstruction procedures (Figure 3) was to generate regular water-
level maps at ~10 km scale covering each lake from April 1984 to September 2018. The
data acquisition procedure was as follows: (1) 0.1◦ × 0.1◦ grids were generated by ArcGIS
software, and the grid points filled with available altimetry data geographically located
near to the latitude and longitude of the specified grid, substituted by zero if data was
missing; (2) a data matrix X was formulated that containing m (number of grid points)
sampled time series with a length of n (number of epochs); (3) the zero entries in each
row of the data matrix X were replaced by the median of the non-zero entries of the
water level station data; (4) CICA/CEOF/EOF was applied to decompose the data matrix
X into orthogonal or independent components; (5) the surface height of each lake was
reconstructed by using reserved components from Step 4; (6) the former zero entries of Step
3 were replaced by the median obtained from Step 5, and a new X field generated; (7) Steps
5 and 6 were repeated until no considerable changes were detected in the modes of Step 4
or equivalent data matrix (X) of Step 6. Description of EOF, CEOF, and CICA is provided
in Appendix A. Lake Erie was taken as the reconstruction example and the results are
shown in the supplementary file. In this study, over 90% of total variance was observed in
the first five, nine, and twelve modes decomposed by EOF, CEOF, and CICA, respectively

https://www.glerl.noaa.gov/data/wlevelsl
https://www.glerl.noaa.gov/data/wlevelsl
http://www.isdm-gdsi.gc.ca/isdm-gdsi/twl-mnel
http://www.isdm-gdsi.gc.ca/isdm-gdsi/twl-mnel
https://www.atmosp.physics.utoronto.ca/~peltier/data.phpl
https://psl.noaa.gov/enso/mei/index.htmll
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(see Figures S1–S4). The iteration numbers were defined by the maximum correlation
coefficients and minimum RMSE values (see Text S2 and Figure S5 in Supplementary).
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3. Results
3.1. Effects of GIA on the Great Lakes

Figure 4a shows the radial displacement rate in the Great Lakes Basin according
to the ICE-6G GIA model. Most of the stations located in the USA and southeastern
Canada presented a negative ratio, while the radial displacement of southwestern Canadian
stations gradually increased. Lake Superior, as the largest lake of the Great Lakes, was
rising by 2.02 ± 2.85 mm/year (see in Table 1). However, the western region of the Lake
Superior, accounting for roughly one third of its area, was subsiding; e.g., measurements
at the #2 station, Duluth, were decreasing by about 1.50 mm/year. In contrast, all of
Lake Erie, as the southernmost and smallest by volume of the Great Lakes, was falling
by 2.07 ± 0.31 mm/year. For the other three lakes, overall displacement was not clear,
but the southern parts of each presented positive values which were not negligible; e.g.,
measurements from the #12 station, the #22 station, and the #38 station were all decreasing
at roughly 1–2 mm/year. Noticeably, at #54 station located in Canada, the rise was up to
140 mm from April 1985 to September 2018; the #24 station in USA reported a decrease of
about 100 mm over the 33 years. In Figure 3b, the spatial distribution of geoid changes
shows that the northeast of the Great Lakes was increasing while the southwestern part was
decreasing. Although the magnitude of geoid change was smaller than radial displacement
(see Table 1), we subtracted it to ensure consistency during the process of altimetry and in
situ water level data calculation.
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Figure 4. Rates of (a) radial displacement and (b) geoid change due to GIA in the Great Lakes region.
The water level stations used in this study are numbered in (a). The red line in (b) represents the
border between USA and Canada.

Table 1. Rates of radial displacement and geoid change in the Great Lakes.

GIA Effects Lake Superior Lake Michigan Lake Huron Lake Erie Lake Ontario

Radial
displacement

2.02 ± 2.85
mm/year

−0.59 ± 1.83
mm/year

0.66 ± 2.12
mm/year

−2.07 ± 0.31
mm/year

−0.36 ± 0.81
mm/year

Geoid change 0.12 ± 0.17
mm/year

−0.19 ± 0.21
mm/year

−0.05 ± 0.17
mm/year

−0.32 ± 0.05
mm/year

−0.19 ± 0.05
mm/year

3.2. The Reconstructed Lake Surface Height

After removing the GIA effects, we re-estimated the entire lake level over the Great
Lakes from April 1985 to September 2018. Figure 5a–e shows the Great Lakes’ time series
for surface height and volume by EOF, CEOF, and CICA reconstruction, respectively. The
subgraphs indicate the differences between the reconstructed results and the measurements
from the water level stations. Figure 6a–e presents the results from the original altimetry
estimations, water level stations, and CICA reconstruction, respectively. In general, all of
them capture extreme fluctuations of water level in some time nodes; e.g., conspicuous
positive peak values in El Niño years (1986/1987, 1997/1998) and negative peak values
in La Niña years (1998/1999, 2007/2008, 2011/2012), which mainly appeared in Lakes
Superior and Michigan, as well as 1997/1998 flooding in Lake Erie and 2017 flooding in
Lake Ontario. The reconstructed results were more comparable with the water level station
data, especially for the period 1986~1993 when there were less available good quality
altimetry satellite data for the Great Lakes.



Remote Sens. 2022, 14, 5194 8 of 18

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 19 
 

 

 

Figure 5. Time series of lake surface height in each lake of the Great Lakes, reconstructed by EOF (black line), CEOF (blue line), and CICA (red line).Figure 5. Time series of lake surface height in each lake of the Great Lakes, reconstructed by EOF (black line), CEOF (blue line), and CICA (red line).



Remote Sens. 2022, 14, 5194 9 of 18

Remote Sens. 2022, 14, x FOR PEER REVIEW 10 of 19 
 

 

 

Figure 6. Time series of lake surface height in each lake of the Great Lakes from altimetry data (black line), water level stations (blue line), and CICA 

reconstruction (red line).

Figure 6. Time series of lake surface height in each lake of the Great Lakes from altimetry data (black line), water level stations (blue line), and CICA reconstruction
(red line).



Remote Sens. 2022, 14, 5194 10 of 18

To compare the performance of different reconstructed methods, correlation coeffi-
cient and root mean square error (RMSE) were introduced. Table 2 shows the correlation
coefficients and RMSE, with comparison of the reconstructed results, the original altimetry,
and the in situ water level. These three reconstructed results had a higher correlation and
lower RMSE with water level station data, presenting better performance results than the
altimetry data.

Table 2. Correlation coefficient (CC) with 95% confidence intervals (CI) and RMSE viewed as
evaluation indicators to compare original altimetry data and reconstructed results.

Great Lakes Method CC (95% CI) RMSE (cm)

Lake Superior Altimetry 0.90 10.80
EOF Rec 0.92 8.69

CEOF Rec 0.92 8.81
CICA Rec 0.96 6.07

Lake Michigan Altimetry 0.93 14.99
EOF Rec 0.98 8.69

CEOF Rec 0.98 8.42
CICA Rec 0.99 4.89

Lake Huron Altimetry 0.93 16.45
EOF Rec 0.97 9.49

CEOF Rec 0.97 10.08
CICA Rec 0.97 9.27

Lake Erie Altimetry 0.90 13.94
EOF Rec 0.96 11.17

CEOF Rec 0.96 11.16
CICA Rec 0.97 7.71

Lake Ontario Altimetry 0.82 16.52
EOF Rec 0.94 11.82

CEOF Rec 0.94 11.26
CICA Rec 0.95 9.89

For standard EOF reconstruction and CEOF reconstruction, it was difficult to distin-
guish which were the better results. EOF reconstruction performed slightly better than
CEOF for Lake Superior, with higher correlation coefficients and RMSE, but STD for EOF
was lower than for CEOF reconstruction. CEOF reconstruction performed slightly better
than EOF for Lake Erie, but in Lake Michigan the correlation coefficient of EOF recon-
struction was better than CEOF reconstruction, while the RMSE of CEOF reconstruction
was better than EOF. Meanwhile, CICA reconstruction certainly performed better than
the first two methods for each lake. The correlation coefficients of CICA reconstruction
were all more than 0.95, and were even up to 0.99 for Lake Michigan. The RMSE of CICA
reconstruction was up to 4.89 cm in Lake Superior and 6.07 cm in Lake Michigan, far less
than the other two methods.

To verify the CICA technique as a higher order statistical decomposition method that
can extract more independent and non-stationary components from the same explained
covariances, performing better than the other two methods, Lake Erie is taken here as
an instance for analysis (also see Figures S2–S5). For the modes decomposed by EOF
and CEOF, only the first PC (principal components) presented lake surface changes when
compared with the results of water level stations. In terms of the CICA’s modes, the
sixth CIPC (complexed independent component) possibly suggests the existence of a
multidecadal period which needs to be verified further; the eighth CIPC suggests a trend
albeit contaminated with interannual variation; the ninth CIPC probably presents the
lake level change recorded by altimetry, especially the obvious low-quality results in the
period 1981~1992. Therefore, with more independent components including more inherent
information about lake surface height, CICA’s results can be reconstructed and restored
better than the commonly used EOF or CEOF.
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4. Discussion
4.1. Corrections of Vertical Motion Resulting from GIA

For the impacts of GIA on the volumes of the Great Lakes, the maximum increase in
volume was up to 0.65 m3/s in Lake Erie, while the maximum decrease in volume was
2.11 m3/s in Lake Michigan–Huron [49]. The apparent effect of GIA accounted for about 4
to 5 cm of the approximately 23 cm decline in difference between Lake Michigan–Huron
and Lake Erie between 1963 and 2006 [50]. However, there were some differences among
the different GIA models. In Table 3, we present the estimates of radial displacement
averaged in each lake using the ICE-6G model, ICE-5G model, ICE-4G model, ICE-3G GIA
model, and water level stations’ relative vertical motion. There were good agreements
between different models for Lake Superior and Lake Michigan–Huron; but discrepancies
for Lake Erie and especially Lake Ontario. This may be due to the limited availability of
GPS sites in the region constraining the GIA models. With gradual improvement of the
Continually Operating Reference Stations (CORS) network across the Great Lakes, we
expect more accurate observations of vertical motion from these stations.

Table 3. Comparison of averaged radial displacement from ICE-6G, ICE-5G, ICE-4G, ICE-3G, and
water level stations, respectively, over the Great Lakes. The data for water level stations’ relative
vertical motion is from [8].

Great Lakes ICE-6G ICE-5G ICE-4G ICE-3G Stations

Lake Superior 1.75 1.81 1.30 2.30 1.60
Lake Michigan −0.67 −0.94 0.00 −1.40 −0.70

Lake Huron 0.47 0.58 0.90 2.00 1.10
Lake Erie −2.19 −2.50 −0.30 −0.60 0.10

Lake Ontario −0.15 −0.31 0.20 0.70 1.40

4.2. Impacts from ENSO on the Great Lakes

Previous studies have found that ENSO can affect ice cover [51], snowfall [52], air
concentration [53], and precipitation [54] over the Great Lakes. In this study, we found
that some peaks or ebbs of lake level happened during ENSO years, which were rarely
mentioned in previous studies. The multi-channel singular spectrum analysis (M-SSA)
method, which has been proved capable of decomposing the interannual components
of multiple time-series [55], was applied to extract the interannual lake level from CICA
reconstructions. A description of MSSA is given in Appendix B. The first five modes which
occupied >90% explained variance (see Figure S6) was retained here. The second mode
(see Figure S7) applies to the interannual variations of lake surface height. In Figure 7a,b,
we show the time series of normalized interannual lake levels and MEI. The interannual
anomalies occurred as high peaks before the warm phase of ENSO (i.e., El Niño), especially
in 1987–1988, 1997–1998, and 2015–2016, while low ebb conditions were experienced before
La Niña events, especially in 1988–1989, 1998–2000, and 2007–2008. Figure 8 presents the
spatial fluctuations of lake levels during the periods of 1997–1998 EI Niño, 1998–2000 La
Niña, 1987–1988 EI Niño, and 1988–1989 La Niña. After abstracting the targeted signal
during the period of ENSO, we found that the lake levels were ~25 cm higher than normal
during EI Niño events, and ~30 cm lower than normal during La Niña. In addition, different
spatial anomalies of interannual lake level were possibly caused by various types of ENSO
events. Different ENSO-type influences will be further studied from the perspective of
water balance, including terrestrial water storage, precipitation, and evaporation over the
Great Lakes.
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Figure 7. (a) Normalized interannual variations in the Great Lakes. (b) Time series of MEI version
2 from April 1985 to September 2018. (c) Maximum correlation coefficients (95% CI) between the
normalized interannual variations and MEI, varying from April 1985 to September 2018. Negative
values represent the lake-level variations leading the MEI, and vice versa. (d) Lag months of the
maximum correlation coefficients. Here, the first and last 2-year time series were removed to obtain
reliable correlation coefficients and lag months.
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Figure 8. Interannual variations of lake levels during (a) the 1997–1998 EI Niño; (b) 1998–2000 La
Niña; (c) 1987–1988 EI Niño; and (d) 1988–1989 La Niña.

Figure 7c,d shows the maximum correlation coefficients and lag months. There were
positive correlations, generally higher than 0.5 with 95% CI, between the normalized
interannual lake level and MEI over the Great Lakes. Note that first and last two years’ data
were not considered in the calculation, to avoid the possible boundary effect in correlation
analysis. During 1999–2011, these correlation coefficients and lag months remained stable,
which were from 0.5–0.6 and 4–6 months, respectively, for four lakes (Michigan, Ontario,
Huron, and Erie), and 0.6–0.7 and 7–8 months for Lake Superior. The correlations begin
to decline after 2011, lower than 0.5 for Lake Erie. The decrease of correlation coefficients
may indicate that the Lake Erie has also been affected by other climatic or anthropogenic
influences in recent years.

5. Conclusions

In this study, the spatio-temporal changes of lake surface heights in the Great Lakes
from April 1985 to September 2018 were reconstructed. Before reconstruction, GIA correc-
tions were taken into consideration to ensure data consistency. In terms of GIA corrections,
the radial displacement resulting from GIA was found to contribute 2.02 ± 2.85 mm/year
in Lake Superior, and −2.07 ± 0.31 mm/year in Lake Erie. After removing the effect of
GIA, we used three methods (EOF reconstruction, CEOF reconstruction, and CICA recon-
struction) to reconstruct the lake surface levels. CICA reconstruction was proposed as a
new iterative reconstruction method, and its improved performance over EOF reconstruc-
tion and CEOF reconstruction was demonstrated: the correlation coefficient with water
level stations reached 0.97, 0.99, 0.97, 0.97, and 0.95, respectively, and the RMSE during
the study period was 6.07 cm, 4.89 cm, 9.27 cm, 7.71 cm, and 9.88 cm, respectively. The
interannual variations of water level were further investigated in terms of their connections
with ENSO, revealing that the Great Lakes are significantly affected by ENSO. The lake
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levels were higher than normal in the years of EI Niño, and lower in the years of La Niña.
The maximal correlation coefficients between lake levels and MEI were 0.5–0.6 with leading
of 4–6 months over four lakes (Lake Michigan, Lake Ontario, Lake Huron, and Lake Erie)
and 0.6–0.7 with leading of 7–8 months over Lake Superior. With development in the near
future of altimetry satellites with better spatio-temporal resolution and coverage, we hope
to use the reconstructed method to monitor transient changes of water level, and provide
support for decision-making for water resources management and regulation, floodwater
observations, and discharge in the Great Lakes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14205194/s1, Figure S1: cumulative percentage of total variance
accounted by the first several modes by EOF, CEOF, and CICA; Figures S2–S4: the retained spatial
patterns and temporal components from EOF, CEOF, and CICA, respectively; Figure S5: relationships
between iteration numbers, the correlation coefficients, and RMSE values; Figure S6: cumulative
percentage of the total variance by MSSA; Figure S7: modes kept by MSSA. References [56,57] are
cited in the Supplementary Materials.
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Appendix A. Description of EOF/CEOF/CICA

Empirical orthogonal function (EOF), as a common statistical signal decomposition
technique, is widely applied to extract orthogonal modes from observations that represent
the dominant part of the variance [58,59]. Here, EOF is described again because it was the
basis for the subsequent two methods. First, the data matrix X was prepared (see Section 2.6)
containing xi = [x1i, x2i, . . . , xni]T; i = 1, . . . , p in its columns. Then, after removing column-
wise temporal means of X, the auto-covariance matrix (containing variances and covariances
between time series of any pairs of grid points) was computed from the Equation (A1):

C =
1
n

XTX (A1)

The aim of EOF is to find directions such as e = (e1, e2, . . . )T in the data. In that
case, the vector e is an eigenvector of the matrix C, and all possible directions of e are
stored in the matrix E. Finally, we reconstructed the data matrix by retaining the dominant
orthogonal modes, i.e., Xj = PjET

j , where j ≤min (n, p) is the number of retained modes, Pj

stores the principal components in its columns (PTP = ∧2, ∧ represents the square roots
of the eigenvalues of C), Ej contains orthogonal base functions, and Xj is therefore an
approximation of X.

https://www.mdpi.com/article/10.3390/rs14205194/s1
https://www.mdpi.com/article/10.3390/rs14205194/s1
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Complex empirical orthogonal function (CEOF) is an alternative to EOF, and can
extract non-stationary patterns. Here, the Hilbert transformation was introduced to develop
CEOF, by introducing a complex field. The data matrix X (shown by Xt) can be assumed as
a scalar filed with discrete Fourier representation of Equation (A2):

Xt= ∑
wk

(a(w k) cos(w k t) + b(w k) sin(w k t)), t = 1, . . . , n (A2)

where a(w k) and b(w k) are the vector of Fourier coefficients at frequency wk (with accept-
ing values between −π and π selected according to the sampling rate). Notably, values
of wk need to satisfy the Nyquist frequency rule, and its equivalent wavelength should
not exceed the length of time series. Then, the Hilbert transform (H) of Xt is given by
Equation (A3):

H(Xt) = ∑
wk

(b(w k) cos(w k t)− a(w k) sin(w k t)), t = 1, . . . , n (A3)

A new complexified data matrix can be defined as: Yt = Xt + i·H(Xt), where i =
√
−1.

Therefore, the real part of the complexified matrix is the original data matrix and its
imaginary part is its Hilbert transform. Here, the auto-covariance matrix can be computed
from Equation (A4):

C =
1
n
(YT

t Yt) = (XTX + H(X)TH(X) + i·(XTH(X)−H(X)TX)) (A4)

The new covariance matrix is decomposing into orthogonal modes of P and E that
now contain complex entries. Finally, matrix Xj can be estimated in a similar manner to the
EOF method, i.e., Xj = Re(PjET

j ), where Re(.) is an operator that extracts the real part of the
complex numbers.

Second-order statistical signal-decomposition methods (EOF and CEOF) have been pre-
viously described. To incorporate more information from the probability density function
(PDF) underlying the data and improve the identification of non-stationary patterns, com-
plex independent component analysis (CICA) is proposed as a higher statistical decomposi-
tion method. Similar to CEOF, the data matrix X is transformed by Equations (A2) and (A3),
and complex orthogonal components are obtained by Equation (A4). Then, the recon-
structed formulation of CICA can be written as:

Xj= Re(PjRj RT
j Ej) = Re

(
PY

j EYT

j

)
(A5)

a new pair of base functions PY
j and EY

j are defined (PY
j = PjRj, EY

j = RT
j Ej RjRT

j = I, I is
an identical matrix). Here, a proper rotation matrix Rj needs to be defined to guarantee

the independence of PY
j and EYT

j . Thus, fourth-order cumulants are necessarily introduced
based on the complex value as

C(xi, x∗j , xk, x∗l ) = E(xix∗j ·xkx∗l )− E(xix∗j )E(xkx∗l )− E(xixk)E(x
∗
j x∗l )− E(xix∗l )E(xkx∗j )

(A6)
where E(.) is the expectation operator, * represents the complex conjugate, and x represents
a column of PY

j or EY
j . Accordingly, the fourth-order cumulant tensors originate from

Equation (A7):

Q(M) = E((x∗Mx)x∗x)−C·trace(M·C)−C·(M + MT)·C (A7)

where C is the auto-covariance matrix of variables x, M is an arbitrary matrix defined to
store the cumulants. Finally, the required rotation Rj for diagonalizing was computed by
the joint diagonalization (JD) approach described in [60,61].
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Appendix B. Description of M-SSA

Here, we briefly describe the multi-channel singular spectrum analysis (M-SSA) method;
the detailed descriptions can be found Ghil et al. (2002) [62] and Groth et al. (2011) [55]. First,
let xi (1 ≤ i ≤ L) be a time-series of length L, the column of xi is N. Then, we can construct
the matrix:

D̃j =


Xi(1) Xi(2) · · · Xi(M)
Xi(2) Xi(3) · · · Xi(M + 1)

...
...

. . .
...

Xi
(
N′
)

Xi
(
N′ + 1

)
· · · Xi(N)

 (A8)

where N′ = N−M + 1, after considering a window M (1 < M < N). For M-SSA, the
covariance matrix can be also obtained by Equation (A9):

Ti,j =
1

N′
D̃

T
i D̃j (A9)

Likewise, we can project Xi(n) onto the spatio-temporal empirical orthogonal functions
(ST-EOFs) to obtain the corresponding spatio-temporal principal components (ST-PCs),
based on Equation (A10),

AK(n) =
M

∑
j=1

L

∑
i=1

Xi(n + j− 1)EK
i (j), 1 ≤ n ≤ N′ (A10)

where EK is the Kth eigenvector of T. Each independent signal R can also be obtained by
Equation (A11):

RK
i (n) =


1
n ∑n

j=1 AK(n− j + 1)EK
i (j), 1 ≤ n ≤ M− 1

1
M ∑M

j=1 AK(n− j + 1)EK
i (j), M ≤ n ≤ N′

1
N−n+1 ∑M

j=n−N+M AK(n− j + 1)EK
i (j), N′ + 1 ≤ n ≤ N

(A11)
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