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Abstract: A significant challenge in methods for anomaly detection (AD) in hyperspectral images
(HSIs) is determining how to construct an efficient representation for anomalies and background
information. Considering the high-order structures of HSIs and the estimation of anomalies and
background information in AD, this article proposes a kernel minimum noise fraction transformation-
based background separation model (KMNF-BSM) to separate the anomalies and background in-
formation. First, spectral-domain KMNF transformation is performed on the original hyperspectral
data to fully mine the high-order correlation between spectral bands. Then, a BSM that combines
the outlier removal, the iteration strategy, and the Reed–Xiaoli detector (RXD) is proposed to obtain
accurate anomalous and background pixel sets based on the extracted features. Finally, the anoma-
lous and background pixel sets are used as input for anomaly detectors to improve the background
suppression and anomaly detection capabilities. Experiments on several HSIs with different spatial
and spectral resolutions over different scenes are performed. The results demonstrate that the KMNF-
BSM-based algorithms have better target detectability and background suppressibility than other
state-of-the-art algorithms.

Keywords: anomaly detection (AD); background separation model (BSM); feature extraction;
hyperspectral images (HSIs); normalized Euclidean distance (NED)

1. Introduction

With the characteristic of high spectral resolution, hyperspectral images (HSIs) reveal
an enormous number of details about the spectral features of the Earth’s surface and have
unique advantages in various applications such as spectral unmixing, classification, and
anomaly detection (AD) [1–6]. Among these applications, AD is usually treated as detecting
anomalies by referring to a background model and has attracted much attention because
of its importance in civilian and military applications [7–11]. It usually possesses the
following characteristics: (1) there is no prior spectral information about the anomalies or
background; (2) anomalies are different from the background in terms of spectral signatures;
and (3) anomalies are small objects that occupy a relatively small part of the image [12–14].

Many AD methods have been proposed in recent years. Currently, the statistical
background model and geometrical background model are two widely used strategies
in AD algorithms [7,15,16]. Several AD algorithms, such as the Reed–Xiaoli detector
(RXD) [17], kernel RX detector (KRXD) [18], and cluster-based anomaly detection (CBAD)
method [19], have been proposed to detect anomalies via a statistical background model.
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The most widely used RXD employs a multivariate Gaussian model to represent the
background information. It compares the Mahalanobis distance difference between the test
pixel and the mean vector of its neighboring background. Then, the anomalies are detected
by suppressing the Mahalanobis distance matrix with covariance matrix inversion. The
KRXD, a non-linear version of the RX detector, uses a Gaussian radial basis kernel function
to map the initial data into a high-dimensional feature space. It estimates and suppresses
the background in a high-dimensional feature space. Unlike RXD and KRXD, the CBAD
employs categorical information for AD. It first utilizes spectral information to segment the
entire image into different classes and then detects anomalies in each class [7,15]. Instead
of utilizing statistical models to estimate the background, the geometrical background
model assumes that background pixels can be approximately characterized by a set of
main spectra or bases extracted from the original data, while anomalies cannot [7]. The
AD methods, such as subspace-based RX (SSRX) [20] and the selective kernel principal
component analysis (KPCA)-based detector [21], are proposed to detect anomalies via a
geometrical background model. The SSRX detector estimates the background features
by choosing representative eigenvectors of the original data covariance matrix, while
the selective KPCA-based detector exploits maximum average local singularity to select
specific kernel principal components as the background features [15]. However, all the
above AD methods do not completely eliminate the influence of the anomalies in estimating
background, which may lead to unsatisfactory performance of the detectors because of the
deviation between the estimated and true background information [22].

A significant challenge in hyperspectral AD methods is determining how to con-
struct an efficient estimation for background information, and this topic has received
extensive attention and in-depth research [23–25]. The background estimation methods in
anomaly detectors can be categorized into three groups: the outlier-removal-based meth-
ods, the statistical-strategy-based methods, and the iteration-strategy-based methods. The
outlier-removal-based methods, such as the collaborative-representation-based detector
(CRD) combined with principal component analysis (PCAroCRD) [26], the nonparamet-
ric background refinement methods based on local density [27], and the collaborative-
representation-based method with outlier removal anomaly detector (CRBORAD) [28], aim
to remove suspected anomaly pixels from the original data. The statistical-strategy-based
methods, such as the probabilistic anomaly detection (PAD) method [29], are based on using
statistical information to estimate the divergence between the probabilities of anomalies and
background for the separation of an anomaly from the background. The iteration-strategy-
based methods, such as blocked adaptive computationally efficient outlier nominators (BA-
CON) [30] and locally adaptive iterative RXD (LAIRXD) [31], utilize iterative background in-
formation update strategies to eliminate anomaly interference in the background estimation.
Nevertheless, for the HSIs with complex scenes, the outlier-removal-based methods often
miss the anomalies similar to the background, and it is difficult for the statistical-strategy-
based methods to extract the statistical information of the anomalies. Compared with the
outlier-removal-based and statistical-strategy-based methods, the iteration-strategy-based
anomaly detection methods are more time-consuming [22]. In order to combine the ad-
vantages of different background estimation strategies, Yan Zhang et al. [22] proposed a
background-purification-based (BPB) framework for background estimation that combines
the iteration strategy with the outlier removal. Furthermore, the BPB-based algorithms
(such as the BPB RXD (BPB-RXD) and the BPB orthogonal subspace projection anomaly
detector (BPB-OSPAD)) were proposed under this framework. The experimental results
show that BPB-based algorithms perform better than other AD methods, such as the RXD,
KRXD, OSPAD, PAD, CRD, BACON, and CRD combined with principal component analy-
sis (PCAroCRD). However, while those methods have made some progress in background
estimation, unfavorable effects from high data dimensionality and high-order structures
of HSIs must be considered. The high-order correlation between spectral bands leads to
tiny spectral value change between most adjacent bands and high redundancy in HSIs.
The high-order structures will reduce the detection ability of the detectors and generate
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unnecessary calculation pressure [21]. As an effective method to solve this problem, feature
extraction has become a critical step in the HSI processing tasks [32]. It can provide the
benefits of reducing the computational complexity in processing HSIs, and it can help in
solving the statistical ill-conditioning problem [33]. Among feature extraction methods,
kernel minimum noise fraction (KMNF) transformation [34] is widely used in various
applications because of its advantages in mining high-order correlation of HSIs.

To take account of the high-order structures of HSIs and construct an efficient repre-
sentation for anomalies and the background, a KMNF-based background separation model
(KMNF-BSM) is proposed in this article. First, KMNF transformation is performed on the
original hyperspectral data to fully mine the high-order correlation between spectral bands
and extract informative and discriminative features between anomalies and background.
Then, a BSM that combines the outlier removal, the iteration strategy, and the RXD is
proposed to obtain accurate anomalous and background pixel sets based on the extracted
features. Finally, the anomalous and background pixel sets are used as input for two unsu-
pervised anomaly detectors (RXD and low probability detector (LPD)) and two supervised
detectors (orthogonal subspace projection anomaly detector (OSPAD) and constrained en-
ergy minimization anomaly detector (CEMAD)) to improve their background suppression
and anomaly detection capabilities. Experiments on several HSIs with different spatial
and spectral resolutions over different scenes are performed. The results demonstrate
that the KMNF-BSM-based algorithms have better target detectability and background
suppressibility than other state-of-the-art algorithms.

The main contributions of this article are summarized as follows:

(1) To employ an effective feature extraction method before estimating anomalies and
background, this article assesses the detection performance of KMNF and other feature
extraction methods (including linear discriminant analysis (LDA), PCA, minimum
noise fraction (MNF), optimized MNF (OMNF), factor analysis (FA), KPCA, optimized
KMNF (OKMNF), local preserving projections (LPP), and locally linear embedding
(LLE)) in AD for HSIs. The experimental results show the effectiveness and robustness
of KMNF transformation in feature extraction for AD, which provides a reference for
the application of feature extraction in AD.

(2) Considering the high-order correlation between spectral bands in HSIs and the role
of anomaly and background estimation in AD, a KMNF-BSM aiming at separating
anomalies and background efficiently is proposed in this article. It can obtain accurate
background and anomalous pixel sets, and it has significant anti-noise ability and
adaptability to HSIs with different spatial and spectral resolutions, which offers a new
solution for high-precision AD.

(3) The proposed method achieves autonomous hyperspectral AD without pre-processing
or post-processing procedures. It can accurately reconstruct the background and
separate anomalies automatically, which solves the problem of low detection accuracy
when the prior knowledge is insufficient for the supervised detection methods.

The remainder of this article is organized as follows: In Section 2, the detailed de-
scription of the proposed method is described. Section 3 shows the experimental results
implemented on the San Diego dataset, the Airport–Beach–Urban dataset, and the Xiong’an
dataset, followed by a detailed analysis and discussion of the results in Section 4. Finally,
Section 5 presents the conclusions of this article.

2. Proposed Methods

The overall framework of the KMNF-BSM method is shown in Figure 1. In this
schematic, an HSI is first input to KMNF transformation to extract the representative band
subset. Then, the extracted bands are inputted into the BSM which combines the outlier
removal, the iteration strategy, and the RXD to separate the anomalous pixel set and the
background pixel set. Finally, the anomalous pixel set and background pixel set are used as
prior knowledge for RXD, LPD, OSPAD, and CEMAD, and the AD results can be obtained.
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In this section, the KMNF transformation for feature extraction, the BSM proposed in
this article, and the KMNF-BSM-based anomaly detectors are introduced in detail.

2.1. KMNF Transformation for Feature Extraction

Because of atmospheric effects and instrumental noise, HSIs often undergo annoying
degradation by various types of noise. For optical images, it is considered that signal and
noise are independent [34],

x(i) = xS(i) + xN(i) (1)

where x(i) is the pixel vector in location i, xS(i) is the signal contained in x(i), and xN(i) is
the noise contained in x(i).

The covariance matrix of the image can be written as the sum of the signal covariance
matrix and noise covariance matrix,

cov(X) = cov(XS) + cov(XN) (2)

and it is considered that an HSI contains n pixels and b bands, where X is the image matrix
with n rows and b columns; cov(X) is the covariance matrix of the image; cov(XS) and
cov(XN) are the signal covariance matrix and the noise covariance matrix, respectively.

Regarding xt as the average of the tth band, the matrix Xmean with n rows and
b columns can be get, which expresses as follows:

Xmean =


x1 x2 · · · xb
x1 x2 · · · xb
...

...
. . .

...
x1 x2 · · · xb

 (3)
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Then, the center matrix Xcenter can be obtained.

Xcenter = X−Xmean (4)

The covariance matrix of the image cov(x) can be written as

cov(X) = XT
centerXcenter/(n− 1) (5)

Similarly, cov(XS) and cov(XN) can be obtained.
The noise fraction NF is defined as the ratio of the noise variance and the image

variance:
NF = aTcov(XN)a/aTcov(X)a

= aTXT
NcenterXNcentera/aTXT

centerXcentera
(6)

where a is the eigenvector matrix of NF.

1/NF = aTcov(X)a/aTcov(XN)a
= aTXT

centerXcentera/aTXT
NcenterXNcentera

(7)

In order to obtain the new components ordered by image quality after KMNF, we
should minimize the NF or maximize the 1/NF.

By reparametrizing and setting a ∝ ZTb, the kernelization of 1/NF is obtained.

1/NF = bTZZTZZTb/bTZZT
NZNZTb (8)

For the kernelization of 1/NF, a non-linear mapping Φ : x → Φ(x) is introduced to
transform the initial data to higher-dimensional feature space.

After the non-linear mapping, the kernelization of 1/NF can be written as follows:

1/κ_NF = bTK2b/bTKNKT
Nb (9)

where Φ(Z) is the matrix of mapping Z, Φ(ZN) is the matrix of mapping ZN, K = Φ(Z)Φ(Z)T ,
and KN = Φ(Z)Φ(ZN)

T .
Mathematically, maximized 1/κ _NF can be solved by the maximized Rayleigh en-

tropy, the process is written as follows:

K2b = λKNKT
Nb (10)

K2b = λ(KNKT
N)

1
2 (KNKT

N)
1
2 b (11)(

KNKT
N

)− 1
2 K2

(
KNKT

N

)− 1
2
[(

KNKT
N

) 1
2 b
]
= λ

[(
KNKT

N

) 1
2 b
]

(12)

where λ is the eigenvalue of
(
KNKT

N
)− 1

2 K2(KNKT
N
)− 1

2 and
(
KNKT

N
) 1

2 b is the eigenvector

of
(
KNKT

N
)− 1

2 K2(KNKT
N
)− 1

2 . Then, the matrix of b can be obtained from Formula (12).
The feature extraction result after KMNF can be obtained by

Y = Φ(Z)a = Φ(Z)Φ(Z)Tb = Kb (13)

2.2. Background Separation Model (BSM)

For HSIs, AD aims to locate anomalous pixels whose spectral signatures differ signifi-
cantly from the background [35]. The background pixels are highly similar to the mean
vector of the entire image, while the anomalous pixels are not [22]. This article utilizes the
similarity between the mean vector and each pixel in the HSI as a criterion for separating
suspected anomalous and background pixels. Spectral matching is applied to measure
the similarity among spectra. Commonly used such measures are spectral angle (SA),
spectral information divergence (SID), spectral correlation angle (SCA), spectral gradient
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angle (SGA), and normalized Euclidean distance (NED). Related works suggest that NED
outperforms SA, SCA, and SGA and is relatively equivalent to SID [36]. Therefore, this
article adopts NED as a standard for similarity measurement. The NED between vector m
and vector n is expressed as follows:

e(m, n) =

√√√√ k

∑
i=1

(mi − ni)
2 (14)

Nm = m/m (15)

Nn = n/n (16)

NED(m, n) = e(Nm, Nn) (17)

where m and n are k-dimensional spectra, e(m, n) is the Euclidean distance between m and
n, Nm and Nn are the normalized vectors of m and n, m and n are the expected values of
vectors m and n, and NED(m, n) is the NED between vector m and vector n.

The NED set between the mean vector and all pixels is calculated by Formula (17).
The minimum possible NED value of two spectra is 0 (when the two spectra are matched),
and the maximum possible value is 1. The outlier-removal-based method is based on a
range that represents the variation between the pixels most similar to the background and
the pixels most different from the background. The range is defined as

Range = NEDMax − NEDMin (18)

where NEDMax is the maximum value of the NED set and NEDMin is the minimum value
of the NED set.

The anomalous pixels have low similarity to the mean vector. Therefore, the pixels
corresponding to smaller values in the NED set can be considered as background pixels
that should be separated. The threshold can be defined as

Threshold = NEDMedian + a ∗ Range (19)

where NEDMedian is the median value of the NED set and a is the adjustable constant.
In order to separate the anomalous and the background pixels more effectively, the

iteration strategy that repeats the separation process of the anomalous and the background
pixels is employed in this article. Rangen is the range value of the NED set in the nth
iteration process. As the iterations increase, Rangen gradually decreases until it reaches a
stable value. Therefore, the parameter tn = Rangen−1 − Rangen can be used as a condition
to terminate the iteration.

The flowchart of the BSM is shown in Figure 2, where tthreshold is the threshold to
terminate the iteration process.
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2.3. KMNF-BSM-Based Anomaly Detectors

To assess the performance of KMNF-BSM, the anomalous and background pixel sets
are used as input for two unsupervised anomaly detectors (RXD and LPD) and two su-
pervised detectors (OSPAD and CEMAD) to improve their background suppression and
anomaly detection capabilities. The KMNF-BSM-based RXD (KMNF-BSM-RXD) algo-
rithm, the KMNF-BSM-based LPD (KMNF-BSM-LPD) algorithm, the KMNF-BSM-based
OSPAD (KMNF-BSM-OSPAD) algorithm, and the KMNF-BSM-based CEMAD (KMNF-
BSM-CEMAD) algorithm are proposed and described in detail as follows.

2.3.1. KMNF-BSM-RXD Algorithm

RXD, a constant false alarm rate detection method, assumes that the dataspace is
whitened and subject to Gaussian distribution and then sets up two hypotheses [17].

H0 : x = n (20)

H1 : x = a ∗ s + n (21)

where H0 represents the absence of targets, H1 represents the existence of targets, x is
the pixel spectral vector, n is the vector that represents background information, a is the
coefficient, and s is the target spectral vector.

Assuming that the data have the same covariance and different mean values in the
two hypotheses [37], the RXD is defined as follows:

σRXD = (x− µb)
TC−1

b (x− µb)

{
≥ ηRXD
< ηRXD

(22)

where µb is the mean value vector of the image, Cb is the background covariance matrix
estimated by the whole image, and ηRXD is the judging threshold of RXD.

After the process of separating the anomalous and the background pixels, the anoma-
lous pixel set and the background pixel set are obtained. The RXD can be redefined as
follows:

σKBR = (xKMNF − µBER)
TC−1

BER(xKMNF,−, µBER)

{
≥ ηKBR
< ηKBR

(23)

where xKMNF is the pixel spectral vector after KMNF transformation, µBER is the mean value
vector of the background pixel set, CBER is the background covariance matrix estimated by
the background pixel set, and ηKBR is the judging threshold of KMNF-BSM-RX detector.

2.3.2. KMNF-BSM-LPD Algorithm

The LPD detector suppresses the background information by applying orthogonal
subspace projection to the detection progress [38]. The first step is the construction of the
orthogonal projection operator P, which can be expressed as follows:

P = I− VV+ (24)

where V =
[
v1, v2, · · · , vq

]
is the q principal components of HSI which represent the

background information, and V+ =
(
VTV

)−1VT .

σLPD = ŝTPx
{
≥ ηLPD
< ηLPD

(25)

where ŝ = [1, 1, · · · , 1]T is the estimation vector of the target, x is the pixel spectral vector,
and ηLPD is the judging threshold of the LPD detector.
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After the process of separating the anomalous and the background pixels, the anoma-
lous pixel set and the background pixel set are obtained. The orthogonal projection operator
PBER should be reconstructed, which can be expressed as follows:

PBER = I− VBERV+
BER (26)

where VBER =
[
v1, v2, · · · , vq

]
is the q principal components of HSI which represent the

background pixel set, and V+
BER =

(
VT

BERVBER
)−1VT

BER.

σKBL = ŝTPBERxKMNF

{
≥ ηKBL
< ηKBL

(27)

where ŝ = [1, 1, · · · , 1]T is the estimation vector of the target, xKMNF is the pixel spectral
vector after KMNF transformation, and ηKBL is the judging threshold of the KMNF-BSM-
LPD detector.

2.3.3. KMNF-BSM-OSPAD Algorithm

The OSP detector can reduce the influence of background information and suppress
various noises involved in HSIs effectively [39]. It is based on the signal linear mixed model

x = sαs + UαT
U + n (28)

where x is the pixel spectral vector, s is the target spectral vector, αs is the abundance of s, U
is the background pixels spectral matrix, αT

U is the abundance of U, and n is the noise term.
The OSP projects s to U direction by the projection operator

P
1
U

= I−UU+ (29)

where U+ =
(
UTU

)−1UT .
Then, the orthogonal projection vector of x can be expressed as follows:

P
1
U

x = P
1
U

(
sαs + UαT

U + n
)
= P

1
U

sαs + P
1
U

n (30)

The signal is input into the filter w to obtain

wTP
1
U

x = wT
(

P
1
U

sαs + P
1
U

n
)

(31)

The signal-to-noise ratio (SNR) can be expressed as

RSNR =
(wTP 1

U sαs)
2

(wTP 1
U n)

2 =
(wTP 1

U sαs)(wTP 1
U sαs)

T

(wTP 1
U n)(wTP 1

U n)
T

=
wTP 1

U sαsαssTP 1
U

T
w

wTP 1
U E(nnT)P 1

U
T

w
= αs

2

σ2
wTP 1

U ssTP 1
U

T
w

wTP 1
U P 1

U
T

w

(32)

where E
(
nnT) is the expected value of the noise term and σ2 is the variance of the

noise term.
Then, the detector can be obtained by solving the maximum SNR problem. The OSP

detector is expressed as follows:

σOSP = xTP
1
U

{
≥ ηOSP
< ηOSP

(33)

where ηOSP is the judging threshold of the OSP detector.
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After the process of separating the anomalous and the background pixels, the anoma-
lous pixel set and the background pixel set are obtained. The KMNF-BSM-OSP is based on
the signal linear mixed model

xKMNF = sBERαBERs + UBERαT
UBER + nBER (34)

where xKMNF is the pixel spectral vector after KMNF transformation, sBER is the mean
vector of the target pixel set, αBERs is the abundance of sBER, UBER is the background pixel
set spectral matrix, αT

UBER is the abundance of UBER, and nBER is noise term.
The KMNF-BSM-OSP projects sBER to UBER direction by projection operator

PBER
1

UBER
= I−UBERU+

BER (35)

where U+
BER =

(
UT

BERUBER
)−1UT

BER.
The KMNF-BSM-OSP detector is expressed as follows:

σKBO = xT
KMNFPBER

1
UBER

{
≥ ηKBO
< ηKBO

(36)

where ηKBO is the judging threshold of the KMNF-BSM-OSP detector.

2.3.4. KMNF-BSM-CEMAD Algorithm

The CEM detector highlights the target by extracting signals of interest and attenuating
other signals. The CEM detector designs a finite impulse response (FIR) linear filter to
minimize the output [40]. The FIR linear filter and its output condition can be expressed as

w = (w1, w2, · · · , wb)
T (37)

sTw = 1 (38)

where b is the band number of the image and s is the target spectral vector. The output of
this filter is expressed as follows:

yi = wTxi = xT
i w (39)

where xi is the pixel spectral vector at location i and yi is the output of the FIR linear filter.
The average output energy of the HSI to be detected after the FIR linear filter is

1
N

[
N
∑

i=1
y2

i

]
= 1

N

[
N
∑

i=1
(xT

i w)
TxT

i w
]

= wT
(

1
N

[
N
∑

i=1
xixT

i

])
w = wTRw

(40)

where N is the number of pixels and R is the global autocorrelation matrix of the HSI.
The design of the filter can be transformed into solving the following minimum problem:{

min
(

1
N

[
∑N

i=1 y2
i

])
= min

(
wTRw

)
sTw = 1

(41)

By applying the Lagrange multiplier method to solve this minimum problem, the
CEM operator can be obtained.

w∗ =
R−1s

sTR−1s
(42)
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Then, the CEM detector can be expressed as follows:

σCEM = xTw∗
{
≥ ηCEM
< ηCEM

(43)

where ηCEM is the judging threshold of the CEM detector.
After the process of separating the anomalous and the background pixels, the anoma-

lous pixel set and the background pixel set are obtained. The FIR linear filter of the
KMNF-BSM-CEM anomaly detector can be expressed as follows:

w∗BER =
R−1

BERsBER

sT
BERR−1

BERsBER
(44)

where R is the global autocorrelation matrix of the HSI.
Then, the KMNF-BSM-CEM detector can be expressed as follows:

σKBC = xT
KMNFw∗BER

{
≥ ηKBC
< ηKBC

(45)

where ηKBC is the judging threshold of the KMNF-BSM-CEM anomaly detector.

3. Results

In this section, the experimental results of the proposed methods are described. In
Section 3.1, three real HSI datasets with different spatial and spectral resolutions over
different scenes (including the airport scene, the beach scene, the urban scene, and the
vegetation scene) employed in the experiments are introduced. The KMNF-BSM-based
algorithms involve several parameters that can be adjusted in practical applications. In
Section 3.2, the parameter settings and the evaluation criteria of the proposed methods
are described. Four experiments are designed to evaluate the background suppression
and anomaly detection capabilities of KMNF-BSM-based algorithms. Before estimating
anomalies and background, an effective feature extraction method is employed in this
article to mine the high-order correlation between spectral bands and extract informative
and discriminative features between anomalies and background. The first experiment
is designed to solve this problem and provides a reference for the application of feature
extraction in AD. This experiment assesses the detection performance of KMNF and other
feature extraction methods (including LDA, PCA, MNF, OMNF, FA, KPCA, OKMNF, LPP,
and LLE) in AD for HSIs, and the test results are shown in Section 3.3. In order to evaluate
the background suppression and anomaly detection capabilities of KMNF-BSM-based
algorithms, the remaining three experiments test the performance of proposed methods
and other state-of-the-art algorithms (including BPB-CEMAD, BPB-LPD, BPB-OSPAD,
BPB-RXD, abundance- and dictionary-based low-rank decomposition (ADLR) [41], low-
rank and sparse representation (LRASR) [42], anomaly detection via integration of feature
extraction and background purification (FEBPAD) [43], and kernel isolation forest-based
hyperspectral anomaly detection method (KIFD) [44]) for HSIs over different scenes, HSIs
under different noise levels, and HSIs with different spatial and spectral resolutions. The
results are given in Section 3.4.1, Section 3.4.2, and Section 3.4.3, respectively.

3.1. Input Data
3.1.1. San Diego Dataset

The San Diego dataset is captured by the Airborne Visible/Infrared Imaging Spectrom-
eter (AVIRIS) sensor in the San Diego airport area, CA, USA. The HSI data have 224 spectral
bands initially. In experiments, we used 189 bands after removing the bands with noise
due to the water absorption phenomenon (1–6, 33–35, 97, 107–113, 153–166, and 221–224).
The spatial resolution is 3.5 m/pixel, and the spatial size of the data is 64 × 64 pixels, and
three planes, represented by 134 pixels, are regarded as the anomalies to be detected [45].
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The visualization image, its ground truth map, and the spectral curves of the main ground
objects in this scene are shown in Figure 3a.
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3.1.2. Airport–Beach–Urban Dataset

The Airport–Beach–Urban (ABU) dataset is collected by the AVIRIS sensor. Among
these images, the beach scene and the urban scene are used in the experiments. The
beach scene image is captured on Cat Island with 128 × 128 pixels with the corresponding
references, and 19 pixels are chosen as anomalies to be detected in the scene, while the
urban scene image is captured on the Texas coast with 100 × 100 pixels, and 67 pixels are
chosen as anomalies to be detected. The spatial resolution of both images is 17.2 m/pixel,
and in experiments, we used 188 bands for the beach scene and 204 bands for the urban
scene [46]. The visualization image of the beach scene, its ground truth map, and the
spectral curves of the main ground objects in the beach scene of this dataset are shown in
Figure 3b, and those of the urban scene are shown in Figure 3c.
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3.1.3. Xiong’an Dataset

Xiong’an dataset is captured in New District, Hebei Province, China, by a next-
generation Chinese airborne hyperspectral sensor airborne multi-modular imaging spec-
trometer (AMMIS). The spatial resolution of this dataset is 0.5 m/pixel. In experiments,
250 spectral bands were used, and the wavelength range is 0.4–1.0 µm [47–50]. The
dataset consists of 512 × 512 pixels and ten different vegetations; the spectrum of elm with
144 pixels is embedded in this image as anomalies to be detected in the experiment. The
visualization image, its ground truth map, and the spectral curves of the main ground
objects in this scene are shown in Figure 3d. From Figure 3d, it can be seen that there is a
subtle difference between the spectrum of anomaly and background. This dataset is very
suitable for assessing the validity of the proposed method in complex scenes.

3.2. Experimental Settings

The KMNF-BSM-based algorithms involve several parameters that can be adjusted in
practical applications. In this section, the parameter settings and the evaluation criteria of
the proposed methods are introduced.

3.2.1. Parameter Settings

For all experiments, each detector is a global anomaly detector. The value of a affects
the result of every iteration in BSM, while after several iterations, the impact will be
weakened. In order to wipe out the influence of selecting a parameter in the optimized
algorithms, this article sets the value of a to 0.01 for all experiments. Analysis of BSM shows
that the value of tthreshold is related to the accuracy of separating the anomalous pixel set
and the background pixel set. The value of tthreshold in the KMNF-BSM-based methods is
set to 0.00001, a value close to 0.

3.2.2. Evaluation Criteria

The 3D receiver operating characteristic (3D ROC) curve and the 2D ROC curve of
(PD, PF), 2D ROC curve of (PD, t), and 2D ROC curve of (PF, t), which are projected by
the 3D ROC curve on their respective planes, are visualized to assess the performance
of the detectors. Moreover, the area under the 2D ROC curve of (PD, PF) (AUC (D, F)),
area under the 2D ROC curve of (PD, t) (AUC (D, t)), area under the 2D ROC curve of
(PF, t) (AUC (F, t)), AUC value of target detectability (AUCTD), AUC value of background
suppressibility (AUCBS), AUC value of target detection in background (AUCTD−BS), AUC
value of overall detection probability (AUCODP), AUC value of overall detection (AUCOD),
and AUC value of signal-to-noise probability ratio (AUCSNPR) are selected as evaluation
criteria in the experiments to quantitatively describe the detection performance of the
detectors. Among them, AUC (D, F) and AUC (D, t) are indicators for evaluating the
effectiveness and detection probability of a detector, while AUC (F, t) is used as an indicator
to describe the background suppressibility of a detector. A detector with higher AUC
(D, F), AUC (D, t), AUCTD, AUCBS, AUCTD−BS, AUCODP, AUCOD, and AUCSNPR values
and lower AUC (F, t) value shows better performance. The calculation formulas of all the
above evaluation criteria can be found in the literature [51].

3.3. Experimental Results for Feature Extraction

This section presents an assessment of the performance of KMNF transformation
and other feature extraction methods (including LDA, PCA, MNF, OMNF, FA, KPCA,
OKMNF, LPP, and LLE) in AD for HSIs with different spatial and spectral resolutions
over different scenes. The features extracted using different methods are used as input
to RXD, LPD, OSPAD, and CEMAD, and the AUC (D, F) and its average value on four
detectors are employed to assess the detection capability. The standard deviation value,
which reflects the dispersion degree of AUC (D, F) values, represents the adaptability
of feature extraction methods in different anomaly detectors. In the experiment, “none”
represents using raw data as the input of the anomaly detectors; the results are used to
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evaluate the impact of different feature extraction methods on AD. The detection capability
and adaptability of different feature extraction methods in AD for HSIs over different
scenes are shown in Table 1.

Table 1. The detection capability and adaptability of different feature extraction methods in AD for
HSIs over different scenes.

Methods CEMAD LPD OSPAD RXD Average Standard Deviation
airport scene

None 0.857013 0.811844 0.772991 0.957333 0.849795 0.068840

FA 0.705287 0.677984 0.599139 0.984278 0.741672 0.145390

KPCA 0.729342 0.867161 0.779185 0.975777 0.837866 0.093673

LDA 0.620843 0.664756 0.816110 0.978925 0.770158 0.140623

LLE 0.701738 0.576013 0.843780 0.977550 0.774770 0.150599

LPP 0.729904 0.681332 0.764991 0.976652 0.788220 0.112774

MNF 0.715573 0.628473 0.978940 0.983811 0.826699 0.157721

OKMNF 0.542965 0.983694 0.517016 0.983252 0.756732 0.226927

OMNF 0.579210 0.501744 0.989940 0.984292 0.763797 0.225002

PCA 0.602021 0.650877 0.569776 0.970020 0.698174 0.159584

KMNF 0.877646 0.932705 0.929443 0.981390 0.930296 0.036705
beach scene

None 0.819380 0.910611 0.909312 0.976638 0.903985 0.055921

FA 0.921028 0.552103 0.967202 0.980385 0.855180 0.176364

KPCA 0.902115 0.963578 0.945545 0.953594 0.941208 0.023457

LDA 0.907913 0.737984 0.724724 0.961316 0.832984 0.103475

LLE 0.943337 0.927826 0.932625 0.950857 0.938661 0.009006

LPP 0.981773 0.920338 0.933602 0.931036 0.941687 0.023672

MNF 0.943531 0.829997 0.622944 0.966967 0.840860 0.136060

OKMNF 0.738756 0.950395 0.937530 0.942007 0.892172 0.088695

OMNF 0.837243 0.702620 0.707177 0.966893 0.803483 0.108732

PCA 0.884658 0.724257 0.922945 0.955794 0.871914 0.088889

KMNF 0.945130 0.920347 0.939727 0.977237 0.945610 0.020453
urban scene

None 0.667807 0.979568 0.985286 0.949350 0.895503 0.132167

FA 0.981016 0.635529 0.560354 0.989976 0.791719 0.195617

KPCA 0.982866 0.537097 0.972700 0.990535 0.870800 0.192767

LDA 0.860412 0.956259 0.986726 0.990576 0.948493 0.052563

LLE 0.992927 0.960108 0.799670 0.991776 0.936120 0.079873

LPP 0.905048 0.983349 0.984986 0.991155 0.966135 0.035388

MNF 0.981934 0.822225 0.989893 0.991946 0.946500 0.071847

OKMNF 0.981582 0.986586 0.904523 0.991493 0.966046 0.035693

OMNF 0.888050 0.680471 0.991122 0.991974 0.887904 0.126997

PCA 0.983820 0.949867 0.975597 0.980033 0.972329 0.013291

KMNF 0.946366 0.983100 0.986795 0.991328 0.976897 0.017866
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Table 1. Cont.

Methods CEMAD LPD OSPAD RXD Average Standard Deviation
vegetation scene

None 0.999992 0.599149 0.592237 0.644218 0.708881 0.169246

FA 0.999816 0.848157 0.706734 0.951344 0.876513 0.123557

KPCA 0.998871 0.516278 0.655223 0.998518 0.792223 0.161827

LDA 0.993730 0.687711 0.641945 1.000000 0.830847 0.153623

LLE 0.996232 0.603171 0.649694 0.999624 0.812180 0.194088

LPP 0.998282 0.547374 0.658815 0.999549 0.801005 0.184973

MNF 0.999816 0.531912 0.853890 0.951344 0.834241 0.142195

OKMNF 0.991259 0.710232 0.627005 1.000000 0.832124 0.146672

OMNF 0.999800 0.671591 0.920110 0.957493 0.887249 0.164683

PCA 0.984193 0.522218 0.734254 1.000000 0.810166 0.189983

KMNF 0.999706 0.842263 0.767805 0.974503 0.896069 0.148757

Table 1 shows the detection performance of different feature extraction methods
on HSIs over different scenes, the improvement of KMNF transformation in average
AUC (D, F) values is up to 0.0924, 0.0044, 0.0046, and 0.0088 for HSIs over airport scene,
beach scene, urban scene, and vegetation scene, respectively. The dispersion degree of
AUC after KMNF transformation is relatively tiny compared with that of other methods.
It can be proved that compared with the initial data and the other nine feature extraction
methods, the band subset extracted by KMNF transformation contains more informative
and discriminative information between anomalies and background. Therefore, this article
applies KMNF transformation to feature extraction for subsequent processing.

3.4. Experimental Results for KMNF-BSM-Based Methods

In this section, to prove the validity of the KMNF-BSM, the anomalous and back-
ground pixel sets obtained by KMNF-BSM are used as input for two unsupervised anomaly
detectors (RXD and LPD) and two supervised detectors (OSPAD and CEMAD), and the
detection capability of KMNF-BSM in AD for HSIs over different scenes, under different
noise levels, with different spatial resolutions and different spectral resolutions is assessed;
the results are shown in Section 3.4.1, Section 3.4.2, and Section 3.4.3, respectively.

3.4.1. KMNF-BSM-Based Methods for HSIs over Different Scenes

To evaluate the adaptability of KMNF-BSM for HSIs with different scenes, the HSIs
over the airport scene, beach scene, urban scene, and vegetation scene are used in this exper-
iment, and the detection results are shown in Figures 4–7. As mentioned above, anomalies
are small objects that occupy a relatively small part of the image. To make the anomaly
pixels in reference maps clear enough, the reference maps are set to grayscale images. The
detection maps are set to cool–warm images to demonstrate the target detectability and
background suppressibility of the detectors.

The detection maps of different detectors for the airport scene are shown in Figure 4.
By observing these result maps, it can be found that the KMNF-BSM-based methods
perform the best. CEMAD, RXD, BPB-CEMAD, BPB-RXD, ADLR, FEBPAD, and LRASR
obtain an acceptable background suppression while leaving out certain abnormal pixels.
LPD, OSPAD, BPB-LPD, BPB-OSPAD, and KIFD detect some anomaly pixels while failing
to suppress some background areas, such as the parking apron. The KMNF-BSM-CEMAD
and KMNF-BSM-OSPAD highlight the anomalies from the background, and the KMNF-
BSM-LPD and KMNF-BSM-RXD suppress more of the background.
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The visual detection results of different methods for the beach scene are depicted in
Figure 5. Similar to the results of the airport scene, LPD, OSPAD, BPB-LPD, BPB-OSPAD,
BPB-RXD, KIFD, KMNF-BSM-LPD, and KMNF-BSM-OSPAD demonstrate poor back-
ground suppression, generating high FARs. Compared with CEMAD, RXD, BPB-CEMAD,
ADLR, FEBPAD, LRASR, and KMNF-BSM-RXD, the KMNF-BSM-CEMAD successfully
suppresses the background and effectively detects the anomalies. The results suggest that
the KMNF-BSM-RXD outperforms BPB-RXD and is relatively similar to RXD.
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The detection results of each method for the urban scene are shown in Figure 6. It is
obvious that the KMNF-BSM-based method performs the best. KMNF-BSM-CEMAD and
KMNF-BSM-RXD highlight more of the anomalies than other compared methods.
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In the detection maps of the vegetation scene in Figure 7, it can be seen that CEMAD,
FEBPAD, KIFD, LRASR, KMNF-BSM-CEMAD, and KMNF-BSM-OSPAD have more uni-
form backgrounds than other methods because the anomalous pixels occupy a tiny part of
the entire image. The KMNF-BSM-RXD is relatively similar to RXD and BPB-RXD.
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Figure 7. The detection maps of different detectors for the vegetation scene.

To quantitatively assess the results, the 3D ROC curves along with their generated
three 2D ROC curves of each method for different scenes are demonstrated in Figure 8, and
the AUC values calculated from the three 2D ROC curves for HSI over the airport scene,
the beach scene, the urban scene, and the vegetation scene are shown in Table 2.
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Figure 8. The 3D ROC curves along with their generated three 2D ROC curves of each method for
(a) the airport scene, (b) the beach scene, (c) the urban scene, and (d) the vegetation scene.

As shown in Figure 8, the KMNF-BSM-based methods obtain the best ROC curves
for the airport scene, the urban scene, and the vegetation scene. The 2D ROC curves of
(PD, PF) and (PD, t) in the KMNF-BSM-based method are closest to the top-left corner
among their compared methods, and the 2D ROC curves of (PF, t) in the KMNF-BSM-based
method are closest to the bottom-right corner. The results show better performance of
KMNF-BSM-based methods.
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Table 2. The AUC values calculated from the three 2D ROC curves for HSIs over different scenes.

Methods AUC (D, F) AUC (D, t) AUC (F, t) AUCTD AUCBS AUCTD−BS AUCODP AUCOD AUCSNPR
airport scene

CEMAD 0.85701 0.23338 0.11346 1.09039 0.74355 0.11992 1.11992 0.97693 2.05690

LPD 0.81184 0.36868 0.23769 1.18053 0.57416 0.13100 1.13100 0.94284 1.55114

OSPAD 0.77299 0.47182 0.37399 1.24481 0.39900 0.09783 1.09783 0.87082 1.26158

RXD 0.95735 0.12820 0.03944 1.08554 0.91790 0.08875 1.08875 1.04610 3.25005

BPB-CEMAD 0.85768 0.23599 0.11299 1.09367 0.74469 0.12300 1.12300 0.98068 2.08856

BPB-LPD 0.88211 0.46088 0.17553 1.34300 0.70658 0.28535 1.28535 1.16746 2.62561

BPB-OSPAD 0.90440 0.65398 0.34849 1.55838 0.55591 0.30549 1.30549 1.20989 1.87662

BPB-RXD 0.95743 0.12831 0.03949 1.08575 0.91794 0.08882 1.08882 1.04626 3.24911

ADLR 0.60125 0.09063 0.03612 0.69187 0.56513 0.05451 1.05451 0.65576 2.50925

FEBPAD 0.97401 0.12430 0.30069 1.09831 0.67332 −0.17640 0.82360 0.79761 0.41336

KIFD 0.80077 0.38660 0.22219 1.18737 0.57858 0.16441 1.16441 0.96518 1.73992

LRASR 0.95722 0.36527 0.10914 1.32249 0.84808 0.25613 1.25613 1.21335 3.34679

KMNF-BSM-CEMAD 0.98811 0.51859 0.11299 1.50670 0.87512 0.40560 1.40560 1.39371 4.58971

KMNF-BSM-LPD 0.97164 0.48301 0.06069 1.45466 0.91095 0.42232 1.42232 1.39396 7.95840

KMNF-BSM-OSPAD 0.94197 0.73273 0.33245 1.67470 0.60952 0.40028 1.40028 1.34225 2.20401

KMNF-BSM-RXD 0.98797 0.16302 0.00783 1.15098 0.98014 0.15519 1.15519 1.14315 20.8249
beach scene

CEMAD 0.81938 0.25592 0.17467 1.07530 0.64471 0.08125 1.08125 0.90063 1.46516

LPD 0.91061 0.28447 0.08998 1.19508 0.82064 0.19449 1.19449 1.10510 3.16160

OSPAD 0.90931 0.25479 0.05393 1.16410 0.85539 0.20087 1.20087 1.11018 4.72476

RXD 0.97664 0.18987 0.01218 1.16650 0.96446 0.17768 1.17768 1.15432 15.5857

BPB-CEMAD 0.71298 0.20172 0.21102 0.91470 0.50196 −0.00930 0.99070 0.70368 0.95592

BPB-LPD 0.91889 0.26124 0.05088 1.18012 0.86801 0.21036 1.21036 1.12925 5.13484

BPB-OSPAD 0.94013 0.26540 0.04675 1.20553 0.89338 0.21865 1.21865 1.15877 5.67660

BPB-RXD 0.94783 0.11600 0.02073 1.06383 0.92710 0.09527 1.09527 1.04310 5.59472

ADLR 0.95980 0.25317 0.19913 1.21296 0.76067 0.05404 1.05404 1.01383 1.27138

FEBPAD 0.96310 0.06436 0.01504 1.02745 0.94805 0.04932 1.04932 1.01241 4.27862

KIFD 0.96029 0.22135 0.14216 1.18164 0.81813 0.07919 1.07919 1.03948 1.55701

LRASR 0.96518 0.20119 0.01063 1.16637 0.95455 0.19056 1.19056 1.15574 18.9302

KMNF-BSM-CEMAD 0.97923 0.26375 0.06463 1.24298 0.91460 0.19911 1.19911 1.17834 4.08078

KMNF-BSM-LPD 0.95503 0.30032 0.04065 1.25535 0.91438 0.25967 1.25967 1.21470 7.38800

KMNF-BSM-OSPAD 0.94628 0.27827 0.04302 1.22454 0.90326 0.23525 1.23525 1.18152 6.46832

KMNF-BSM-RXD 0.97844 0.25519 0.00896 1.23363 0.96948 0.24623 1.24623 1.22467 28.4683
urban scene

CEMAD 0.66781 0.21341 0.15409 0.88122 0.51372 0.05933 1.05933 0.72713 1.38501

LPD 0.97957 0.62279 0.25043 1.60236 0.72914 0.37236 1.37236 1.35193 2.48687

OSPAD 0.98529 0.63414 0.20286 1.61943 0.78243 0.43128 1.43128 1.41657 3.12600

RXD 0.94935 0.28452 0.10287 1.23387 0.84649 0.18165 1.18165 1.13100 2.76595

BPB-CEMAD 0.66781 0.21341 0.15409 0.88122 0.51372 0.05933 1.05933 0.72713 1.38501

BPB-LPD 0.97946 0.64885 0.25042 1.62831 0.72904 0.39843 1.39843 1.37789 2.59107

BPB-OSPAD 0.98418 0.62330 0.22271 1.60749 0.76147 0.40059 1.40059 1.38477 2.79871

BPB-RXD 0.99055 0.29761 0.05551 1.28816 0.93504 0.24210 1.24210 1.23265 5.36121

ADLR 0.98638 0.97468 0.99819 1.96106 −0.01181 −0.02351 0.97649 0.96287 0.97645

FEBPAD 0.98957 0.36379 0.20587 1.35336 0.78371 0.15792 1.15792 1.14749 1.76711

KIFD 0.92620 0.56301 0.18608 1.48921 0.74012 0.37693 1.37693 1.30313 3.02565

LRASR 0.92157 0.25150 0.11350 1.17308 0.80807 0.13801 1.13801 1.05958 2.21595

KMNF-BSM-CEMAD 0.99568 0.56736 0.11788 1.56304 0.87780 0.44948 1.44948 1.44516 4.81306

KMNF-BSM-LPD 0.98702 0.64887 0.15471 1.63588 0.83230 0.49415 1.49415 1.48117 4.19399

KMNF-BSM-OSPAD 0.98554 0.63988 0.14765 1.62542 0.83789 0.49223 1.49223 1.47777 4.33370

KMNF-BSM-RXD 0.99455 0.31125 0.01637 1.30580 0.97818 0.29488 1.29488 1.28943 19.0112
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Table 2. Cont.

Methods AUC (D, F) AUC (D, t) AUC (F, t) AUCTD AUCBS AUCTD−BS AUCODP AUCOD AUCSNPR
vegetation scene

CEMAD 0.99999 0.00951 0.00328 1.00950 0.99671 0.00622 1.00622 1.00622 2.89552

LPD 0.59915 0.00153 0.00172 0.60068 0.59743 −0.00019 0.99981 0.59896 0.88773

OSPAD 0.59224 0.00287 0.00531 0.59511 0.58693 −0.00244 0.99756 0.58979 0.54010

RXD 0.64422 0.00070 0.00873 0.64492 0.63549 −0.00803 0.99197 0.63619 0.08040

BPB-CEMAD 0.82903 0.00395 0.00466 0.83299 0.82437 −0.00071 0.99929 0.82832 0.84752

BPB-LPD 0.65499 0.00224 0.00371 0.65723 0.65128 −0.00147 0.99853 0.65352 0.60475

BPB-OSPAD 0.62705 0.00317 0.00355 0.63022 0.62350 −0.00038 0.99962 0.62667 0.89308

BPB-RXD 0.64449 0.00070 0.00140 0.64519 0.64309 −0.00070 0.99930 0.64379 0.50215

ADLR 0.89237 0.87298 0.67413 1.56535 0.21824 −0.00114 0.99886 0.89122 0.99830

FEBPAD 0.76463 0.98256 0.95604 1.64719 −0.19141 −0.07348 0.92652 0.69115 0.92314

KIFD 0.56599 0.07298 0.07842 0.63897 0.48757 −0.00543 0.99457 0.56056 0.93072

LRASR 0.53350 0.15576 0.17173 0.68927 0.36177 −0.01597 0.98403 0.51753 0.90701

KMNF-BSM-CEMAD 0.99999 0.01000 0.00272 1.00999 0.99728 0.00728 1.00728 1.00728 3.68004

KMNF-BSM-LPD 0.76146 0.00340 0.00147 0.76487 0.75999 0.00193 1.00193 0.76339 2.30868

KMNF-BSM-OSPAD 0.99236 0.00739 0.00310 0.99975 0.98927 0.00429 1.00429 0.99665 2.38457

KMNF-BSM-RXD 0.65128 0.00932 0.00140 0.66060 0.64988 0.00793 1.00793 0.65921 6.67837

To further accurately assess the detection performance of each method, the AUC
values calculated from the three 2D ROC curves for HSIs over the airport scene, the
beach scene, the urban scene, and the vegetation scene are shown in Table 2. For HSI
over the urban scene and the vegetation scene, the results generated by KMNF-BSM-
based methods are not as expected. The AUC(D, t) and AUCTD of ADLR in the urban
scene outperform those of KMNF-BSM-based methods, while the AUC (F, t) of ADLR
is much worse than that of KMNF-BSM-based methods, and other evaluation criteria
values of KMNF-BSM-based methods outperform those of other algorithms. Similarly, the
AUC(D, t) and AUCTD of FEBPAD in the vegetation scene outperform those of KMNF-
BSM-based methods, while the AUC (F, t) of FEBPAD is much worse than that of KMNF-
BSM-based methods, and other evaluation criteria values of KMNF-BSM-based methods
outperform those of other algorithms. In general, the results confirm that the proposed
method has excellent performance for different scenes, demonstrating better adaptability
to different scenes and generalization ability.

3.4.2. KMNF-BSM-Based Methods for HSIs under Different Noise Levels

To assess the anti-noise ability of KMNF-BSM-based methods, the zero-mean Gaussian
noises with standard deviation σ set to 0.025, 0.050, 0.075, and 0.100 are added into each
band of the HSIs. The AUC(D, F) values of HSIs under different noise levels are shown
in Table 3.

Table 3. The AUC(D, F) values of HSIs under different noise levels.

Methods σ = 0.025 σ = 0.050 σ = 0.075 σ = 0.100
airport scene

CEMAD 0.767827 0.790570 0.759692 0.759671

LPD 0.606174 0.832911 0.543871 0.820496

OSPAD 0.669310 0.730488 0.765806 0.702719

RXD 0.884361 0.816857 0.775624 0.756052

BPB-CEMAD 0.762927 0.790233 0.757526 0.759521

BPB-LPD 0.748734 0.793912 0.880478 0.585944
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Table 3. Cont.

Methods σ = 0.025 σ = 0.050 σ = 0.075 σ = 0.100

BPB-OSPAD 0.846208 0.780548 0.774155 0.761130

BPB-RXD 0.879588 0.818812 0.778605 0.761802

ADLR 0.909785 0.910524 0.901263 0.901627

FEBPAD 0.986912 0.870969 0.945351 0.811967

KIFD 0.500462 0.519817 0.510212 0.579373

LRASR 0.763437 0.615707 0.549777 0.517181

KMNF-BSM-CEMAD 0.989317 0.843223 0.984707 0.982325

KMNF-BSM-LPD 0.810241 0.845787 0.946299 0.927393

KMNF-BSM-OSPAD 0.940265 0.857312 0.833355 0.783766

KMNF-BSM-RXD 0.981749 0.976846 0.962301 0.942672
beach scene

CEMAD 0.733025 0.692576 0.672832 0.650229

LPD 0.932182 0.855841 0.819975 0.756692

OSPAD 0.934462 0.806198 0.721337 0.651162

RXD 0.822426 0.596543 0.590686 0.620596

BPB-CEMAD 0.725357 0.692724 0.673263 0.649206

BPB-LPD 0.659594 0.604609 0.863936 0.508946

BPB-OSPAD 0.937215 0.914567 0.886446 0.853600

BPB-RXD 0.834081 0.514230 0.683375 0.587055

ADLR 0.923657 0.928683 0.916493 0.912059

FEBPAD 0.934440 0.932733 0.926787 0.931915

KIFD 0.942347 0.929327 0.930814 0.934508

LRASR 0.936923 0.933985 0.903125 0.867168

KMNF-BSM-CEMAD 0.932935 0.840578 0.866664 0.911052

KMNF-BSM-LPD 0.943535 0.919491 0.929542 0.891736

KMNF-BSM-OSPAD 0.938193 0.934819 0.936318 0.936855

KMNF-BSM-RXD 0.897480 0.658520 0.874630 0.889253
urban scene

CEMAD 0.879689 0.890308 0.889516 0.871628

LPD 0.986192 0.974899 0.915606 0.927822

OSPAD 0.981546 0.900978 0.975862 0.760433

RXD 0.952765 0.941403 0.934829 0.929170

BPB-CEMAD 0.883609 0.890197 0.889019 0.871261

BPB-LPD 0.739033 0.500289 0.908795 0.536912

BPB-OSPAD 0.985485 0.949995 0.983059 0.971710

BPB-RXD 0.953275 0.941261 0.934651 0.929149

ADLR 0.903738 0.915074 0.906458 0.904263

FEBPAD 0.946501 0.982272 0.929108 0.938624

KIFD 0.970845 0.966343 0.976179 0.976014

LRASR 0.923020 0.707483 0.782628 0.800433
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Table 3. Cont.

Methods σ = 0.025 σ = 0.050 σ = 0.075 σ = 0.100

KMNF-BSM-CEMAD 0.982947 0.986891 0.985046 0.988811

KMNF-BSM-LPD 0.990061 0.986862 0.938982 0.984113

KMNF-BSM-OSPAD 0.986395 0.987543 0.983330 0.987581

KMNF-BSM-RXD 0.974875 0.975066 0.978667 0.968654
vegetation scene

CEMAD 0.610996 0.545534 0.523083 0.522589

LPD 0.521942 0.523286 0.532123 0.513940

OSPAD 0.591975 0.590166 0.571438 0.595121

RXD 0.534127 0.525701 0.524149 0.518445

BPB-CEMAD 0.611782 0.545564 0.522680 0.522766

BPB-LPD 0.503018 0.513404 0.510923 0.503790

BPB-OSPAD 0.591451 0.519143 0.559367 0.609736

BPB-RXD 0.534932 0.526477 0.524221 0.518689

ADLR 0.613593 0.614239 0.602584 0.601359

FEBPAD 0.625441 0.617946 0.584923 0.573634

KIFD 0.513805 0.577906 0.560019 0.510556

LRASR 0.533473 0.510411 0.507596 0.513850

KMNF-BSM-CEMAD 0.888332 0.619983 0.590621 0.531612

KMNF-BSM-LPD 0.584435 0.636560 0.713470 0.565725

KMNF-BSM-OSPAD 0.660492 0.692482 0.690609 0.666776

KMNF-BSM-RXD 0.563361 0.705072 0.672863 0.596751

From Table 3, it can be observed that the proposed methods achieve the best AUC(D, F)
values. The KMNF-BSM-based methods perform well in terms of anti-noise performance.

3.4.3. KMNF-BSM-Based Methods for HSIs with Different Spatial and Spectral Resolutions

Because of its high spectral and spatial resolutions, the Xiong’an dataset is chosen to
conduct this experiment to evaluate the adaptability of KMNF-BSM to HSIs with different
spatial and spectral resolutions. HSIs with different spatial resolutions are obtained after
pixel merging on the Xiong’an dataset, and HSIs with different spectral resolutions are
obtained after band merging on the Xiong’an dataset.

The Xiong’an dataset is treated as Spatial1 and Spectral1; 4 adjacent pixels are averaged
to obtain Spatial2 and 16 adjacent pixels are averaged to obtain Spatial3, two adjacent bands
are averaged to obtain Spectral2 and four adjacent bands are averaged to obtain Spectral3.
The spatial resolutions of Spatial1, Spatial2, and Spatial3 are 0.5 m/pixel, 1 m/pixel, and 2
m/pixel, respectively, and the spectral resolutions of Spectral1, Spectral2, and Spectral3,
and Spectral4 are 2.4 nm, 4.8 nm, 9.6 nm, and 19.2 nm, respectively. The AUC(D, F)
values of HSIs with different spatial resolutions and spectral resolutions are shown in
Tables 4 and 5.

The reported AUC(D, F) values of HSIs with different spatial resolutions support
that the KMNF-BSM-based methods have better detection performances than the other
compared methods. The results for HSIs with different spectral resolutions suggest that the
KMNF-BSM-CEMAD outperforms other methods and is relatively equivalent to CEMAD.
This result verifies that the KMNF-BSM-based methods have outstanding results, showing
that the proposed methods have relatively better adaptability to HSIs with different spatial
resolutions and spectral resolutions.
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Table 4. The AUC(D, F) values of HSIs with different spatial resolutions.

Methods Spatial1 Spatial2 Spatial3

CEMAD 0.999992 0.986571 0.957254

LPD 0.599149 0.543385 0.605616

OSPAD 0.592237 0.633003 0.599736

RXD 0.644218 0.550181 0.624800

BPB-CEMAD 0.829034 0.986659 0.957718

BPB-LPD 0.654985 0.636896 0.559173

BPB-OSPAD 0.627050 0.601565 0.532161

BPB-RXD 0.644485 0.549245 0.624319

ADLR 0.892366 0.856324 0.802396

FEBPAD 0.764630 0.704130 0.613324

KIFD 0.565988 0.511737 0.942766

LRASR 0.533504 0.548252 0.556380

KMNF-BSM-CEMAD 0.999992 0.997604 0.963849

KMNF-BSM-LPD 0.761462 0.639630 0.610452

KMNF-BSM-OSPAD 0.992362 0.717830 0.603370

KMNF-BSM-RXD 0.651286 0.626007 0.715264

Table 5. The AUC(D, F) values of HSIs with different spectral resolutions.

Methods Spectral1 Spectral2 Spectral3

CEMAD 0.999992 0.999996 0.999992

LPD 0.599149 0.756851 0.561840

OSPAD 0.592237 0.633389 0.797157

RXD 0.644218 0.652756 0.578054

BPB-CEMAD 0.829034 0.999996 0.999992

BPB-LPD 0.654985 0.793947 0.515565

BPB-OSPAD 0.627050 0.542546 0.544691

BPB-RXD 0.644485 0.652439 0.578836

ADLR 0.892366 0.865326 0.886534

FEBPAD 0.764630 0.695951 0.710523

KIFD 0.565988 0.556626 0.652714

LRASR 0.533504 0.569881 0.588985

KMNF-BSM-CEMAD 0.999992 0.999996 0.999996

KMNF-BSM-LPD 0.761462 0.982546 0.701198

KMNF-BSM-OSPAD 0.992362 0.650748 0.626065

KMNF-BSM-RXD 0.651286 0.734263 0.703591

4. Discussion

In this article, a novel anomalous and background pixel set separation method is
proposed. To prove the validity of the proposed method, the anomalous and background
pixel sets obtained by KMNF-BSM are used as input for two unsupervised anomaly de-
tectors (RXD and LPD) and two supervised detectors (OSPAD and CEMAD), and four
experiments are designed to evaluate the detection capability of KMNF-BSM in AD for HSIs
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over different scenes, under different noise levels, and with different spatial resolutions and
different spectral resolutions. In this section, the experimental results shown in Section 3
are discussed.

The first experiment is designed to provide a reference for the application of feature
extraction in AD. In this experiment, the detection performance of KMNF and other feature
extraction methods (including LDA, PCA, MNF, OMNF, FA, KPCA, OKMNF, LPP, and LLE)
in AD for HSIs are assessed, and the test results are shown in Section 3.3. The results suggest
that compared with the initial data and the other nine feature extraction methods, the band
subset extracted by KMNF transformation contains more informative and discriminative
information between anomalies and background. Therefore, it is helpful to employ KMNF
transformation for subsequent processing.

In order to evaluate the background suppression and anomaly detection capabilities
of KMNF-BSM-based algorithms for HSIs over different scenes, the second experiment
tests the performance of proposed methods and other state-of-the-art algorithms (including
BPB-CEMAD, BPB-LPD, BPB-OSPAD, BPB-RXD, ADLR, LRASR, FEBPAD, and KIFD) for
HSIs over different scenes. The experimental results obtained for the airport scene, the
beach scene, the urban scene, and the vegetation scene are shown in Section 3.4.1. The
results confirm that the proposed method has excellent performance for different scenes,
demonstrating better adaptability to different scenes and generalization ability.

The third experiment is designed to assess the anti-noise ability of KMNF-BSM-based
methods; the zero-mean Gaussian noises with standard deviation σ are set to 0.025, 0.050,
0.075, and 0.100 are added into each band of the HSIs, and the performance of proposed
methods and other state-of-the-art algorithms is tested. The experimental results, which
are shown in Section 3.4.2, suggest that the proposed methods achieve the best AUC(D, F)
values and perform well in terms of anti-noise performance.

To evaluate the adaptability of the proposed methods in HSIs with different spatial
resolutions and spectral resolutions, HSIs with different spatial resolutions are obtained
after pixel merging on the Xiong’an dataset, HSIs with different spectral resolutions are
obtained after band merging on the Xiong’an dataset, and the last experiment tests the
performance of proposed methods and other state-of-the-art algorithms in these images.
The results obtained in the last experiment show that the proposed methods have relatively
better adaptability to HSIs with different spatial resolutions and spectral resolutions. The
results in HSIs with different spectral resolutions suggest that the KMNF-BSM-CEMAD
outperforms other methods and is relatively equivalent to CEMAD. It is well known that
spectral resolution has a significant impact on resolving spectral details of ground objects.
The method proposed in this paper is based on feature extraction and a spectral-matching-
based BSM. For images with complex backgrounds, the degradation of spectral resolution
will affect the background and anomaly separation performance of the method proposed
in this paper. Compared with the supervised method with prior knowledge, the proposed
method did not obtain ideal results in processing the HSIs with lower spectral resolutions.

The above analysis confirms that the proposed method has relatively better adapt-
ability to different scenes, better anti-noise performance, and better adaptability to HSIs
with different spatial resolutions and spectral resolutions than other compared methods.
However, each method has its limitations, and it is impossible for the proposed method
to obtain satisfactory results in all cases. For the airport scene, the beach scene, the urban
scene, and the vegetation scene, the proportion of anomalous pixels in the entire image are
3.27%, 0.12%, 0.67%, and 0.05%, respectively. When the abnormal pixels occupy a smart
part of the entire image, there will be a slight influence of the anomalies on background
estimation, and the deviation between the estimated and true backgrounds will be minor;
the results obtained by the proposed methods may be unsatisfactory in this case. Because
of changes in sunlight, atmospheric transmission, sensor noise, and other factors, the reflec-
tivity of targets in HSIs is not uniquely determined. The spectra of the same substance may
show differences (the phenomenon of “same substance with different spectra” commonly
exists in hyperspectral remote sensing). Therefore, the supervised detection methods will
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have the problem of low detection accuracy when the prior knowledge is insufficient. The
proposed method in this article aims at constructing an efficient representation of anomalies
and background information; it can accurately reconstruct the background and separate
anomalies automatically, which solves the problem of low detection accuracy when the
prior knowledge is insufficient for the supervised detection methods. However, when the
target spectrum is unique, the supervised detectors will obtain excellent results, and the
proposed method may inapplicable.

5. Conclusions

Constructing an efficient representation of anomalies and a background is one of the
critical steps in AD. In this article, a novel anomalous and background pixel set separation
method which considers the high-order structures of HSIs is presented. The experimental
results demonstrate that the proposed method has better adaptability to HSIs over different
scenes, under different noise levels, with different spatial resolutions, and with different
spectral resolutions. The results can be summarized as follows:

(1) Taking the high-order correlation between spectral bands in HSIs into account, the
detection ability of various feature extraction methods (including LDA, PCA, MNF,
OMNF, FA, KPCA, OKMNF, LPP, LLE, and KMNF) in AD is evaluated in this article.
The results illustrate that the KMNF transformation is more effective and robust
in feature extraction for AD than other methods, providing a reference for further
research on feature extraction in AD.

(2) When the abnormal pixels occupy a small portion of the entire image, there will be
little influence of the anomalies on background estimation, and the deviation between
the estimated and true backgrounds will be minor.

(3) Aiming to separate anomalies and background efficiently, a BSM that combines the
outlier removal, the iteration strategy, and the RXD is proposed in this article. The
results show that the KMNF-BSM has significant anti-noise ability and adaptability to
HSIs with different spatial and spectral resolutions.

In conclusion, the results show that the KMNF-BSM has an excellent performance in
separating anomalies and background information. Using its results as the input of the
detector can effectively improve the detection capability. Moreover, the KMNF-BSM-based
methods achieve autonomous hyperspectral anomaly detection without pre-processing
or post-processing procedures. The realization of this process can provide a reference for
subsequent research on the automatic realization of other methods. However, the proposed
method may be unsatisfactory in processing HSIs with quite complex backgrounds and
lower spectral resolutions, HSIs with abnormal pixels that occupy a small portion of the
entire image, and HSIs with a unique anomalous spectrum, which will be the focus of our
future works.
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