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Abstract: For remote sensing image scene classification tasks, the classification accuracy of the small-
scale deep neural network tends to be low and fails to achieve accuracy in real-world application
scenarios. However, although large deep neural networks can improve the classification accuracy
of remote sensing image scenes to some extent, the corresponding deep neural networks also have
more parameters and cannot be used on existing embedded devices. The main reason for this is that
there are a large number of redundant parameters in large deep networks, which directly leads to the
difficulty of application on embedded devices and also reduces the classification speed. Considering
the contradiction between hardware equipment and classification accuracy requirements, we propose
a collaborative consistent knowledge distillation method for improving the classification accuracy of
remote sensing image scenes on embedded devices, called CKD. In essence, our method addresses two
aspects: (1) We design a multi-branch fused redundant feature mapping module, which significantly
improves the parameter redundancy problem. (2) To improve the classification accuracy of the
deep model on embedded devices, we propose a knowledge distillation method based on mutually
supervised learning. Experiments were conducted on two remote sensing image classification
datasets, SIRI-WHU and NWPU-RESISC45, and the experimental results showed that our approach
significantly reduced the number of redundant parameters in the deep network; the number of
parameters decreased from 1.73 M to 0.90 M. In addition, compared to a series of student sub-
networks obtained based on the existing different knowledge distillation methods, the performance
of the student sub-networks obtained by CKD for remote sensing scene classification was significantly
improved on two different datasets, with an average accuracy of 0.943 and 0.916, respectively.

Keywords: remote sensing image; parameter redundancy; knowledge distillation; mutual supervised
learning; scene classification

1. Introduction

Over the past few years, deep neural networks have achieved state-of-the-art perfor-
mance in computer vision [1–4], natural language processing [5–7], reinforcement learn-
ing [8–10], and various other fields [11–13]. However, with the increasing depth, as well
as the width of the network, for example from the shallow LeNet to the wider Inception
structure in GoogLeNet and deeper Resnet convolutional architecture, as well as the cur-
rently popular transformer architecture, the number of parameters of the deep model is
constantly growing, which in turn, leads to a series of problems such as the redundancy
of network parameters, more rigorous hardware requirements, and difficulty in training
the model, and large deep models severely limit their applications in low-memory or
high-real-time conditions. In recent years, the research [14,15] to develop faster and smaller
models based on the idea of knowledge distillation to solve the above problems has been
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developing rapidly. In the traditional knowledge-distillation-based model compression
methods [16–19], the smaller student network is typically guided by a larger teacher net-
work. The primary purpose is to enable the student network to achieve competitive and
even superior task performance by learning the prior knowledge of the teacher network.
The key to achieving this goal is mainly related to two aspects: on the one hand, how to
design the network structure of the teacher–student model; on the other hand, how to
transfer important features from the large-sized teacher model to the small-sized student
model in a more efficient way.

We observed the following phenomenon when performing model optimization with
the standard knowledge distillation methodology:

I. When we trained a small-sized student network independently, it was usually more
difficult to find the ideal model parameters to meet the relevant task requirements.

II. Compared with training a small-sized student network independently, when a
large-sized teacher network was trained independently, although better task performance
can be gained, the model parameters of the teacher network were not optimal due to the
presence of a significant amount of parameter redundancy in the teacher network.

III. When jointly training teacher–student models, the parameter redundancy present
in the teacher model was usually detrimental to the optimization of the student model,
which may have a negative effect on the optimization of the student model.

In this paper, considering that current high-precision remote sensing image classifi-
cation models require high-performance hardware devices, which are difficult to deploy
on embedded devices with low performance, our goal was to solve the parameter redun-
dancy problem in the teacher–student model and obtain a small deep neural network with
powerful feature extraction capabilities that can be easily deployed on lower-performance
hardware devices and meet the accuracy requirements for remote sensing image clas-
sification. To address these issues, we propose a collaborative consistency knowledge
distillation framework.

Firstly, different from the previous convolutional neural networks, a plug-and-play
redundant feature mapping module was designed for the redundant parameters in the
teacher–student model. Specifically, this module contains both multi-branch feature ex-
traction and fusion components, as well as redundant mapping convolution components.
On the one hand, we can obtain an equivalent convolution kernel with stronger feature
extraction capability with multi-branch feature extraction and fusion and utilize this equiv-
alent convolution kernel to extract richer task-related high-level semantic information. On
the other hand, the redundant mapping convolution component was used to generate the
intrinsic feature maps of the inputs, and the redundant feature maps were further obtained
by a series of low-cost linear operations, which greatly reduced the redundant parameters
of the network.

Secondly, our CKD framework starts with a powerful and pre-trained teacher network
and performs a one-way prior knowledge transfer to two untrained student sub-networks
of different depths. In addition, for both student sub-networks, we propose that the student
sub-networks not only absorb prior knowledge derived from the teacher, but also extract
high-level semantic features that the other possesses via mutual supervised learning. The
experimental results showed that the student sub-networks obtained by training in this
way have better task-relevant model parameters.

In summary, our contributions are summarized as follows:

I To reduce the parameter redundancy of remote sensing image classification models
and facilitate their deployment on embedded devices with low performance, we
propose a plug-and-play multi-branch fused redundant feature mapping module. The
equivalent convolutional kernel obtained by this module has a more powerful feature
extraction capability and can more effectively optimize the parameter redundancy of
the network.

I We propose a collaborative consistent knowledge distillation framework to obtain a
more robust backbone network. In contrast to the traditional knowledge distillation
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framework, we guided a pair of student sub-networks of different depths through
a teacher model, where the student sub-networks not only learn prior knowledge
deriving from the teacher network, but also acquire prior knowledge possessed by
them by the way of mutual supervised learning.

I The experimental results on two benchmark datasets (SIRI-WHU, NWPU-RESISC45)
showed that our approach provided a significant improvement over a series of existing
depth models and the state-of-the-art knowledge distillation networks on the relevant
remote sensing image scene classification task. In addition, the student sub-network
obtained based on the CKD framework had a more powerful feature extraction
capability, as well as a lower number of parameters, which can be widely used as a
feature extraction network in various embedded devices.

2. Related Work
2.1. Remote Sensing Image Scene Recognition

The remote sensing image recognition task realizes the recognition and classification
of scene topics by analyzing the composition relationship of the targets in the image scene,
which mainly contains methods based on mid-level features and deep learning methods.
The main approaches based on mid-level features include visual word-packet models [20],
combined with sparse representation [21], Flisher vector coding [22], and so on. However,
these traditional methods can hardly meet the accuracy requirements for remote sensing
image scene classification on embedded devices.

In recent years, deep learning models have performed well in remote sensing image
recognition tasks. Yao et al. [23] utilized a pre-trained deep learning network for feature
extraction of remote sensing scenes and adopted a random forest classifier for scene recog-
nition of remote sensing images. Cheng et al. [24] combined deep learning with metric
learning, and the problem of high similarity between remote sensing scenes and large intra-
class differences was well solved by discriminative convolutional neural networks. Gong
et al. [25] combined the attention mechanism with the deep learning model, which solved
the overfitting problem of the deep learning model in remote sensing image processing
to some extent. However, although these models can obtain better accuracy for remote
sensing image scene classification, they are difficult to deploy on embedded devices with
low performance due to having more model parameters.

2.2. Knowledge Distillation

In recent years, deep learning methods have achieved great success in the field of
knowledge distillation [15,26,27]. In accordance with whether the teacher model is updated
simultaneously with the student model, the learning schemes for knowledge distillation
are mainly divided into two categories: offline knowledge distillation [28–33] and online
knowledge distillation [34–37].

The training for the offline knowledge distillation method needs to be performed in
stages; specifically, in the first stage, the large-scale teacher network is first trained based
on the relevant training dataset until the network converges. In the second stage, based on
the trained teacher network, the relevant features of the input data are extracted, and these
features are then utilized to guide the training of the student network. The knowledge
transfer from the pre-trained teacher network to the student network is enabled by the
two stages. Bucilua et al. [16] advocated the use of knowledge transfer for compressing
models as early as 2006, transferring knowledge from a large-scale complicated model to a
lightweight model. The idea was adopted by Hinton et al. [19] in 2015, and the concept of
knowledge distillation (KD) was formally defined, as well as a detailed training method for
knowledge distillation networks given. FitNets [28] further extends the idea of knowledge
distillation by adding an intermediate layer of knowledge distillation to the teacher network
and boosts the training speed of the knowledge distillation network with the guidance
of the intermediate layer feature map. Inspired by this, RKD [29] combines the output of
multiple teacher models to produce structural units, which work together to guide student
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learning, driving better guidance for student models. CRD [30] introduces comparative
learning for knowledge distillation and trains the student network to be able to learn more
useful knowledge from the data representation of the teacher network. Li et al. proposed
LKD [31], a local correlation exploration framework for knowledge distillation, which uses
the intra-instance local relationship, the inter-instance relation on the same local location,
and the inter-instance relation across different local locations for modeling. Xu et al. [32]
proposed a feature-normalized knowledge distillation scheme by introducing a sample-
specific correction factor instead of the uniform temperature T. Considering the ensemble
knowledge distillation as a multi-objective optimization problem, Du et al. [33] investigated
the diversity of teacher models in gradient spaces.

Unlike the process of offline distillation, the online knowledge distillation process
updates the entire knowledge distillation framework simultaneously, that is the teacher
model and the student model are updated in parallel. Over the last few years in particular,
a series of online knowledge distillation methods have been proposed. For example, Lan
et al. [34] proposed a learning framework for single-stage online distillation. Specifically,
the framework establishes powerful online teacher models to enhance the learning of
the target network while only training a single multi-branch network. Zhang et al. [35]
proposed a deep mutual learning strategy that allows student models to learn collabo-
ratively and teach each other throughout the training process. Yao et al. [36] designed
an improved bidirectional knowledge distillation method, the dense cross-layer mutual
distillation framework (DCM). Wu et al. [37] found that collaborative learning and mutual
learning cannot build the online high-capacity teacher network, while the online integration
ignores the collaboration between branches, which leads to the proposal of a novel peer
collaborative learning approach for online knowledge distillation.

3. Methodology

For tasks associated with the field of computer vision, the number of parameters in
the backbone network increases dramatically as the depth of the network is continuously
deepened, which causes significant parameter redundancy from the backbone network,
hence affecting the performance of several computer vision tasks. In order to reduce
the redundant parameters of the backbone network and obtain a more powerful CNN
feature extractor, we propose a collaborative consistency distillation framework, which can
effectively deal with the parameter redundancy problem with the increasing depth of the
network, while making the obtained backbone network have excellent feature extraction
capability. As a result, it can better support various downstream computer vision tasks.
The overall pipeline of the CKD framework is illustrated in Figure 1.

3.1. Redundant Feature Mapping Module

In contrast to the ordinary convolution in previous convolutional neural networks [38–43],
our proposed redundant feature mapping module can be inserted into any network struc-
ture to improve the model structure, enhance the model feature extraction capability, and
reduce the parameter redundancy and floating point operations of the model. The relevant
structure of the redundant feature mapping module is shown in Figure 2, which mainly
includes two aspects:

(1) Multi-branch feature extraction and fusion: For multi-branch feature extraction and
fusion, different from the previous work, our objective was to obtain equivalent con-
volutional kernels with stronger feature extraction capability. In other words, the
obtained single-branch k× k equivalent convolution kernel has multi-scale feature
extraction capability. As shown in Figure 2, MRFM enhances the feature extraction
capability of the CNN network with three parallel branches, and each branch em-
ploys the k× k, 1× k, and k× 1 convolutional kernel sizes, respectively. When the
network training is complete, the convolutional kernels of three sizes are fused into
equivalent convolutional kernels of k× k with stronger extraction ability. The process
of equivalent fusion mainly consists of two processes, BN fusion and branch fusion.
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Figure 1. Illustration of the collaborative consistency distillation framework. For the network input,
deep semantic features of the remote sensing image scene classification can be obtained in two
aspects: On the one hand, we used the teacher sub-networks to extract deep semantic features for
guiding the student sub-networks to extract more refined classification feature information. On
the other hand, the classification feature information was reinforced by mutual supervision among
student sub-networks to enable the student sub-networks to obtain higher classification results.
Part A demonstrates in detail the components of our proposed the CKD framework. Specifically, it
contains a multi-branch teacher sub-network, a single-branch teacher sub-network, and a pair of
student sub-networks of different depths. Part B presents the basic block components of the student
sub-networks and the teacher sub-networks in the CKD framework.

BN fusion: In order to prevent the overfitting and accelerate the training speed of the
network and for the MRFM module, it is necessary to perform the BN operation as shown
in Equation (1) after each branch performs the convolution operation.

O:,:,j =

(
C

∑
k=1

M:,:,k ∗ F(j)
:,:,k − µj

)
γj

σj
+ β j (1)

where M ∈ RU×V×C denotes the input feature maps of size U × V and the number of
channels C and k denotes the input feature map of the k-th channel. F ∈ RH×W×C indicates
a convolution kernel of size H ×W and the number of channels C. The output feature map
O ∈ RR×T×D of size R× T and number of channels D is obtained after the convolution
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operation ∗. µj and σj are the mean and standard deviation of the BN operation, and γj
and β j are the scaling factor and offset, respectively.

Branch1

Branch2

Branch3

...

Conv k×k

Identity

w

c

h×w×c

h×w×c

h×w×c

Concat

h

c

h

w

Multi-branch redundant feature mapping module(MRFM)

Rconv Operation

k×k Rconv 

Module

1×k Rconv 

Module

k×1 Rconv 

Module

Single-branch redundant feature mapping module(SRFM)

k×k Rconv 

Module

Figure 2. Illustration of the redundant feature mapping module. Specifically, the redundancy
mapping module consists of three aspects: the multi-branch redundancy mapping module (MRFM),
the single-branch redundancy mapping module (SRFM), and the redundancy mapping convolution
(Rconv) operation. It is worth noting that the single-branch redundancy mapping module is generated
from the multi-branch redundancy mapping module after BN fusion and branch fusion operations.

After the above BN operation, the convolutional kernels of different sizes are fused
based on the principle of additivity between 2D convolutional kernels to produce an
equivalent convolutional kernel with the same feature output, and the associated process
can be represented by Equation (2).

I ∗ K(1) + I ∗ K(2) = I ∗
(

K(1) ⊕ K(2)
)

(2)

where I indicates a matrix that can be cropped or filled. K(1) and K(2) are two 2D convolu-
tion kernels with compatible dimensions, and ⊕ refers to the summation operation at the
corresponding positions.

Branch fusion: As shown in Figure 2, the three feature extraction branches are reduced
to one feature extraction branch, and the feature extraction is completed based on the
equivalent convolutional kernel obtained after BN fusion. After such an operation, the
features we extracted are equivalent to the extraction results of multiple feature extraction
branches. In other words, this operation enhances the feature extraction ability of the
network and reduces the network parameters, which improve the performance of the
network. For the j-th convolution kernel, F′(j) represents the fused convolution kernel, bj

represents the bias, F(j), F̄(j), and F̂(j) represent the outputs of the k× k, 1× k, and k× 1
convolution kernels, respectively, and the result after branching fusion can be expressed as:

F′(j) =
γj

σj
F(j) ⊕

γ̄j

σj
F̄(j) ⊕

γ̂j

σ̂j
F̂(j) (3)

bj = −
µjγj

σj
−

µ̄jγ̄j

σ̄j
−

µ̂jγ̂j

σ̂j
+ β j + β̄ j + β̂ j (4)
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O:,:,j + Ō:,:,j + Ô:,:,j =
C

∑
k=1

M:,:,k ∗ F′(j):,:,k + bj (5)

where µ and σ are the mean and standard deviation of the BN operation, γ and β are the
scaling factor and offset, and O:,:,j, Ō:,:,j, and Ô:,:,j are the output feature maps of the k× k,
1× k, and k× 1 convolution kernels, respectively.

(2) Redundant mapping convolution operation (Rconv): Due to the significant redun-
dancy in the feature maps extracted by the existing backbone network, to address this
problem, the ordinary convolution layer is divided into two parts, as shown in the
Rconv module in Figure 2, which fully combines the ordinary convolution operation,
as well as the linear transformation operation. Specifically, we first obtained the in-
trinsic feature maps by ordinary convolutional operations; second, we performed the
identical transformation and a series of simple linear transformations on the intrinsic
feature maps. The two operate in parallel: On the one hand, the intrinsic feature
maps are preserved, and the computational burden of the network is reduced. On
the other hand, the redundant information in the feature maps is preserved with the
inexpensive linear mapping, which obtains the redundant feature maps.

The equation for the ordinary convolution operation to generate n feature maps is
expressed as:

Y = X ∗ f + b (6)

For the Rconv module, m feature maps are first generated by ordinary convolution. It
can be expressed as follows.

Y′ = X ∗ f ′ (7)

where X ∈ Rc×h×w is the input feature maps, c, h and w are the number of channels and
the height, and width of the input feature map, respectively, and ∗ denotes the convolution
operation. f ∈ Rc×k×k×n and f ′ ∈ Rc×k×k×m denote the convolution kernel. k× k is the
kernel size. b is the bias term. For simplicity, the bias term is neglected in Equation (7).
Y ∈ Rn×h′×w′ and Y′ ∈ Rm×h′×w′ denote the output feature maps with n and m channels,
respectively, and m� n. h′, and w′ represent the height and width of the output feature
maps. In addition, to obtain the required n feature maps, redundant feature information is
generated by adding linear operations to the inherent feature maps in Y′.

yi = Φi
(
y′i
)

∀i = 1, . . . , m (8)

where y′i denotes the i-th intrinsic element map in Y′, yi denotes the redundant feature map
of y′i, and Φi(·) is an inexpensive linear operation on y′i.

3.2. Cooperative Consistency Distillation Algorithm

The main purpose of the collaborative consistency knowledge distillation algorithm
is to obtain remote sensing image scene classification models that are convenient for
deployment on embedded devices. Therefore, to achieve the above goal, in contrast
to the previous work, our approach consists of two main aspects. On the one hand, a
single-teacher multi-student knowledge distillation model is constructed based on the
proposed redundant feature mapping module, and the two student sub-networks with
fewer parameters and higher accuracy are obtained based on this architecture. On the other
hand, the accuracy of each student sub-network is further improved by a collaborative
consistency strategy between the student sub-networks.

As shown in Figure 1 Part A, the teacher network consists of two parts: multi-branch
and single-branch teacher networks. We first trained the multi-branch teacher network,
which is composed of multiple multi-branch blocks. When the multi-branch teacher
network is trained, multiple feature extraction branches are transformed into a single
feature extraction branch by the multi-branch feature fusion operation, which not only
drastically reduces the number of parameters of the network, but also obtains a single-
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branch teacher network with equivalent feature extraction capability. The single-branch
teacher network is composed of multiple single blocks, and the structure of the multi-branch
block and single block is shown in Figure 1 Part B. Second, we used the pre-trained single-
branch teacher sub-network to guide the feature learning of the Student1 and Student2
sub-networks, so that the student sub-network learns as much prior knowledge as possible
from the single-branch teacher sub-network. As a result, the student network can not only
achieve the purpose of model compression, but also achieve an accuracy similar to the
teacher sub-network. Note that the student sub-networks have different specifications, and
the student sub-network S1 holds a deeper network structure. For the i-th data sample, the
loss of the student sub-network S1, as well as S2 can be expressed as:

LT→S1
Single = LCE

(
yi, pS1

i

)
+ λ1LCE

(
pS1

i , qi

)
(9)

LT→S2
Single = LCE

(
yi, pS2

i

)
+ λ2LCE

(
pS2

i , qi

)
(10)

where LCE(pi, qi) is the cross-entropy loss between the predicted value qi of the single-
branch teacher network T and the predicted value pi of the student network S and
LCE(yi, pi) is the cross-entropy loss between the predicted value pi of the student net-
work S and the true label yi. λ indicates the regularization weight, which balances the
losses of different components. Through fitting the predicted labels of the single-branch
teacher network T, the student network S is able to learn as much prior knowledge from
the teacher network T as possible.

For the student sub-networks, the predicted outputs of the two student sub-networks
S1 and S2 on the i-th sample data are denoted as pS1

i and pS2
i , respectively. The two

student sub-networks are updated simultaneously. During the training of the student sub-
network S1, the student sub-network S2 helps S1 converge by using learned classification
characteristics to guide S1. To measure the variance between the predictions pS1

i and pS2
i of

the two student sub-networks, the Kullback–Leibler (KL) loss is used for calculation. Then,
the KL loss of S2 to S1 can be expressed as:

LS2→S1

(
pS2

i ‖pS1
i

)
= pS2

i log
pS2

i

pS1
i

(11)

Similarly, during the training of the student sub-network S2, the student sub-network
S1 guides S2 with the learned classification information, and the KL loss of S1 to S2 can be
expressed as:

LS2→S1

(
pS1

i ‖pS2
i

)
= pS1

i log
pS1

i

pS2
i

(12)

In summary, the student sub-network is required to fit not only the truth label y, but
also the prediction label q of the single-branch teacher sub-network T and the prediction
label of another student sub-network. Therefore, the overall loss of the student sub-network
includes the traditional supervised loss LS1 , LS2 , the mutual supervised loss LS2→S1, LS1→S2
among the student sub-networks, and the distillation loss LT→S1

Single , LT→S2
Single with the single-

branch teacher sub-network. The final loss of the student sub-network can be expressed by
the following equation.

L f inalS1
= LT→S1

Single + α1LS2→S1

(
pS2

i ‖pS1
i

)
+ LS1 (13)

L f inalS2
= LT→S2

Single + α2LS1→S2

(
pS1

i ‖pS2
i

)
+ LS2 (14)

The collaborative consistency distillation algorithm guides multiple student sub-
networks through the teacher sub-network, while maintaining the collaborative consistency
among student sub-networks through mutual supervised learning. The final goal of opti-
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mizing the parameter redundancy and improving the classification performance of student
sub-networks was accomplished, and the related process is described in Algorithm 1.

Algorithm 1 Collaborative consistency distillation algorithm
Input: training set Dtrain, label set Y, learning rate lr
Initialization parameters: θstu1 for Student Sub-network 1, θstu2 for Student Sub-network 2
Repeat:

1: Randomly selected data X from the training set Dtrain.
2: Pre-trained multi-branch teacher sub-model Tm.
3: Generate single-branch teacher sub-networks Ts based on multi-branch teacher sub-

networks Tm.
4: Update the parameter θstu1 of Student Sub-network 1:

θstu1 ← θstu1 + lr
∂L f inalS1

∂θstu1
(15)

5: Update the parameter θstu2 of Student Sub-network 2:

θstu2 ← θstu2 + lr
∂L f inalS2

∂θstu2
(16)

End: Student sub-networks S1 and S2 converge.

4. Experimentation and Results Discussion

In this section, we perform several sets of comparative experiments and rigorously
analyze the experimental results of the CKD framework on NWPU-RESISC45 [44] and
SIRI-WHU [45].

4.1. Datasets

NWPU-RESISC45: The NWPU-RESISC45 dataset contains a total of 45 remote sensing
scenes, and each scene consists of 700 images with a size of 256 × 256 pixels. The NWPU-
RESISC45 dataset exhibits rich variation in appearance, spatial resolution, illumination,
background, and occlusion.

SIRI-WHU: The SIRI-WHU dataset is composed of 12 categories of remote sensing
scene images, with a total of 2400 images, and each category consists of 200 images with a
size of 200 × 200 pixels. The data were obtained from Google Earth and mainly cover urban
areas in China.

4.2. Implementation Details

We developed our proposed collaborative consistent distillation framework based
on Pytorch and conducted the related experiments with 6 NVIDIA GeForce GTX 3080Ti
GPUs. In our experiments, we used the Adam optimizer [46] to optimize the parameters
of the network, setting the initial learning rate to 0.01, the momentum factor to 0.9, the
weight decay rate to 10−4, and the batch size to 256. The model was trained for a total of
300 epochs, and the learning rate decreased to 1/10 of the previous learning rate for each
60 epoch iteration.

Since the fully connected layer in the convolutional neural network restricts the
input image size, therefore it is necessary to pre-process the images in the dataset when the
relevant model is trained on the NWPU-RESISC45 and SIRI-WHU datasets. For the training
set, firstly, the input images based on NWPU-RESISC45 dataset were randomly cropped to
200× 200 after mirror filling to standardize the size of the input images. It is worth noting
that for the remote sensing image size in the SIRI-WHU dataset, we still kept 200× 200.
Secondly, in order to enrich the training set and improve the generalization ability of the
model, a simple random left–right flip operation was performed on the training set. Finally,
the images were processed by normalization. For the testing set, the input images were
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center cropped, and the size was set to 200× 200, which unified the size of the input image
between the training set and the testing set. Similarly, the normalization operation was
performed on the testing set images.

4.3. Comparison of Remote Sensing Image Scene Classification Methods on SIRI-WHU and
NWPU-RESISC45 Datasets

To evaluate the remote sensing image scene classification performance of the CKD
student sub-networks, the network model was compared with other deep learning models
based on the SIRI-WHU and NWPU-RESISC45 datasets. The average classification accuracy
in the experiments and a series of other evaluation metrics are shown in Table 1. The CKD
student sub-networks proposed in this paper had the highest classification accuracy of
0.916 for the NWPU-RESISC45 dataset and 0.943 for the SIRI-WHU dataset.

Table 1. The evaluation metrics results while using different deep learning models on NWPU-
RESISC45 and SIRI-WHU.

Dataset Methods Image Size Acc Precision Recall F1

NWPU-RESISC45

AlexNet 200 × 200 0.872 0.876 0.869 0.869
GoogLeNet 200 × 200 0.886 0.897 0.893 0.892
ResNet 50 200 × 200 0.874 0.879 0.875 0.875
Inception V1 200 × 200 0.813 0.824 0.817 0.815
Inception V2 200 × 200 0.887 0.894 0.891 0.891
MobileNet 200 × 200 0.882 0.887 0.884 0.885
VGG16 200 × 200 0.879 0.884 0.882 0.881
Xception 200 × 200 0.872 0.879 0.874 0.875
Ours 200 × 200 0.916 0.923 0.917 0.917

SIRI-WHU

AlexNet 200 × 200 0.887 0.892 0.889 0.882
GoogLeNet 200 × 200 0.916 0.921 0.917 0.915
ResNet 50 200 × 200 0.912 0.918 0.913 0.914
Inception V1 200 × 200 0.873 0.882 0.875 0.876
Inception V2 200 × 200 0.928 0.932 0.924 0.926
MobileNet 200 × 200 0.908 0.917 0.912 0.914
VGG16 200 × 200 0.903 0.915 0.908 0.912
Xception 200 × 200 0.914 0.923 0.916 0.917
Ours 200 × 200 0.943 0.948 0.945 0.942

4.4. Comparison with the State-of-the-Art Knowledge Distillation Methods on the NWPU-RESISC45
and SIRI-WHU Datasets

To more comprehensively evaluate our CKD framework, we also compared CKD
with recent state-of-the art knowledge distillation methods reported on the SIRI-WHU
and NWPU-RESISC45 datasets in Tables 2 and 3. We used two baselines to evaluate
the classification performance of our CKD-RPO framework. Specifically, the first type
of baseline employs a series of offline distillation methods, including KD [19], FN [32],
AE-KD [33], LKD [31], RKD [29], and CRD [30]. The second kind of the baseline is the
online knowledge distillation methods, which were DML [35], ONE [34], DCM [36], and
PCL [37].

The experimental results are reported in Table 2, where the best results are marked
in bold. Experimental results on the SIRI-WHU and NWPU-RESISC45 datasets showed
that the proposed CKD achieved the best performance not only on offline distillation
methods, but also on online knowledge distillation methods compared to other state-of-
the-art methods. It also demonstrates that our CKD was capable of enhancing classification
tasks. Despite the fact that the experimental setup in these references varied slightly, it
appears that our strategy outperformed previous state-of-the-art methods.
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Table 2. The accuracy of ResNet20 while using different knowledge distillation approaches on
SIRI-WHU and NWPU-RESISC45.

Methods Types SIRI-WHU NWPU-RESISC45

DML [35] online 91.3% 86.9%
KD [19] offline 91.7% 87.3%

RKD [29] offline 91.2% 86.4%
CRD [30] offline 91.4% 87.6%
FN [32] offline 90.8% -

LKD [31] offline - 88.4%
AE-KD [33] offline - 87.1%

Ours offline 92.0% 90.5%

Table 3. The accuracy of ResNet110 while using different knowledge distillation approaches on
SIRI-WHU and NWPU-RESISC45.

Methods Types SIRI-WHU NWPU-RESISC45

DML [35] online 92.6% 85.7%
KD [19] offline 91.4% 84.2%

RKD [29] offline 92.1% 85.3%
CRD [30] offline 91.8% 86.3%
DCM [36] online - 87.9%
ONE [34] online 92.3% 88.5%
PCL [37] online 92.5% 90.3%

Ours offline 94.3% 91.6%

When using the larger student sub-network the Resnet110, as shown in Table 3, we
performed relevant comparison experiments on the SIRI-WHU and NWPU-RESISC45
datasets in order to further evaluate the performance of the CKD framework by the top-1
accuracy. We can obviously observe that our model exhibited significant advantages against
the state-of-the-art methods. With the CKD framework, Resnet110 continued to be able to
achieve an appreciable performance improvement for classification tasks.

4.5. Comparison of the Number of Parameters among CKD Student Sub-Networks and
Resnet Networks

The parameters’ variability between different student sub-networks in the CKD frame-
work for the backbone networks Resnet20, Rconv_Res20, Resnet32, Rconv_Res32, Resent
56, Rconv_Res56, Resnet110, and Rconv_Res110 is compared in this section. The number of
parameters of different student sub-networks is shown in Table 4.

Table 4. The ablation experiment results of different student sub-networks in the CKD framework.

Network Types Params Gain (↑)

Resnet 20 Rconv_Res20 0.27 M 0.15 M 0.12 M
Resnet 32 Rconv_Res32 0.46 M 0.24 M 0.22 M
Resnet 56 Rconv_Res56 0.85 M 0.47 M 0.38 M

Resnet 110 Rconv_Res110 1.73 M 0.90 M 0.83 M

From Table 4, we can find that the Rconv_Res-series student sub-networks maintained
comparatively fewer parameters. As the depth of the network deepened, the number of
parameters in the Resnet-series student sub-networks increased more significantly com-
pared to the Rconv_Res-series student sub-networks. This also demonstrates that the
redundancy parameters of the Resnet-series student sub-networks increased dramatically
with the increasing depth of the student sub-networks. In contrast, the Rconv_Res-series
student sub-networks in the CKD framework were able to effectively eliminate redun-
dant parameters.



Remote Sens. 2022, 14, 5186 12 of 16

4.6. Ablation Experimental
4.6.1. The Performance of the Student Sub-Networks with Different Depths in CKD Based
on the SIRI-WHU Dataset

The backbone networks that we employed in our experiments included typical student-
level backbone networks: Resnet20 [47], Resnet32, Resnet56, and Resnet110 and large-scale
backbone networks at the teacher level: Resnet110 and Densenet121 [48].

Table 5 compares the top-1 accuracy [49] on the SIRI-WHU dataset obtained by various
architectures under the two-student sub-network condition. We can observe the following
conclusions from Table 5:

(1) For Student Sub-networks 1 and 2, the collaborative consistency distillation algorithm
(CKD) significantly improved the classification accuracy of each student sub-network,
and the gain values indicate the gains of each student sub-network.

(2) Although Rconv_Res110 is a much larger backbone network than Rconv_Res32, it
still benefited from being trained with a smaller student sub-network.

(3) The smaller student sub-networks can usually gain more from the collaborative
consistency distillation algorithm.

Table 5. Accuracy (%) on the SIRI-WHU dataset. CKD measures the difference in accuracy between
the network learned with CKD and the same network learned independently. “Gain” indicates the
percentage improvement of the accuracy rate.

Network Types Independent Acc % CKD-RPO Acc % Gain (↑)

Sub_Stu1 Sub_Stu2 Sub_Stu1 Sub_Stu2 Sub_Stu1 Sub_Stu2 Sub_Stu1 Sub_Stu2

Resnet 32 Resnet 20 91.3 90.8 91.6 91.4 0.3 0.6
Resnet 32 Resnet 32 91.3 91.3 92.0 92.0 0.7 0.7
Resnet 56 Resnet 32 91.8 91.3 92.7 91.8 0.9 0.5
Resnet 110 Resnet 32 93.2 91.3 93.6 91.9 0.4 0.6

Rconv_Res32 Rconv_Res20 92.1 91.4 92.3 92.0 0.2 0.6
Rconv_Res32 Rconv_Res32 92.1 92.1 92.9 92.9 0.8 0.8
Rconv_Res56 Rconv_Res32 92.7 92.1 93.4 92.6 0.7 0.5
Rconv_Res110 Rconv_Res32 93.8 92.1 94.3 92.8 0.5 0.7

4.6.2. The Effectiveness of Each Component in the Redundant Feature Mapping Operation

To more comprehensively evaluate our CKD framework, we conducted ablation
studies to analyze the correlation between different components in the redundant feature
mapping operation. The redundant feature mapping operation of the CKD framework
mainly involves three components: Rconv module, MRFM, and SRFM. To investigate the
impact of each component on the redundancy mapping module on the CKD framework,
based on Resnet, we set a series of student sub-networks of different depths and their
corresponding variants and compared the performance between the student sub-networks
of different depths and the corresponding variants.

Resnet: A series of image classification models was constructed based on Resnet20,
Resnet32, Resnet56, and Resnet110.

Resnet with Rconv module: Only the Rconv module was applied to a series of image
classification models.

Resnet with MRFM: A series of classification models was reconstructed based on the
MRFM module to predict the categories of remote sensing image scenes in the SIRI-WHU
and NWPU-RESISC45 datasets.

Resnet with SRFM: First, we obtained the SRFM module through the MRFM module.
Then, based on the SRFM module, a series of classification models was redesigned to predict
the categories of remote sensing image scenes in the SIRI-WHU and NWPU-RESISC45
datasets.

The results of the ablation experiments of the redundant feature mapping operation in
the CKD framework are shown in Figure 3.
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Figure 3. In order to investigate the impact of each component in the redundancy mapping module
on the CKD framework, we compared the performance of a series of student sub-networks (Resnet20,
Resnet32, Resnet56, and Resnet110) of different depths and the corresponding variants.

From Figure 3, we can draw the following conclusions:

(1) Resnet with the Rconv module showed the worst classification performance among
the methods for all datasets. This shows that reconstructing the Resent model with
only the simple Rconv module, although it can reduce the parameter redundancy of
the networks, can also lead to a degradation of the model classification performance.

(2) Resnet with MRFM achieved the best classification performance. However, the
number of parameters of the models was relatively more compared to Resnet with
SRFM. At the same time, the improvement in classification accuracy of the models was
insignificant, and we believe that it is not worthwhile to gain a slight improvement in
the classification performance through such a scale of the number of parameters.

(3) With the number of parameters keeping consistent, Resnet with SRFM possessed
better classification performance compared to Resnet with the Rconv module. This
indicates that the equivalent convolutional kernel obtained by the multi-branch fusion
operation exhibited a more powerful feature extraction ability, which effectively
improved the classification performance of the model.

5. Conclusions

In this work, we proposed a collaborative consistent knowledge distillation framework
in order to reduce the parameters of the remote sensing image scene classification model
and further facilitate the deployment on embedded devices with poor hardware conditions.
Our framework consisted of two main aspects: the redundant feature mapping module
and the collaborative consistency distillation algorithm. The experimental results on two
benchmark datasets, SIRI-WHU and NWPU-RESISC45, showed that our framework signif-
icantly improved the remote sensing image scene classification performance of the student
sub-network and substantially reduced the redundant parameters of the backbone network.
In addition, the pre-trained student sub-networks obtained by the CKD framework had a
powerful feature extraction ability with fewer parameters, which can be widely used in
various embedded devices.
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