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Abstract: In a formation-flying mission where multiple spacecraft must cooperate and maintain a
prescribed relative separation, the early detection of possible anomalies is a primary requirement. This
is possible, for example, by employing an inspector spacecraft whose aim is to monitor the condition
of the formation members with an on-orbit inspection. This paper analyzes a rest-to-rest multiple-
impulse transfer that the inspector spacecraft must accomplish to visit all of the formation members.
The problem is studied using the linearized Hill–Clohessy–Wiltshire equations and is solved in an
optimal framework by minimizing the total velocity variation along the transfer trajectory. The
solution algorithm implements a two-step procedure that combines differential evolution algorithms
and Nelder–Mead simplex method-based routines. A case study is thoroughly investigated where
a formation of six satellites covers a circular orbit of altitude 300 km over Earth. The proposed
algorithm could efficiently find a solution and with reduced computational times.

Keywords: satellite formation; CubeSat mission design; on-orbit inspection; trajectory optimization

1. Introduction

Spacecraft formation flying is an interesting mission concept that has attracted much in-
terest from the scientific community in the last few decades [1]. It basically consists of a net-
work of satellites that collaborate with each other by sharing information and data to accom-
plish complex tasks that would be difficult to achieve with a single conventional spacecraft.

There are several space missions where the formation of two or more satellites is
conceived to meet the mission requirements. For example, Gravity Recovery and Climate
Experiment (GRACE) was a joint mission of NASA and DLR in which twin satellites
(GRACE-1 and GRACE-2) took detailed measurements of Earth’s gravity field anomalies
from March 2002 to October 2017 while being separated by a constant distance of 220 km
along their own orbits. Another important example is the Swarm mission, which was
launched by the European Space Agency (ESA) in 2013 with the purpose of studying
Earth’s magnetic field. The Swarm constellation consisted of three satellites (Alpha, Bravo,
and Charlie) placed in two different polar orbits: Alpha and Charlie f;ew side by side at
an altitude of 450 km, and Bravo at an altitude of 530 km. Regarding future projects, the
Proba-3 technological demonstration mission is to be launched in 2023. This is an ESA
program devoted to high-precision formation flying with the aim of achieving scientific
coronagraphy. More precisely, Proba-3 consists of two independent and three-axis stabilized
spacecraft, that is, the Coronagraph and Occulter spacecraft, which fly on a highly elliptical
orbit around Earth while maintaining a mutual distance of approximately 150 m with
millimetric accuracy. Iinterested readers may refer to the thorough review of forthcoming
formation flying missions of small spacecraft compiled in 2015 by Bandyopadhyay et al. [2].

Formation flying requires the maintenance of a desired relative separation, orienta-
tion, or position among members of the formation [3]. This is usually possible when each
spacecraft of the formation is able to perform its own task and is free from critical failures.
The probability of failure occurrence may be reduced with the early detection of anoma-
lies during the vehicle in-orbit operation. This task can be achieved with an inspector
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spacecraft (IS) such as a CubeSat devoted to that aim, which inspects each member of
the formation during the flight. Formation on-orbit inspection is a topic that has been
attracting the interest of the scientific community in the last few years, as shown by the
number of papers related to this subject. For example, Williams [4] derived techniques
for generating suitable trajectories for orbital inspection by a simple spacecraft, while
Horri et al. [5] investigated the problem of conducting the inspection mission of a target
spacecraft with a chaser satellite, and designed a quaternion-based feedback controller
capable of performing relative attitude control with admissible internal torques. More
recently, Prince and Cobb [6] found the minimal time and minimal propellant solutions to
inject and maintain an inspector satellite into a relative teardrop trajectory with respect to a
resident space object in a geosynchronous orbit. Capolupo and Labourdette [7] presented a
sampling-based receding-horizon algorithm that allows for the observation of a tumbling
target vehicle while guaranteeing an arbitrary low risk of collision between the chaser,
which performs the inspection, and the target. As a final interesting example, Maestrini
and Di Lizia [8] proposed (in the context of active debris removal and satellite servicing
missions) a sampling-based receding-horizon motion planning algorithm that selects the
inspection maneuvers while taking many complex constraints into account.

The work illustrated in this paper starts from the preliminary results by Caruso et al. [9],
who formulated an optimization method capable of determining the optimal relative (ren-
dezvous) trajectory of a small satellite used to perform on-orbit inspections of each member
of a spacecraft formation. The aim of this study is to refine and extend the procedure
introduced in [9] in order to determine the optimal trajectory (which minimizes the total
velocity variation) of an IS that uses a set of impulsive maneuvers to obtain a flyby with
each spacecraft of a given formation structure. To that end, a massless point that covers a
circular orbit around a given celestial body was designed as the formation (virtual) chief,
and the relative distance among the satellites in the formation was considered to be a
constant of motion, in such a way that the formation maintains a rigid structure during the
flight; see Figure 1.

celestial
body

r

C

circular
orbit

formation
structure

generic spacecraft
in formation

inspector
spacecraft

virtual chief

Figure 1. Conceptual sketch of a formation with three vehicles and a CubeSat inspector spacecraft.

The IS transfer trajectory is the result of an optimization problem in which the vehicle
dynamics is described by the linearized Hill equations [1,3,10], while the control variables
are the flight time of each trajectory leg between two consecutive flybys (i.e., the time length
of a generic arc) and the order in which the formation members are inspected. A suitable
optimization method is used to determine the optimal set of control variables that minimize
the total velocity variation required by the inspection maneuver. Since the objective function
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in this class of problems is usually characterized by a high number of local minima [11,12],
global optimization algorithms are used to estimate the optimal relative trajectory of the IS.
The results are then further refined with the aid of local optimization algorithms. On the
basis of the literature results, the proposed two-step procedure was applied and validated
in a mission scenario where a formation of six satellites traced a prescribed low-Earth
circular orbit.

The paper is organized as follows. Section 2 presents the reference mission scenario
and describes the mathematical model used in the succeeding analysis. It also contains
the equations describing the IS relative dynamics and the procedure to evaluate the total
velocity variation required by the IS to inspect all the satellites in the formation. Section 3
describes the two-step procedure for trajectory optimization and the execution of some
numerical simulations aimed at validating the proposed model. Lastly, the last section
contains our concluding remarks.

2. Mission Description and Mathematical Model

Consider a formation composed of n ≥ 2 satellites flying around a celestial body
of gravitational parameter µ. The formation has a virtually rigid structure (with a three-
dimensional shape), while virtual chief C traces a Keplerian circular orbit of radius r and
prescribed orientation (equivalently, specific angular momentum vector h is assigned).
Assume that, when t < t0 , 0, the position of the IS coincides with that of virtual chief
C, while its velocity relative to the i-th spacecraft (with i ∈ {1, 2, . . . , n}) in the formation
is zero. In other terms, when t < t0, the IS and all the satellites in the formation have a
constant relative distance and an orbital speed approximately coincident with the speed of
virtual chief C along the circular design orbit. The inspection mission starts at time t = t0
with an impulsive maneuver that inserts the IS into a path that allows for the first inspected
satellite to be reached at time t = t1 > t0. Then, a second velocity variation is applied at
time t1 to insert the IS into a second arc that allows for the second spacecraft to be inspected
at time t = t2 > t1, as illustrated in Figure 2.

IS at time t0

inspected spacecraft
no. 1 at time t1

arc no. 1arc no. 2

inspected spacecraft
no. 2 at time t2

inspected spacecraft
no.    at timen t

n

inspected spacecraft
no. (  -1) at timen t

n-1

arc no. n

arc no. ( -1)n

arc no. 3

maneuver
no. 0maneuver

no. 1

maneuver
no. 2

maneuver
no. ( -1)nmaneuver

no. n

C

Figure 2. Scheme of the multiple-impulse, rest-to-rest, IS relative trajectory.

The whole inspection trajectory tracked by the IS can, therefore, be ideally partitioned
into a sequence of n Keplerian arcs patched by n− 1 impulsive maneuvers. The generic
i-th arc starts at time ti−1, just after the (i− 1)-th impulsive maneuver that gives a velocity
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variation ∆vi−1, and ends at time ti, just before the i-th impulsive maneuver that gives a
velocity variation ∆vi. The IS traces a multiple-impulse rest-to-rest (relative) trajectory; that
is, the IS velocity relative to the formation structure is zero at both the beginning (when the
IS position coincides with that of C) and the end (when the IS is close to the last inspected
spacecraft) of the mission; see Figure 2.

Since the first (or last) arc starts (or ends) with an impulsive velocity variation applied
at time t = t0 (or t = tn), the total number of required impulsive maneuvers is n + 1, while
the total flight time required by the IS to complete the mission (i.e., to inspect all of the
formation spacecraft) is ∆t = tn − t0 ≡ tn. The geometry of the generic arc can be obtained
by analyzing the IS dynamics relative to the formation, as discussed in the next section.

2.1. IS Relative Dynamics

Consider the generic i-th arc, which starts (or ends) at time ti−1 (or ti). In that arc, the
IS dynamics relative to the formation may be described by introducing a local–vertical–
local–horizontal (or Hill’s) reference frame TH(C; îx, îy, îz) of origin C in which unit vector
îy is aligned with the celestial body-C line, the plane (îx, îy) coincides with the orbital plane
of virtual chief C, and unit vector îz is aligned with h; see Figure 3. îx is opposite to the
motion direction of C along its circular orbit, while frame TH rotates around the (inertially
fixed) direction of h with a period equal to 2π

√
r3/µ.

circular orbit

origin

to cel. b
ody

h

C

orbital plane
of C

celestial
body

r

ˆ
zi ˆ

yi

ˆ
xi

Figure 3. Local–vertical–local–horizontal (or Hill’s) reference frame TH(C; îx, îy, îz).

In the rotating reference frame, the position vector of IS and that of the i-th spacecraft
in the formation are denoted by ρ ∈ R3×1 and ρSCi

∈ R3×1, respectively, as illustrated in
Figure 4.

The IS motion in TH is described in linearized form by the classical Hill–Clohessy–
Wiltshire (HCW) equations [13]:

ẍ = 2 ω ẏ (1)

ÿ = −2 ωẋ + 3 ω2 y (2)

z̈ = −ω2 z (3)
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where the dot represents a time derivative, ω ,
√

µ/r3 is the constant angular velocity of
virtual chief C along the design circular orbit, and {x, y, z} are the three components in the
TH of IS position vector ρ. Equations (1)–(3) can be equivalently written as follows.

ρ̈ +A ρ̇ +B ρ = 0 (4)

where A ∈ R3×3 and B ∈ R3×3 are two constant matrices defined as

A ,

 0 −2ω 0
2ω 0 0
0 0 0

 (5)

B ,

0 0 0
0 −3ω2 0
0 0 ω2

 (6)

C

orbital plane
of C

ρ

SCi
ρ

inspector
spacecraft generic -thi

spacecraft

SCi
�ρ ρ

ˆ
zi

ˆ
xi

ˆ
yi

Figure 4. Spacecraft position vector in TH .

The initial conditions that complete second-order vectorial differential Equation (4)
were obtained by enforcing the IS position (ρi−1) and velocity (ρ̇i−1) vectors at the beginning
of the i-th arc, that is, just after the (i− 1)-th impulsive maneuver. At the beginning of the
i-th arc (with i 6= 1) the IS is close to the (i− 1)-th inspected spacecraft, i.e., the spacecraft
with position vector ρSCi−1

. At time t0, when the IS is at C (origin of TH) with zero velocity
relative to the spacecraft in the formation, the initial conditions of Equation (4) in a generic
arc can be written as follows.

ρ(ti−1) =

{
0 if i = 1
ρSCi−1

if i 6= 1
(7)

ρ̇(ti−1) =

{
∆v0 if i = 1
vi−1 + ∆vi−1 if i 6= 1

(8)

where vi−1 is the IS relative velocity vector at the end of the (i− 1)-th arc (with i 6= 1), that
is, just before the (i− 1)-th impulsive maneuver that gives velocity variation ∆vi−1. vi−1
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coincides with the value of velocity vector ρ̇ calculated at the end of the (i− 1)-th arc (with
i 6= 1).

Differential Equation (4) may be solved with standard methods to obtain the time
variation in the IS relative position (ρ) and velocity (ρ̇) along the generic i-th arc. Paralleling
the procedure detailed in Chobotov’s textbook [13] and observing that, in the i-th arc, the
time ranges within interval t ∈ [ti−1, ti], the result is as follows.

ρ(t) = M(t) ρ(ti−1) +N(t) ρ̇(ti−1) (9)

ρ̇(t) = S(t) ρ(ti−1) +T(t) ρ̇(ti−1) (10)

where {M,N,S,T} ∈ R3×3 are time-variant matrices defined as follows.

M(t) ,

1 6[ωt− sin(ωt)] 0
0 4− 3 cos(ωt) 0
0 0 cos(ωt)

 (11)

N(t) , 1
ω

4 sin(ωt)− 3ωt 2[1− cos(ωt)] 0
−2[1− cos(ωt)] sin(ωt) 0

0 0 sin(ωt)

 (12)

S(t) , ω

0 6[1− cos(ωt)] 0
0 3 sin(ωt) 0
0 0 − sin(ωt)

 (13)

T(t) ,

4 cos(ωt)− 3 2 sin(ωt) 0
−2 sin(ωt) cos(ωt) 0

0 0 cos(ωt)

 (14)

Equations (9)–(14) are used to calculate the total velocity variation ∆vtot required by the IS
to complete its inspection mission, as discussed in the next section.

The described approach may be extended to the case in which virtual chief C covers
an elliptical orbit using the results of Yamanaka and Ankersen [14], who provided a state
transition matrix to compute the state of the chaser spacecraft relative to the target at
a generic time as a function of the initial state. In that case, Equations (9)–(10) should
be properly modified in order for the general case of elliptical orbits to be investigated.
However, this issue goes beyond the scope of this paper and is left to future investigations.

2.2. Total Velocity Variation Evaluation

Total velocity variation ∆vtot is the sum of the magnitude of each (vectorial) velocity
variation ∆v that enters Equation (8), that is,

∆vtot =
n

∑
j=0
‖∆vj‖ (15)

The components of generic ∆vj, with j ∈ {0, 1, . . . , n}, can be recursively calculated as a
function of the sequence of inspected spacecraft and of the time instants at which impulsive
maneuvers are performed.

For example, consider the first arc, and assume selecting time instant t1 and the first
formation element to be inspected, that is, the components in TH of vector ρSC1

; see Figure 5.
t1 and the first inspected spacecraft are both outputs of the optimization problem described
in the next section.
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inspected spacecraft
no. 1 at time t1

arc no. 1arc no. 2

maneuver
no. 0

maneuver
no. 1

ρ

1SCρ

C

0�v

1v

1( )t�ρ

1�v

IS

Figure 5. Impulsive maneuvers at the first and second arcs.

Taking the initial conditions of Equations (7) and (8) into account, and assuming that
matrix N(t1) in Equation (12) is nonsingular, Equation (9) gives the expression of initial
velocity variation vector

∆v0 = N(t1)
−1 ρSC1

(16)

The value of ∆v0 is used to obtain velocity variation vector ∆v1 just before the beginning
of the second arc (i = 2) as a function of time instant t2 and the position of the second
inspected spacecraft, that is, the components in TH of vector ρSC2

. In this case, since the IS
position at the beginning of the second arc coincides with vector ρSC1

, Equations (7)–(9) give

∆v1 = N(t2)
−1

[
ρSC2

−M(t2) ρSC1

]
− v1 (17)

where v1 is the (relative) velocity vector ρ̇ calculated at the end of the first arc through
Equation (10):

v1 = T(t1)∆v0 ≡ T(t1)N(t1)
−1 ρSC1

; (18)

see also Equation (16).
The result from Equation (17) can then be used to evaluate the velocity variation

at the end of the third arc, that is, ∆v2, as a function of the two additional parameters
t3 and ρSC3

. The procedure is then repeated until the IS completes the inspection of the
formation structure. The last arc ends with an impulsive maneuver characterized by a
velocity variation ∆vn, which stops the IS motion relative to the formation; see Figure 6.
The last velocity variation is, therefore, ∆vn = −ρ̇(tn), so that Equation (10) gives

∆vn = −S(tn) ρSCn−1
−T(tn) (vn−1 + ∆vn−1) (19)

where vn−1 is calculated at the end of the last but one or (n− 1)-th arc; see Figure 6.
The total velocity variation of Equation (15) is, therefore, a function of 2n control

variables, that is, the sequence of inspected spacecraft (n contributions) and time instants
{t1, t2, . . . , tn}. The control variables can be collected in a control vector u ∈ R2n×1, so that
the total velocity variation can be written in a functional form:

∆vtot = ∆vtot(u) (20)

n components of the control vector are positive integers that describe the sequence
of the inspected formation elements, while the remaining n components are positive real
numbers that coincide with the time instants at which the formation satellites are reached,
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and the impulsive maneuvers are performed. The control vector and total velocity variation
are the solution of the optimization problem described in the next section.

arc no. ( -1)n

inspected spacecraft
no. (  -1) at timen t

n-1

maneuver
no. ( -1)n

1n�
v

1( )
n

t
�

�ρ

1n�
�v

C

1SC
n�

ρ

maneuver
no. n

inspected spacecraft
no.    at timen t

n

n
�v

arc no. n

SC
n

ρ

Figure 6. Last two arcs and impulsive maneuvers.

3. Trajectory Optimization and Numerical Simulations

The IS relative trajectory is obtained by evaluating the optimal value of control vector
u that minimizes the total velocity variation defined in Equation (20), which coincides with
the performance index J of the optimization problem:

J , ∆vtot(u) (21)

The mixed-type components of u (partly constituted by real numbers and partly by
integer numbers), which induce J to be characterized by several local minima [15], sug-
gest solving the optimization problem with evolutionary or stochastic algorithms [16] to
improve the convergence rate. Paralleling the procedure detailed in [9], on the basis of
the evaluation of the success rate parameter introduced by Vasile et al. [17], comparative
analysis between some evolutionary and stochastic techniques (including genetic algo-
rithms and particle swarm optimization-based procedures) indicates that a hybrid method
that combines differential evolution (DE) algorithms [18,19] and the Nelder–Mead simplex
algorithm [20] allows for the optimal value of performance index J to be calculated with
reduced computational cost. In particular, the success rate parameter [17] used in the
preliminary analysis [9] of the optimization problem is defined as the ratio of the number
of times the solution obtained in a test case is close to the optimal value of the performance
index J to the total number of algorithm executions.

3.1. Two-Step Optimization Procedure

In the proposed two-step procedure, a DE-based method is first used to rapidly obtain
an initial guess of the control vector u that allows for the actual minimal value of the total
velocity variation to be roughly estimated. Then, the n components of u that define the
optimal sequence of inspected formation elements is maintained constant, while the other
n components that give maneuver time instants {t1, t2, . . . , tn} are further refined through
a Nelder–Mead simplex-based optimization algorithm, as illustrated in Figure 7.
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DE-based routine

inspection sequence

( parameters)n

maneuvers time instants

( parameters)n

Nelder-Mead
simplex-based routine

refined values

IS trajectory simulation

totmin( )v�

1 2{ , , , }
n

t t t�

C

Figure 7. Conceptual sketch of the two-step optimization procedure.

Such a two-step optimization procedure is an extension of the method used by the
authors to solve the two-point boundary value problem associated with a calculus of a
variation-based optimization procedure in several trajectory-optimization problems for
propellantless [21,22] and continuous-thrust spacecraft [23–25]. The proposed procedure
resembles the method introduced by Englander et al. [26,27], which uses an algorithm
comprising two nested loops: the outer loop determines the integer part of the solution
vector (in this case, the sequence of inspected spacecraft), while the inner loop computes
the optimal set of maneuver times.

The DE part of the optimization procedure, which is based on the model discussed
by Storn and Price [18], begins with the definition of a randomly chosen population of
200 feasible control vectors. The algorithm then selects two random vectors, {ubanduc}, and
adds their weighted difference to a third vector, ua, through an operation called mutation
in order to obtain an updated control vector um:

um = ua + β (ub − uc) (22)

where β ∈ [0.2, 0.8] is a dimensionless positive scaling factor. At that point, a crossover
operation is performed in which the components of feasible control vector um are combined
(with a probability of 0.8) with a fourth vector, called the target vector, to obtain a new
trial vector. Lastly, a selection takes place where the target and trial vector fitness values
are compared, and the best survives to the next generation. This procedure is repeatedly
applied to all of the population members and for a number of generations equal to 500.
The set of parameters used for the DE algorithm is the one that maximizes the success
rate, that is, the number of times the algorithm is able to find a solution close to the global
minimum [9].

The second part of the two-step optimization procedure, which is based on the use of
the Nelder–Mead simplex algorithm, uses built-in MATLAB function fminsearch” to refine
the value of the set of maneuver times {t1, t2, . . . , tn} obtained through the DE-based part
(the inspection sequence remains unchanged in this part of the procedure). In this case, the
maximal number of function evaluation is set to be 1000 (sufficient for the convergence
of the simplex method), while the termination tolerance on the function value is set to be
10−6. The optimization procedure was applied to a test case that had been studied in the
literature [9] in order to validate the results, as discussed in the next section.

3.2. Test Case and Model Validation

Consider a three-dimensional Earth-centered inspection mission where a formation of
n = 6 satellites covers a circular low-Earth orbit of altitude 300 km (Earth’s gravitational
parameter is µ = µ⊕ , 3.986× 105 km3/s2). The angular velocity of virtual chief C along the
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circular orbit is ω ' 4.164 rad/hour, and the spacecraft formation completes a revolution
around the planet in about 90 min.

The components of generic spacecraft position vector ρSCi
are summarized in Table 1,

where labels {¬, , ®, ¯, °, ±} are used to identify the spacecraft in the formation structure;
see also Figure 8. Clearly, the distance between virtual chief C and the generic formation
element was much smaller than the distance between the spacecraft and Earth’s center
of mass (which is about 6700 km). Hill–Clohessy–Wiltshire Equations (1)–(3) used in the
proposed procedure are, therefore, consistent with the actual dynamics of the IS that, at
time t0, is at the origin of rotating reference frame TH (point C).
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Figure 8. Test case formation structure in rotating reference frame TH .

Table 1. Position vector components of the formation elements in the test case inspection scenario.

SC Label ρSCi
· îx [km] ρSCi

· îy [km] ρSCi
· îz [km]

¬ 10 0 0
 −10 0 0
® 0 10 0
¯ 0 −10 0
° 0 0 10
± 0 0 −10

A similar inspection mission scenario was deeply analyzed in [9] by considering a
rendezvous with each formation member, and using different optimization algorithms
and numerical procedures. The minimal value of the total velocity variation in that case
was evaluated by analyzing each of the 720 possible inspection sequences, and optimizing
maneuver time instants {t1, t2, . . . , tn}. The results of [9] gave a minimal value of the total
velocity variation of about 91.5 m/s, which is used in this work as a reference (upper) value
of performance index J defined in Equation (21).

The procedure proposed in this work gave a minimal total velocity variation of
69.902 m/s, a value consistent with the current technology readiness level (see, for example,
the VACCO green propellant integrated propulsion system [28]). In principle, the value
of total velocity variation, which was obtained by enforcing a maximal travel time of
2 h along each leg of the IS trajectory, may be reduced by extending the duration of the
entire maneuver. However, the computed value of 69.902 m/s was reduced by only a few
meters per second when the maximal travel time was increased up to 24 h. To validate our
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model, the total velocity variation computed with the HCW model was compared with that
obtained with a Keplerian motion model. In particular, by solving a series of Lambert’s
targeting problems using the optimal sequence of inspected spacecraft and the flight time
along each leg computed with the proposed approach, we found a total velocity variation
of 69.919 m/s, which is very close to the value obtained with the HCW model. Notably, the
optimization of performance index J was obtained with a calculation time that was about
one order of magnitude smaller than that required by the method discussed in [9]. The
minimal value of velocity variation ∆vtot was reached in four different inspection sequences,
as summarized in Table 2, a result that is consistent with the geometric symmetry in the
formation structure. The IS inspected trajectories in the four optimal sequences described
in Table 2 are shown in Figure 9.

The total flight time, which is an output of the optimization process, was ∆t ' 5.05 h,
while the flight time distribution on the six arcs is reported in the pie chart of Figure 10.
The flight time distribution along the six arcs was roughly the same for the four optimal
inspection sequences listed in Table 2. This aspect is again consistent with the numerical
results of [9].

Table 2. Inspection sequences that give a total velocity variation of about 70 m/s.

Sequence SC Label

first C → → ¬→ ¯→ °→ ±→ ®

second C → ¬→ → ®→ ±→ °→ ¯

third C → → ¬→ ¯→ ±→ °→ ®

fourth C → ¬→ → ®→ °→ ±→ ¯
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Figure 9. Optimal IS inspection trajectories in the four optimal sequences listed in Table 2.
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arc no. 1
(30%)

arc no. 2
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arc no. 3
(10%)

arc no. 4
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arc no. 5
(14%)

arc no. 6
(8%)

Figure 10. Duration of the generic arc in percentages of the total flight time ∆t ' 5.05 h.

4. Conclusions

This paper analyzed the optimal rest-to-rest multiple-impulse transfer of an inspector
spacecraft in a formation that covers a design circular orbit around an assigned celestial
body. Using the linearized Hill–Clohessy–Wiltshire equations, an iterative procedure was
detailed to evaluate the total velocity variation required by an inspector spacecraft to
carry out a full inspection mission. The minimal value of the total velocity variation was
calculated through a two-step procedure that combined DE algorithms and Nelder–Mead
simplex method-based routines. The optimization algorithm, which extends and refines a
recent technique proposed by the authors in a similar mission scenario, was implemented
in such a way that the procedure may handle both real and integer variables. In particular,
it is necessary to determine the optimal sequence of inspected spacecraft with the constraint
that each spacecraft in the sequence must be unique. Because standard DE algorithms
hardly handle this type of constraint, the procedure was slightly modified, so that at each
iteration, the algorithm may choose the sequence from a list containing all the spacecraft
labels. Once a spacecraft is chosen, it is deleted from the list, so that the subsequent
spacecraft can be selected. Moreover, the Nelder–Mead simplex algorithm is only suitable
for solving minimization problems of real-valued functions. Therefore, the sequence of
inspected spacecraft determined by the DE algorithm is maintained constant during the
second step of optimization process, which is a necessary step to refine the solution.

The numerical simulations confirm that the refined procedure allows for computa-
tional time to be significantly smaller when compared to that of the previous approach.
The natural extension of this work is to analyze a rest-to-rest optimal transfer using a
more accurate model of the inspector spacecraft dynamics by including the presence of
orbital perturbations, such as the J2 effect or atmospheric drag. Analysis can also be further
extended to the general case where the virtual chief traces an elliptical orbit with the aid of
the Tschauner–Hempel equations.
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