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Abstract: The Tibetan Plateau (TP) vegetation plays an important role in the local ecosystem, which
responds significantly to climate change and can affect local and large-scale weather and climate
anomalies. However, little attention has been paid to its year-to-year variation. In this paper, using
two NDVI datasets (GIMMS and MODIS) originated from satellite remote sensing, the variability
characteristics of NDVI over the TP on the interannual time scale and associated local climatic factors
were investigated. The results show that two primary patterns of NDVI governed TP during the
main growing season (June–September, JJAS) for the period 1982–2020. The first one is a uniform
pattern, with a consistent spatial variation over the entire TP, and the second is a dipole pattern,
with an out-of-phase spatial variation of NDVI between the northern and southern TP. Interannual
variations of the different climatic factors regulate the NDVI variability over the different regions
of the TP. The interannual variability of the uniform NDVI pattern is mainly affected by the two
local climatic factors, the preceding May–August precipitation and simultaneous JJAS sunshine
duration. Specifically, NDVIs over the southern and eastern TP have a more significant response
to the preceding precipitation and simultaneous sunshine duration, respectively. The variability of
the dipole NDVI pattern is primarily modulated by the preceding May–August precipitation and
simultaneous surface air temperature, ground surface temperature, and sunshine duration. However,
NDVIs over the northern and southern TP have different degrees of response to the four climatic
factors, with the most significant response being to preceding precipitation. The combined effect of
these factors contributes to the formation of the interannual variability in the uniform and dipole
patterns. This paper may shed light on deeply understanding the reasons for the inconsistency in
variations of vegetation over the different regions of the TP under climate change. In addition to the
effect of local climatic factors that this study focuses on, the influence of external climatic factors on
the variability of the TP NDVI deserves further research in the future.

Keywords: Tibetan Plateau; vegetation; interannual variability; NDVI; climate factor; climate change

1. Introduction

As one of the major land surface factors, vegetation plays an important role in the ex-
change in energy and materials between the atmosphere, ecosphere, hydrosphere, etc. [1,2].
Additionally, vegetation is involved in the land–atmosphere interaction and can be consid-
ered an indicator of global climate change [3]. Therefore, vegetation is affected by climate
change [4,5], and it can also exert a feedback effect on regional and global climate [6–13].
The normalized difference vegetation index (NDVI) is an important indicator of vegeta-
tion coverage and growth activity [14] and has been applied in studying the relationship
between vegetation and climate change [15]. Due to its special location and altitude, the
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Tibetan Plateau (TP) has the world’s largest, highest-altitude, and most unique ecosys-
tem. In recent years, the TP vegetation has received academic attention and extensive
research [10–13,16].

In climate sensitivity, various factors can modulate the variability of NDVI over the
TP [17–20], with regional and seasonal differences in their correlations [21–23]. Generally,
air temperature and precipitation jointly affect the TP NDVI [24,25]. Precipitation can exert
a lagged impact on the TP NDVI, whereas the lagged impact of air temperature is not
significant [26]. In areas with relatively well-grown vegetation, the response of NDVI to
air temperature and precipitation is more pronounced [27]. Other factors, such as ground
temperature, sunshine duration, snow cover, and carbon dioxide (CO2) concentrations,
directly affect NDVI or indirectly modulate the connection between NDVI and air tempera-
ture (precipitation). In the southeastern TP, where the environment is usually moist and
the sunshine is insufficient, NDVI is negatively correlated with precipitation and positively
correlated with sunshine duration [28]. In contrast, in the southern TP with warm and dry
climatic conditions, NDVI is negatively correlated with temperature [29]. Additionally, the
snow cover over the TP can affect NDVI during the subsequent spring and summer [30].
Using model simulations, Gao et al. revealed the different contributions of different CO2
concentrations to the future vegetation growth in the TP [31].

Because of the typically cold and dry alpine climate, there is a wide variety of vege-
tation over the TP with different growth trends. Under global warming, air temperature
and precipitation over the whole TP showed an increasing trend, which overall promotes
vegetation growth, and, as a result, NDVI in the whole TP generally shows an increasing
trend [26,28,32–40]. However, although air temperature and precipitation over the TP
generally experienced a similar increasing trend, the amplitude and time of the variability
in these climatic factors are different over different regions of the TP [34]. The complex
climate change has led to significant differences in the response of vegetation to climatic
anomalies in various regions of the TP [33]. As such, there are obvious inconsistent trends
between the regional and whole NDVIs in the TP [35,36].

Accompanying global warming and an associated increase in NDVI over the TP,
several areas within the TP are experiencing vegetation degradation [35,37–39]. Although
air temperature and precipitation significantly increased over the entire Three-River-South
(TRS) area of the TP, only NDVI in the southeast TRS region showed an increasing trend,
while it did not in the northwestern TRS region [36]. Similarly, several studies indicated
that the vegetation became more luxuriant in the high-altitude regions of the central
and southwestern TP, due to a gradually warmer and more humid climate [29,34,40,41].
In contrast, vegetation degradation occurred in the northeastern TP, at relatively lower
altitudes [28,29,40–43]. Much meaningful progress has been made on the influence of
atmospheric heat sources over the TP on the climate in the middle-high latitudes of Eurasia,
especially in East Asia [44–49]. As one of the major land surface factors, vegetation plays
an important role in influencing the TP thermodynamic conditions by altering the local
surface albedo and roughness [10–13]. The above inconsistency in the variability of NDVIs
in different regions is likely to cause anomalous changes in the TP thermodynamic effects,
which will further affect climate change in the downstream regions. Therefore, the regional
differences in NDVI over the TP warrant further investigation.

The climate and ecological characteristics of the TP are changing significantly under
the global warming tendency. Understanding the relationship between the TP vegetation
and regional and global climate changes is beneficial for the ecological and environmental
protection of the TP [26,32–36,42]. Nowadays, increasingly improved remote sensing data
provide longer-term vegetation information with a higher spatial resolution, and they allow
us to better explore the main variability characteristics of the TP vegetation with local or
even global climate change from a climatological perspective. However, these previous
studies focused on the long-term trend or variability of the TP vegetation under human
activities and natural climate change, rather than variability on the interannual timescales.
Given the effects of climatic factors on vegetation growth with year-to-year variability in
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many regions [1,50–55], this paper attempts to clarify spatiotemporal characteristics of
the interannual variability in the TP vegetation during its growing season and associated
dominant climatic factors over the different regions of the TP. This is conducive to the
follow-up to explore the linkage between global climate change and vegetation elements
over the TP and has important scientific significance and application value.

The remainder of this paper is organized as follows. In Section 2, data and methods
are described, which include the area and season of the study, the use of NDVI and meteoro-
logical element data, and statistical analysis methods. Section 3 introduces results, in which
Section 3.1 presents the characteristics of interannual variability of NDVI over the TP dur-
ing the main growing season and Section 3.2 analyzes dominant climatic factors affecting
the TP NDVI. Section 4 (i.e., Conclusions) summarizes the spatio-temporal characteristics
of the TP NDVI interannual variability and how local climate factors affect it. Finally, a
discussion is given in Section 5, which analyzes the contributions and shortcomings of this
paper and gives an outlook for future research. This paper is expected to provide a better
understanding of features and their physical reasons for the interannual variability of the
TP vegetation.

2. Data and Methods
2.1. Data

This paper used NDVI to reflect vegetation cover and growth activity. The NDVI was
calculated as follows.

NDVI =
NIR − Red
NIR + Red

(1)

where NIR is the near-infrared radiation and Red is the red light. The NDVI can be
regarded as an important information source for qualitative and quantitative evaluation
of vegetation cover and its growth activity [14,26,56] and has therefore been extensively
applied in investigating vegetation dynamics in various regions [15].

The updated remote sensing data provide longer-term vegetation information with
a higher spatial resolution [57–61], which enables a more detailed investigation of the
spatial and temporal characteristics of the TP NDVI. Two NDVI datasets were used in this
paper. One is GIMMS NDVI3g, measured by the advanced very high-resolution radiometer
(AVHRR) sensor, which was derived from the National Oceanic and Atmospheric Ad-
ministration (NOAA). This dataset is from January 1982 to December 2014, with a spatial
resolution of 8 km (hereafter as GIMMS NDVI). The other is MOD13C2 NDVI, measured
by the moderate resolution imaging spectroradiometer (MODIS) sensor, which was derived
from the National Aeronautics and Space Administration (NASA). This dataset is from
February 2000 to December 2020, with a spatial resolution of 500 m (hereafter as MODIS
NDVI). The former is one of the best datasets for describing vegetation dynamics, while
the latter is a refinement of the NDVI dataset of AVHRR sensors [57–60,62]. To explore
the characteristics of interannual variability in NDVI over the TP for the entire period
from 1982 to 2020, we spliced the two datasets. The splicing method is described in the
next subsection.

The meteorological variables which were used in this paper include precipitation
(PRE), surface air temperature (SAT), ground surface temperature (GST), and sunshine
duration (SSD). The variables were obtained from the National Meteorological Informa-
tion Center of China. The quality and completeness of the data on these variables are
significantly higher than those in previous releases of similar surface data products. The
1982–2020 daily meteorological elements at 88 stations (red dots in Figure 1a) within the
boundary of the TP (3000 m above sea level) were used. To analyze the relevant factors
affecting the interannual variability of the TP NDVI during the main growing season,
the daily data were processed into the monthly data on 0.5◦ × 0.5◦ grids through daily
accumulation and Cressman interpolation.
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Figure 1. (a) Map showing the location of the study area and 88 meteorological stations (red dots)
within the boundary of the TP (3000 m above sea level; brown lines). Shadings denote the TP NDVI
during the main growing season (JJAS) for the period 2002–2014. (b) Annual cycles of the TP NDVI
for the period 2002–2014. The gray shading indicates the TP vegetation during JJAS, and the solid
and dashed lines represent the monthly evolution of the GIMMS and MODIS NDVIs, respectively.

2.2. The Area and Season of the Study

The Tibetan Plateau is located in the subtropical region of eastern Eurasia and is the
highest (average altitude above 4000 m) in the world, with complex terrain. It is known as
the “Water Tower of Asia” and “The Third Pole”. Because of its relatively unique regional
natural environment and climatic characteristics, the vegetation over the TP spans from
grasslands to deserts. With relatively little anthropogenic disturbance to the TP vegetation,
it responds to climate change more rapidly than that over other regions at the same latitudes.
Therefore, the Tibetan Plateau is an ideal region for understanding the relationship between
vegetation and regional and global climate change.

Figure 1 shows the spatial distribution and temporal variability between the two NDVI
datasets during their common period (2002–2014). Since the MODIS NDVI was unstable
from 2000 to 2001, the two years were not used here. The annual cycle of the TP vegetation
is consistent with previous studies [26,42]. Specifically, the TP NDVI rapidly grew after
April, reached a peak in August, and then decreased rapidly after September (Figure 1b).
The period of the increasing growth of NDVI is the regreening stage of TP vegetation [63],
and the period from November to March in the following year is the yellowing stage, with
the decreasing growth of the TP vegetation. The period from June to September (JJAS) can
be considered the main growing season of TP vegetation, which is also the study season
of this paper. During the main growing season (JJAS), the TP NDVI is distributed in a
clear northwest-southeast orientation (Figure 1a). Ignoring the negative NDVI values (less
than 0) due to the reflection of clouds, rain, and snow, the maximum NDVI of the southeast
and the minimum NDVI of the northwest were about 0.823 and 0.015, respectively.

2.3. Methods

NDVI values between the GIMMS and MODIS NDVIs show a significant linear
correlation [64,65], with a regression coefficient of 0.89 (significant at the 99% confidence
level; Figure S1), which has been reported in several studies on vegetation over TP [26,61].
Previous studies primarily focused on the linear consistency between the two raw datasets.
However, the present study focuses on the characteristics of the interannual variability in
NDVI during the growing season. Table S1 and Figure S1 present the spatial correlation
coefficients (SCCs), relative deviation (RD), root-mean-square error (RMSE), and correlation
coefficients (R = 0.87) of the GIMMS and MODIS NDVIs during JJAS for the common period
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(2002–2014). SCCs and regression analyses were used to identify the differences in the
spatial distribution and temporal variability, and RD and RMSE were used to capture the
differences in the magnitude. The GIMMS and MODIS NDVIs have a significant agreement
and good continuity during the main growing season (JJAS), which also supports the
plausibility of splicing the two NDVI datasets into a longer dataset.

In this paper, the extension methods of different data were in reference to previous
studies [26,61,64–66]. A linear regression equation was established using the standardized
JJAS MODIS and GIMMS NDVIs for the period 2002–2014. Based on this equation, the
2015–2020 JJAS MODIS NDVI can be fitted and spliced to the standardized 1982–2014
GIMMS NDVI. Ultimately, we obtained the standardized JJAS TP NDVI during the longer
period 1982–2020.

The empirical orthogonal function (EOF) decomposition was used to analyze the
characteristics of interannual variability in the TP NDVI during the main growing season.
The North test was used to verify the independence of the leading EOF modes [67]. The EOF
decomposition, also known as principal component analysis (PCA), is used to decompose
the original variable fields into linear combinations of orthogonal functions to obtain spatial
modes with some physical significance. Due to its special location and altitude, the TP is
covered by diverse vegetation, small-area desert, and bare soil [68]. Different vegetation
and land types can result in different variations of NDVI over the different regions of the
TP. The EOF decomposition can capture more dominant and homogeneous interannual
patterns of vegetation over the TP, thus providing more insight into its spatial and temporal
variability characteristics.

Wavelet transform analysis was used to analyze the cyclical characteristics of inter-
annual variability in the TP NDVI during the main growing season. Traditional statistical
methods, such as linear correlation and univariate and multiple regression, were used to
explore dominant factors affecting the variability of the TP NDVI. Unless otherwise stated,
Student’s t-test was used to evaluate the significance of these analyses.

3. Results
3.1. Characteristics of Interannual Variability in the TP NDVI

To ensure consistent spatial and temporal characteristics of the TP NDVI during JJAS,
we performed EOF analyses during the period 2002–2014 (Figure 2) using two NDVI
datasets (i.e., the standardized GIMMS and MODIS JJAS NDVI). The two NDVI data-based
results show similar EOF patterns. Specifically, the first EOF (EOF1) shows a uniform
pattern of NDVI anomalies over the TP, with larger loadings (anomalies) over the central
and western TP (Figure 2a,c). Hereafter, this pattern is referred to as the uniform NDVI
pattern. The second EOF (EOF2) shows a north–south dipole pattern of NDVI anomalies
over the TP, reflecting that the higher (lower) NDVI over the northern TP corresponds to
lower (higher) NDVI over the southern TP (Figure 2b,d). This pattern is called the dipole
NDVI pattern. The first two EOF patterns account for 16.1% and 8.6% of the total variance
for the GIMMS data, and 28.5% and 16.2% for the MODIS data, both passing the North
test [67].

The time series of the principal component (PC1) of GIMMS-based EOF1 is signifi-
cantly correlated with that of the PC1 of MODIS-based EOF1, with a correlation coefficient
of 0.82, significant at a 99% confidence level (Figure 3a). Similarly, the time series of the
PC2 of GIMMS-based EOF2 is significantly correlated with that of the PC2 of MODIS-
based EOF2, with a correlation coefficient of 0.54, significant at the 99% confidence level
(Figure 3b).
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1982–2020. (d) as in (c), but for the time series of PC2.
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The aforementioned results reveal that the GIMMS and MODIS NDVIs during the
period 2002–2014 both capture the first two primary patterns of the JJAS TP NDVI and
the variability of the primary patterns. Given the high consistency between the GIMMS
and MODIS NDVI-based PC1 (PC2), the 2015–2020 JJAS MODIS NDVI-based PC1 (PC2)
can be fitted and spliced to the standardized 1982–2014 GIMMS NDVI-based PC1 (PC2).
Finally, the time series of PC1 and PC2 during a longer term (1982–2020) were obtained
(Figure 3c,d).

PC1 shows an obvious increasing trend with stronger amplitude before 2000 and
weaker amplitude after 2000 (Figure 3c). Its temporal variability has a significant period
of 2–4 a during 1982–2000, and another periodic variation of 10–12 a during 1982–2020
(Figure S2a). This suggests that there is both interannual and interdecadal variability for
PC1. This study focuses on the interannual variation of the TP NDVI and does not discuss
too much about the interdecadal variability. PC2 has a weaker increasing trend compared
to that of PC1 (Figure 3d). However, it has one amplitude change each after 1990 and before
2010; the latter has a more pronounced enhancement. The temporal characteristics of PC2
obtained from the wavelet transform have two periods of 2–4 a before 2000 and 2–5 a after
2000 (Figure S2b), which is consistent with the results in Figure 3d. The temporal variability
and periodic characteristics of these two PC indices suggest that the two NDVI patterns
can dominate on the TP in different years.

The NDVI anomalies regressed upon PC1 (PC2) during the period 1982–2020 show a
uniform (dipole) pattern (Figure 4a,b), resembling the spatial distributions in Figure 2a,b.
This signifies that the two primary patterns existed not only during the period 2002–2014
but also during the longer period 1982–2020. The above results reveal that the two primary
patterns of NDVI over the TP stably existed in the period of 1982–2020, and the fitted
and spliced PC indices can reflect the characteristics of the interannual variability of the
TP NDVI.
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3.2. Local Climatic Factors Influencing Interannual Variability in the TP NDVI

In Section 3.1, we found that variability of the JJAS NDVI shows two primary patterns
over the TP, namely, the uniform and dipole NDVI patterns. Here, we further explore
the local climatic factors responsible for the two primary patterns. Generally, the most
important elements influencing vegetation growth are moisture and thermal conditions [69].
Thermal conditions for vegetation growth are mainly related to SAT, GST, and SSD, while
moisture conditions are mainly associated with PRE. The NDVI does not always respond to
the change in the thermal and moisture conditions immediately; instead, sometimes, the re-
sponse of vegetation to local climatic factors (especially for PRE) has a certain lag [26,69–73].
Therefore, the simultaneous and time-lagged effects of the climatic factors on the two pat-
terns were investigated.
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Figure 5 presents the anomalies of different factors regressed upon the JJAS uniform
NDVI Index (UNI, i.e., PC1), in which leads (0) denotes the anomalies during JJAS and
lead (1) denotes those during May–August (MJJA), namely, one month in advance. The
MJJA (lead 1) PRE anomalies are consistent with the JJAS uniform pattern, with more
precipitation in accord with higher NDVI (Figure 5a). In contrast, the higher JJAS NDVI
corresponds to simultaneous (lead 0) negative PRE anomalies (Figure 5b). The results imply
that the JJAS uniform pattern tends to be affected by the preceding MJJA PRE anomalies,
rather than the simultaneous PRE anomalies. In other words, the PRE anomalies have a
one-month lagged impact on the uniform pattern.

The simultaneous SAT and GST may play an important role in modulating the uniform
pattern during JJAS. Significant positive SAT and GST anomalies facilitate higher NDVI
over almost the entire TP, which can be clearly detected in Figure 5d,f. In contrast, there
is no clear relationship between the preceding MJJA SAT (GST) anomalies and the JJAS
uniform pattern (Figure 5c,e).

Overall, these climatic factors are generally linked with a large-area NDVI over the TP.
However, it is noteworthy that different climatic factors tend to regulate NDVI over the
different regions of the TP. For example, the PRE anomalies are more significantly related
to NDVI over the southwestern TP (Figure 5a), while the SAT and GST anomalies are more
significantly connected with NDVI over the large-range northern TP (Figure 5d,f). The SSD
anomalies have a more significant relationship with NDVI over the eastern TP during JJAS
(Figure 5h).

The preceding MJJA PRE anomalies regressed upon the JJAS dipole NDVI Index (DNI,
i.e., PC2) clearly show more (less) precipitation over the northern (southern) TP (Figure 6a),
coordinating with higher (lower) NDVI over the northern (southern) TP (Figure 4b). Simi-
larly, Figure 6g shows that less (more) sunshine over the northern (southern) TP corresponds
to higher (lower) NDVI over the northern (southern) TP, which implies that the preceding
MJJA SSD cannot explain the JJAS dipole pattern.

To further reveal the combined effect of different climatic factors, we defined the
indices of the PRE, SAT, GST, and SSD anomalies for the two NDVI patterns, respectively.
As shown in Table 1, the PRE index can be defined by the MJJA area-mean PRE anomalies
over the southwestern TP (28◦–35◦N, 80◦–92◦E) because the MJJA PRE anomalies over this
region significantly modulate the variability of the uniform pattern during the following
JJAS. In contrast, more (less) precipitation over the northern (southern) TP during MJJA can
affect the variability of the dipole pattern during JJAS, and therefore the PRE index for this
pattern can be defined by the difference between the PRE anomalies over the northern TP
(33◦–40◦N, 91◦–104◦E) and that over the southern TP (28◦–32◦N, 81◦–94◦E). Similarly, the
other indices were also defined on the basis of the key regions governed by these climatic
factors (see Table 1).

Based on the aforementioned indices that modulate the patterns of NDVI, we estab-
lished two multivariate linear regression models in the two following equations to fit the
UNI and DNI, respectively.

UNI = 0.01 + 0.35 ∗ PREa − 0.02 ∗ SATa + 0.13 ∗ GSTa + 0.26 ∗ SSDa (2)

DNI = 2.9 × 10−9 + 0.33 ∗ PREa + 0.44 ∗ SATa − 0.63 ∗ GSTa + 0.19 ∗ SSDa (3)

in which the left terms represent the UNI and DNI and the right terms (PRE, SAT, GST, and
SSD) represent the indices (see the definitions in Table 1) of the climate factors responsible
for the uniform and dipole NDVI patterns, with “a” indicating anomalies. The coefficients
of the right terms can reflect the combined effect of these climatic factors with different
weights. For convenience, the right terms in Equations (2) and (3) are referred to as the
combined-effect indices for the UNI and DNI, respectively. It should be noted that the
estimate of the intercept of Equation (3) is 2.9 × 10−9, close to 0, which is negligible when
calculating the combined-effect index of the DNI.
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climatic factors that occurred one month earlier than the NDVI anomalies. (b,d,f,h) as in (a,c,e,g),
but for anomalous climatic factors during JJAS. Lead (0) denotes anomalous climatic factors that
occurred at the same time as the NDVI anomalies. Anomalies of climatic factors significant at the
95% confidence level are stippled with black dots.
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Figure 6. MJJA PRE ((a); unit: mm), SAT ((c); unit: ◦C), GST ((e); unit: ◦C), and SSD ((g); unit:
hours) anomalies regressed upon the JJAS DNI for the period 1982–2020. Lead (1) denotes anomalous
climatic factors that occurred one month earlier than the NDVI anomalies. (b,d,f,h) as in (a,c,e,g),
but for anomalous climatic factors during JJAS. Lead (0) denotes anomalous climatic factors that
occurred at the same time as the NDVI anomalies. Anomalies of climatic factors significant at the
95% confidence level are stippled with black dots.
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Table 1. Definition of the indices of the climate factors responsible for the uniform and dipole NDVI
patterns and associated key regions.

Indices Uniform NDVI Pattern Dipole NDVI Pattern

PRE Area-mean PRE anomalies over
(28–35◦N, 80–92◦E) in MJJA.

Difference between area-mean PRE
anomalies over (33–40◦N, 91–104◦E) and
that over (28–33◦N, 81–94◦E) in MJJA.

SAT Area-mean SAT anomalies over
(34–40◦N, 70–104◦E) in JJAS.

Area-mean SAT anomalies over
(33–40◦N, 70–104◦E) in JJAS.

GST Area-mean GST anomalies over
(33–40◦N, 70–104◦E) in JJAS.

Area-mean GST anomalies over
(34–40◦N, 70–104◦E) in JJAS.

SSD Area-mean SSD anomalies over
(30–35◦N, 90–104◦N) in JJAS.

Area-mean SSD anomalies over
(28–30◦N, 76–104◦N]) in JJAS.

The NDVI anomalies regressed upon the combined-effect index for the UNI show
that significantly positive anomalies appear over almost the entire TP (Figure 7a). Such
a uniform pattern resembles the leading mode of NDVI (Figure 4a), implying that the
variability of the uniform pattern can be attributed to the synergistic modulation of the
PRE and SSD anomalies. The effect of the GST and SAT indices is relatively weaker.
The MJJA PRE anomaly tends to play the most important role in adjusting the uniform
pattern. After removing the effect of the MJJA PRE index, significantly positive anomalies
of NDVI disappear over the southwestern TP (Figure 7b). After removing the effect of the
simultaneous SSD index, NDVI changed to the negative anomalies over the northeastern TP
(Figure 7c). The JJAS GST and SAT indices have relatively weaker impacts on the uniform
pattern. After removing the effect of the JJAS GST and SAT indices, significantly positive
anomalies over the entire TP still exist (Figure 7d,e).
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The NDVI anomalies regressed upon the combined-effect index for the DNI show
that significantly positive (negative) anomalies appear over the northern (southern) TP,
forming a dipole pattern (Figure 8a). This pattern is similar to the second mode of NDVI
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(Figure 4b), signifying that the PRE, SSD, SAT, and GST indices synergistically modulate
the variability of the diploe pattern. After removing the influence of GST anomalies, the
dipole pattern changed to an east–west pattern (Figure 8b). When the other climatic factor
anomalies (PRE, SAT, and SSD anomalies) are absent, the dipole pattern is also unclear, and
is especially insignificant over the northern TP (Figure 8c–e).
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The aforementioned results reveal that the uniform pattern is mainly modulated by
the preceding PRE and simultaneous SSD anomalies, while the dipole pattern is governed
by all these climatic factors.

4. Discussion

The TP vegetation plays a crucial role in linking the local and Asian climate sys-
tems [74], especially in its ability to influence the weather and climate in its downstream re-
gions, although it is itself sensitive and vulnerable in response to global climate change [75].
Variations in the TP vegetation dynamics can cause a change in local surface albedo and
roughness, which affects the TP thermodynamic effects [10–13]. Most studies [44–49] in-
dicate that TP thermodynamics has a significant influence on the large-scale circulation
system and East Asia monsoon. All these suggest that the variation of the growing-season
vegetation dynamics over TP can affect the atmosphere, ecosphere, and hydrosphere in
East Asia and even all world regions [10–13]. However, the key components, the variability
characteristics of the growing-season vegetation dynamics over the TP, have not received
enough attention.

Previous studies mainly focused on the long-term or interdecadal variations in the TP
vegetation under climate change, but studies of the TP vegetation on interannual timescales
are relatively few. Moreover, the dominant characteristics of the spatial distribution of
the NDVI anomalies over the TP remain unclear, although previous studies have found
the inconsistency of the variability in the vegetation growth in the different regions of
the TP. This paper reveals the primary patterns of the variability of NDVI over the TP
on interannual timescales and relevant local climatic factors, which may help further
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understand the reason for the inconsistency of the variations of vegetation over the different
regions of the TP. It was found that there are two patterns of NDVI interannual variability
during the main growing season (JJAS); the uniform NDVI pattern exhibits the same change
trend of vegetation growth over the whole TP (Figure 4a), while the dipole NDVI pattern
shows a seesaw change in vegetation growth on the northern and southern TP (Figure 4b).
These two primary patterns can be directly affected by local climatic factors (PRE, SAT,
GST, and SSD).

For the uniform NDVI pattern, Figure 5a implies that the JJAS uniform pattern tends
to be affected by the preceding MJJA PRE anomalies, rather than the simultaneous PRE
anomalies. In other words, the PRE anomalies have a one-month lagged impact on the
uniform pattern. A higher NDVI roughly corresponds to the positive SSD anomalies
(Figure 5h), indicating that more concurrent sunshine can promote the growth of vegetation
over the TP during JJAS. Note that the higher JJAS NDVI corresponds to the significantly
negative SSD anomalies during MJJA (Figure 5g). Nevertheless, this correspondence does
not mean that preceding weaker sunshine can contribute to the more rapid growth of
vegetation during the following months. Actually, the MJJA weaker sunshine (negative
SSD anomalies) should be attributed to more PRE anomalies during the same period
(Figure 5a).

For the dipole NDVI pattern, the preceding MJJA PRE anomalies dominate the vari-
ability of the dipole pattern (Figure 6a). The SAT and GST anomalies during the preceding
MJJA may not be responsible for the variability of the dipole pattern since positive (nega-
tive) SAT and GST anomalies (Figure 6c,e) correspond to lower (higher) NDVI (Figure 4b).
These out-of-phase relationships do not make sense. During JJAS, only the significantly neg-
ative GST anomalies over the southeastern TP (Figure 6f) may contribute to a lower NDVI
over the same region and modulate part of the dipole pattern. However, the significant
correlation between the dipole NDVI and the preceding SSD is noncausal, which is mainly
due to the significant relationship between PRE and NDVI (Figure 6a) since more (less)
precipitation causes shorter (longer) SSD. During JJAS, large-area negative SSD anomalies
over the southern TP (Figure 6h) may inhibit the growth of vegetation and thus cause
lower NDVI there, which adjusts the variability of the southern part of the dipole pattern
at the same time. The aforementioned results also indicate that, under the framework of
the dipole pattern, different climatic factors are responsible for NDVI over the different
regions of the TP and eventually cause the NDVI anomaly with the dipole pattern.

In general, the interannual variability of the TP NDVI during JJAS is closely related
to that of the preceding precipitation and the simultaneous air temperature, ground sur-
face temperature, and sunshine duration, but with significant regional differences. The
combined effect of these factors contributes to the formation of the interannual variability
in the uniform and dipole NDVI patterns. Certainly, such regional differences are related
to the local climate (high/low temperature, rainy/drought) where the vegetation itself is
located [10,26,29,31,32,42,43,73,74,76]. Nevertheless, not only these factors can modulate
the interannual variability of the TP NDVI. Additionally, snow cover, CO2 concentration,
and nitrogen deposition play important roles in modulating vegetation growth over the
TP [77]. Winter snow cover variation over the TP can affect the TP vegetation dynamics
at the regreening stage (April–May), and CO2 concentration and nitrogen deposition can
affect the growth of the TP vegetation from a biological perspective [77]. They may explain
the small differences between Figures 4a and 7a, and Figures 4b and 8a.

Additionally, the anomalous oceanic and land conditions and associated atmospheric
teleconnections may result in precipitation and thermal anomalies over the TP, such as
the Indian summer monsoon [30,78,79], North Atlantic Oscillation [80–83], SST anomalies
in several key oceans [83–85], Eurasian snow cover [86], and soil moisture in several
regions [87,88]. The above studies lead us to believe that external climate factors may
change thermal and moisture conditions by stimulating atmospheric circulation anomalies
over the TP, which in turn results in the interannual variation of NDVI. The forcing effects
of these factors and associated mechanisms deserve further exploration in the future. We
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can also establish statistical models to predict the growth trend of the TP vegetation under
future climate change via the combined effect of local climatic factors on the interannual
variation of NDVI over the TP. This can further deepen the understanding of the relationship
between the TP vegetation and regional and global climate change and provide a basis for
ecological and environmental protection of the TP.

5. Conclusions

To better understand the features of the TP vegetation and its physical interaction
with climate change, the variability characteristics of NDVI over the TP on interannual
time scales were studied via longer-term and higher-spatial-resolution remote sensing data
in this paper. The findings demonstrate that there are two primary patterns of the TP
NDVI during the main growing season (JJAS). The first pattern is the uniform pattern, with
consistent spatial variation over the entire TP, and the second one is the dipole pattern,
with an out-of-phase spatial variation of NDVI between the northern and southern TP.

Both the MODIS and GIMMS NDVIs manifest the above two primary patterns, and
the time series of the MODIS-based UNI (DNI) is significantly correlated with that of the
GIMMS-based UNI (DNI). Through fitting and splicing the JJAS MODIS NDVI-based UNI
(DNI) to the standardized GIMMS NDVI-based UNI (DNI), we obtained the time series of
the UNI and DNI during a longer term (1982–2020), with the interannual cycle of 2–4 a in
the former and interannual cycles of 2–4 a and 2–5 a in the latter. Further analyses reveal
that, during the period 1982–2020, the variability of the JJAS uniform pattern is mainly
affected by two local climatic factors (i.e., the preceding MJJA PRE and simultaneous SSD)
and the variability of the JJAS dipole pattern is mainly modulated by the preceding MJJA
PRE and simultaneous SAT, GST, and SSD.

With respect to the effects of these climatic factors, two results should be noted.
(1) Different climatic factors tend to significantly regulate NDVI over the different regions.
The combined effect of these factors contributes to the variations in the uniform and dipole
patterns. (2) PRE tends to have a lagged effect on vegetation growth over TP, while the
other climatic factors (SAT, GST, and SSD) show simultaneous effects.
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