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Abstract: Leaf chlorophyll content (LCC) is an indicator of leaf photosynthetic capacity. It is crucial
for improving the understanding of plant physiological status. SPAD meters are routinely used to
provide an instantaneous estimation of in situ LCC. However, the calibration of meter readings into
absolute measures of LCC is difficult, and a generic approach for this conversion remains elusive. This
study presents an evaluation of the approaches that are commonly used in converting SPAD readings
into absolute LCC values. We compared these approaches using three field datasets and one synthetic
dataset. The field datasets consist of LCC measured using a destructive method in the laboratory, as
well as the SPAD readings measured in the field for various vegetation types. The synthetic dataset
was generated with the leaf radiative transfer model PROSPECT-5 across different leaf structures.
LCC covers a wide range from 1.40 µg cm−2 to 86.34 µg cm−2 in the field datasets, and it ranges from
5 µg cm−2 to 80 µg cm−2 in the synthetic dataset. The relationships between LCC and SPAD readings
were examined using linear, polynomial, exponential, and homographic functions for the field and
synthetic datasets. For the field datasets, the assessments of these approaches were conducted for
(i) all three datasets together, (ii) individual datasets, and (iii) individual vegetation species. For the
synthetic dataset, leaves with different leaf structures (which mimic different vegetation species) were
grouped for the evaluation of the approaches. The results demonstrate that the linear function is the
most accurate one for the simulated dataset, in which leaf structure is relatively simple due to the
turbid medium assumption of the PROSPECT-5 model. The assumption of leaves in the PROSPECT-5
model complies with the assumption made in the designed algorithm of the SPAD meter. As a
result, the linear relationship between LCC and SPAD values was found for the modeled dataset
in which the leaf structure is simple. For the field dataset, the functions do not perform well for all
datasets together, while they improve significantly for individual datasets or species. The overall
performance of the linear (LCC = a ∗ SPAD + b), polynomial (LCC = a ∗ SPAD2 + b ∗ SPAD + c),
and exponential functions (LCC = 0.0893 ∗

(
10SPADα

)
) is promising for various datasets and species

with the R2 > 0.8 and RMSE <10 µg cm−2. However, the accuracy of the homographic functions
(LCC = a ∗ SPAD/(b − SPAD)) changes significantly among different datasets and species with
R2 from 0.02 of wheat to 0.92 of linseed (RMSE from 642.50 µg cm−2 to 5.74 µg cm−2). Other
than species- and dataset-dependence, the homographic functions are more likely to produce a
numerical singularity due to the characteristics of the function per se. Compared with the linear and
exponential functions, the polynomial functions have a higher degree of freedom due to one extra
fitting parameter. For a smaller size of data, the linear and exponential functions are more suitable
than the polynomial functions due to the less fitting parameters. This study compares different
approaches and addresses the uncertainty in the conversion from SPAD readings into absolute LCC,
which facilitates more accurate measurements of absolute LCC in the field.
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1. Introduction

Chlorophyll is a pigment that provides the green character of plants and occupies
a unique role in photosynthetic activity via absorbing light and producing biochemical
energy for use within the Calvin–Benson cycle [1,2]. Leaf chlorophyll content (LCC, mass
of chlorophyll per unit leaf area) suggests the physiological status of plants and is closely
related to plant photosynthetic capacity [3,4]. The chlorophyll content of leaf tissue is
affected by nitrogen availability and environmental stresses such as drought, salinity,
disease, and pests [3,5,6]. Therefore, accurate quantification of LCC is of great significance
for terrestrial carbon flux cycling and biomass estimation.

The chlorophyll of higher plants primarily consists of two different types of chlorophyll
molecules, namely bluish-green chlorophyll a and yellowish-green chlorophyll b with
slightly different molecular structures and optical properties [7]. The molecular formulas
of chlorophyll a and b are C55H72N4O5Mg and C55H70N4O6Mg, respectively. The two
chlorophyll molecules both show two prominent absorption peaks, one in the blue band
and the other in the red spectral region. The two peaks are centered at ~430 nm and
~662 nm with regard to chlorophyll a, while they are centered at ~453 nm and ~642 nm
in terms of chlorophyll b [8]. Although light is also absorbed by many other secondary
pigments in green plants, such as carotenoids and anthocyanins, which have different roles
in plant physiology, photosynthesis in green plants is primarily driven by light harvested
by chlorophylls [9]. While other pigments in leaves have a considerable absorption in the
blue spectral region, the red spectral region from 600 nm to 700 nm is dominated by the
absorption of chlorophyll [10–12]. As a result, the red spectral region has been considered
best for estimating LCC from spectral reflectance and transmittance measurements.

Destructive and non-destructive methods (i.e., in vitro and in vivo) are usually used
for the LCC measurements. Both methods determine the LCC by measuring the absorp-
tion/transmission of chlorophyll in the red band [13,14]. Conventionally, the destructive
measurement is routinely performed with a chemical method and spectrophotometry un-
der laboratory conditions for the leaf samples collected in the field [15]. The chlorophyll
from leaf samples is extracted using organic solvents (e.g., ethanol, acetone, dimethyl
sulphoxide (DMSO), and N-dimethyl formamide (DMF)), due to its lower solubility in
water and the straightforward solubility in organic solvents [16–18]. A spectrophotometer,
fluorometer, or high-performance liquid chromatography (HPLC) is used to measure the
absorptance in the red spectral region, which is further utilized to quantify the chlorophyll
a, chlorophyll b, and total chlorophyll content [19,20]. The laboratory-based destructive
measurement is expensive, time-consuming, cumbersome, and uneconomical, while it is
currently the most accurate method for estimating LCC. Alternatively, the non-destructive
method provides a simple, rapid, and cost-efficient technique for measuring LCC. A SPAD
(Soil Plant Analysis Development) chlorophyll meter (Konica–Minolta, Inc., Osaka, Japan)
is the most widely used handheld portable instrument for non-destructive measurements
of LCC in the field [21,22]. A SPAD meter is equipped with two LED light sources, which
are centered at the chlorophyll absorption peak of 650 nm and the non-chlorophyll ab-
sorption region of 940 nm, respectively. The SPAD meter emits light through the leaf in
sequence with the two LED light sources, and the transmitted light in the red and infrared
regions is measured by the two silicon photodiode detectors. The 650-nm and 940-nm
LED light received by the silicon photodiodes is converted into electric current, which is
further detected by the microprocessor, and the processor remakes the electrical signal into
SPAD readings [23,24]. Unfortunately, the output reading determined by SPAD meters
is a relatively unitless quantity of LCC and needs to be converted to the absolute LCC
measured in the laboratory. The conversion relationships between the two variables are
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usually established using the digital numbers of the SPAD meter and the lab-measured
LCC of the same leaf samples [25,26].

A great number of studies have investigated and reported the relationships be-
tween SPAD readings and absolute LCC, including linear [27,28] and nonlinear relation-
ships [29,30], where nonlinear relationships primarily comprise polynomial [29], expo-
nential [30,31], and homographic linkages [32]. However, the relationship between SPAD
readings and absolute LCC is often species-specific and lacks a consensus conversion func-
tion. Schaper and Chacko (1991) determined linearity between extractable LCC and SPAD
readings using eight tropical and subtropical fruit-tree species’ data. Monje and Bugbee
(1992) compared linear and nonlinear (i.e., polynomial) relationships between the LCC
and SPAD readings of wheat, rice, and soybean, and found that the polynomial function
provided a better fit for their comparison. Markwell et al. (1995) used soybean and corn
data to examine the exponential and polynomial relationships between LCC and SPAD
readings. They found the performance of the exponential and polynomial functions was
comparable in estimating LCC. Coste et al. (2010) proposed a homographic function using
LCC and SPAD readings of 13 neotropical trees and compared it with the linear, polynomial,
and exponential functions, finding that the function was superior to other functions. It can
be noticed that LCC is highly correlated with SPAD readings and primarily presented in
linear, polynomial, exponential, and homographic functional relationships, in which most
of these relationships were assessed for specific species. Therefore, a generic expression
for estimating LCC using SPAD values across various species has not yet been found as a
result of the nature of the complex relationship between absolute LCC and SPAD values.

Therefore, the overall objective of this study is to evaluate the commonly used rela-
tionships/fitting functions between LCC and SPAD readings in an attempt to guide the
estimation of LCC with SPAD meters in the field. We used both field and synthetic datasets
to evaluate the estimation accuracy of absolute LCC for different functions including linear,
polynomial, exponential, and homographic functions across various vegetation types.

2. Materials and Methods
2.1. Datasets
2.1.1. Field Datasets

To study and assess the relationship between SPAD meter readings and LCC, we
extracted three independent datasets published by Delegido et al. (2011) [8], Vuolo et al.
(2012) [33], and Houborg et al. (2009) [34]. Hereafter, they are referred to as the Delegido’s,
Vuolo’s, and Houborg’s datasets, respectively. All three datasets include LCC measured
using a destructive method in the laboratory and output readings measured using a SPAD
meter in the field. The LCC of Delegido’s dataset was measured by high-performance liquid
chromatography (HPLC), and that of Houborg’s dataset was measured spectrophotometri-
cally after extraction of chlorophyll with dimethyl sulfoxide (DMSO). Unlike Delegido’s
and Houborg’s datasets, the LCC of Vuolo’s dataset was determined by the procedure
described by De Michele et al. (2009) [35]. LCC in these datasets exhibits diverse ranges
across various agricultural vegetation species (Table 1).

Delegido’s dataset consists of LCC and SPAD values for four crops: wheat, sugar beet,
barley, and corn. During field experiments, the selected samples considered discrepancies
in LCC among individual leaves, single species, and different crop types. For each leaf
sample, six measurements were made using a SPAD meter on selected parts of the leaf.
Overall, the LCC of four crop species showed relative stability. The mean LCC of wheat
was 38.17 µg cm−2, with a minimum of 9.40 µg cm−2 and a maximum of 46.79 µg cm−2,
and the LCC of sugar beet ranged between 15.12 µg cm−2 and 35.48 µg cm−2 with a
mean value of 28.74 µg cm−2. In comparison, the LCC of barley and corn had more
substantial variation relative to wheat and sugar beet. The LCC of barley ranged from
23.10 µg cm−2 to 54.88 µg cm−2 with an average of 35.46 µg cm−2, and that of corn varied
from 15.00 µg cm−2 to 43.57 µg cm−2 with a mean value of 32.27 µg cm−2. The four crops
generally exhibited low-to-moderate LCC.
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Table 1. Statistics of leaf chlorophyll content in Delegido’s, Vuolo’s, and Houborg’s datasets. S.D. is
the standard deviation, C.V. is the coefficient of variation, and n represents the number of observations.

Data Sources Species n Minimum
(µg cm−2)

Maximum
(µg cm−2)

Mean
(µg cm−2)

S.D.
(µg cm−2) C.V. (%)

Delegido et al. (2011) Wheat 20 9.40 46.79 38.17 7.38 19.33
Sugar beet 29 15.12 35.48 28.74 4.63 16.11

Barley 20 23.10 54.88 35.46 9.05 25.53
Corn 36 15.00 43.57 32.27 8.02 24.85

Vuolo et al. (2012) Bean 32 1.86 43.26 25.54 11.68 46.00
Grass 23 2.38 37.62 16.69 9.25 55.43
Wheat 30 1.40 47.44 21.29 13.98 65.66

Linseed 28 2.79 58.14 29.09 16.77 57.64
Corn 28 3.26 34.42 16.73 10.36 61.94
Oat 30 3.26 55.35 28.67 15.05 52.48

Olive 26 9.30 58.14 30.25 11.95 39.49
Orange 24 4.19 28.84 14.52 6.76 46.59

Vine 25 9.77 28.84 18.40 6.07 32.96
Houborg et al. (2009) Corn 48 12.20 86.34 50.82 18.92 37.23

Vuolo’s dataset was collected in several field campaigns for nine agricultural species
(i.e., bean, grass, wheat, linseed, maize, oat, olive, orange, and vine). Compared with
Delegido’s dataset, the LCCs of these nine crops were more discrete and showed larger
variation. In Vuolo’s dataset, the LCC of wheat changed most significantly among the
nine species, varying between 1.40 µg cm−2 to 47.44 µg cm−2 with a mean value of
21.29 µg cm−2 and C.V. of 65.66%. In contrast, the LCC of vine presented the smallest varia-
tion among these species, with a mean value of 18.40 µg cm−2, a minimum of 9.77 µg cm−2,
and a maximum of 28.84 µg cm−2. Similar to Delegido’s dataset, the LCC of the nine
species ranged from low to medium.

Houborg’s dataset includes LCC and SPAD values for 48 corn samples. During field
experiments, six measurements were conducted for each sample to properly characterize
the variability of the LCC distribution across the leaves. LCC varied from 12.20 µg cm−2

to 86.34 µg cm−2, with a mean value of 50.82 µg cm−2 and C.V. of 37.23%. The variation
of LCC in Houborg’s dataset was between Delegido’s and Vuolo’s datasets. Moreover,
Delegido’s, Vuolo’s, and Houborg’s datasets all possess the LCC of corn, whereas the
variation of these three corn data is not fully identical. The LCC of corn in Vuolo’s dataset
retained the most substantial variation, while that of Delegido’s dataset delivered the least
variation among the three data. In addition, the LCC of corn in Delegido’s and Vuolo’s
datasets ranged from low to moderate, while that in Houborg’s dataset exhibited a widely
distributed LCC from low to high.

2.1.2. Simulated Dataset with the PROSPECT Model

In addition to the field datasets, we also generated a set of the simulated dataset
using the PROSPECT model [36]. The PROSPECT model used in this study is PROSPECT-
5, which is a physical model simulating leaf directional-hemispherical reflectance and
transmittance using a suite of leaf biophysical and biochemical input parameters, namely
leaf structure parameter (N), chlorophyll content (Cab), carotenoid content (Ccx), brown
pigments content (Cbp), equivalent water thickness (Cw), and dry matter content (Cm) [37]. A
MATLAB version of the PROSPECT-5 model was downloaded from the following website:
http://teledetection.ipgp.jussieu.fr/prosail/ (accessed on 17 May 2022). We obtained leaf
transmittance spectra under various conditions by adjusting the input parameters and
corresponding input values of the PROSPECT-5 model. In total, there were 2916 scenarios
covering all the possible combinations in Table 2. The SPAD chlorophyll meter is developed
based on spectral measurements of leaf transmittances at the wavelengths of 650 nm
and 940 nm. Therefore, we converted the leaf transmittances generated for all synthetic
scenarios into SPAD values according to the equation described by Raymond Hunt and

http://teledetection.ipgp.jussieu.fr/prosail/
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Daughtry (2014) (i.e., Equation (1)). This equation can well express the relationship between
the leaf transmittances and the SPAD values with a coefficient of determination (R2) of
0.998 across commonly used SPAD chlorophyll meters [38].

SPAD = 37 ∗ log10

(
T940

T650

)
− 2.68 (1)

where SPAD is the SPAD value, and T940 and T650 are leaf transmittances at 940 nm and
650 nm, respectively.

Table 2. The input parameters and corresponding input values of the PROSPECT-5 model.

Parameter Interpretation Unit Input Values

N Leaf structure parameter — 1.0, 2.0 or 3.0
Cab Chlorophyll a + b content µg cm−2 5, 10, 20, 30, 40, 50, 60, 70 or 80
Ccx Carotenoid content µg cm−2 10, 20 or 30
Cbp Brown pigments content — 0.0, 0.5 or 1.0
Cw Equivalent water thickness cm 0.02, 0.04, 0.08 or 0.10
Cm Dry matter content g cm−2 0.005, 0.010 or 0.020

2.2. Mathematical Functions for Relationships between SPAD Readings and LCC

We tested commonly used functional relationships between SPAD readings versus
LCC in the literature, including linear, polynomial, exponential, and homographic func-
tions. As shown in Table 3, the exponential functions have two different forms: one is
LCC = a ∗ eb∗SPAD and the other is LCC = 0.0893 ∗

(
10SPADα

)
. For the sake of distinction,

they were named exponential 1 and exponential 2, respectively.

Table 3. The commonly used functions for estimating leaf chlorophyll content (LCC in the unit of
µg cm−2) from SPAD readings.

Model Forms Equations References

Linear LCC = a ∗ SPAD + b Schaper and Chacko (1991)
Polynomial LCC = a ∗ SPAD2 + b ∗ SPAD + c Monje and Bugbee (1992)

Exponential 1 LCC = a ∗ eb∗SPAD Uddling et al. (2007)
Exponential 2 LCC = 0.0893 ∗

(
10SPADα

)
Markwell et al. (1995)

Homographic LCC = a ∗ SPAD
b − SPAD

Coste et al. (2010);
Cerovic et al., (2012)

2.3. Accuracy Assessment

For the field datasets, the functional relationships between LCC and SPAD readings
were evaluated for: (i) all datasets together, (ii) individual datasets from three different
data sources, and (iii) individual vegetation species. For the synthetic dataset, we tested
the relationships for different leaf structure parameters (i.e., N), each of which included
972 synthetic scenarios. We further investigated whether the choice of wavelengths could
improve the relationships with LCC using 2916 scenarios of all possible combinations of
the synthetic dataset in spite of differences in leaf structural parameters. To do this, we
tested all possible combinations of wavelengths except those below 400 nm and above
1000 nm to check whether T940 and T650 are the best combinations for LCC estimation, since
wavelengths outside this range were rarely used to estimate LCC and had large noise.

The coefficient of determination (R2) and root-mean-square error (RMSE) were regis-
tered as indicators of the strength of assessing each function. The R2 is a measure of the
degree of fitting between the independent and dependent variables, and the RMSE accounts
for the difference between the estimated and observed values. The two metrics were used
to comprehensively evaluate the accuracy of the functional relationships between LCC and
SPAD values. The R2 and RMSE can be calculated as follows:
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R2 = 1 − ∑n
i=1(ŷi − yi)

2

∑n
i=1(yi − y)2 (2)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (3)

where n is the number of observations, and y is the mean value of observations. ŷi and
yi refer to the estimated and observed values for the i-th observation. The higher the R2,
the better the model fit, and the lower the RMSE, the closer the estimated value is to the
observed value and the lower the estimated error.

3. Results
3.1. All the Field Datasets Together

We first established the linear, polynomial, exponential, and homographic functional
relationships between LCC and SPAD readings for all three datasets together to eval-
uate their potential for estimating LCC without taking the differences in the datasets
and species into consideration (Figure 1). The linear, polynomial, and exponential 2
(LCC = 0.0893 ∗

(
10SPADα

)
) functional relationships between LCC and SPAD readings

were promising with the R2 as high as ~0.5, while the exponential 1 (i.e., LCC = a ∗ eb∗SPAD)
function performed slightly deficiently with an R2 of 0.38, and the homographic function
was the poorest with an R2 of 0.02. The quadratic coefficient of the polynomial function was
approximately zero, making it level off to the linear function. Therefore, regardless of the
differences in the datasets and species, the linear, polynomial, and exponential functions
were suited for estimating the LCC, whereas the homographic function was less suitable
for the LCC estimation.
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Figure 1. The assessment of five functions (i.e., linear, polynomial, exponential 1, exponential 2,
and homographic models) for the estimation of the LCC using all three field datasets together. Blue
squares, pale-yellow dots, and red triangles represent Delegido’s, Vuolo’s, and Houborg’s datasets,
respectively. Exponential 1 is the exponential function LCC = a ∗ eb∗SPAD, and Exponential 2 is the

exponential function LCC = 0.0893 ∗
(

10SPADα
)

. Note that the part of the homographic fitting curve
is not shown because its value goes from incremental to negative infinity as the denominator of the
function progressively approaches zero.



Remote Sens. 2022, 14, 5144 7 of 17

3.2. For Each Field Dataset

The linear, polynomial, exponential, and homographic functional relationships be-
tween LCC and SPAD readings were established for all species of each dataset to assess
their performance in estimating the LCC (Figure 2). Compared with the performance of
functional relationships across all three datasets together, the linkages between LCC and
SPAD readings for the individual dataset were significantly improved. The five functions
fitted comparably well the LCC and SPAD values for the four species in Delegido’s dataset
with an R2 of ~0.78, and their errors were small with an RMSE of ~3.82 µg cm−2 (i.e., mean
RMSE of the five functions). However, the homographic function was inferior to the other
four functions for the nine species in Vuolo’s dataset with an R2 of ~0.00 and RMSE of
~138.72 µg cm−2. Especially at high SPAD values, similar to the results in Section 3.1, the
homographic fitting curve shifted from monotonically increasing to sharply decreasing,
even making the estimated LCC negative. Similar to Delegido’s dataset, the five SPAD–LCC
functional relationships were comparable for the corn crop in Houborg’s dataset with an
R2 of ~0.95 and RMSE of ~4.47 µg cm−2, whereas they generally excelled those expressed
in Delegido’s dataset. In general, the linear, polynomial, and exponential functions could
reasonably express associations between LCC and SPAD readings without considering
differences in species, and the polynomial function could be approximated by the linear
function because its quadratic coefficient was as small as zero. However, the exponential 1
function changed slightly, and the homographic function had significant variability across
various vegetation species.

3.3. For Each Species

The linkages between the absolute measures of the LCC and the SPAD meter readings
were recalibrated for the individual species within all the field datasets. The field datasets
include absolute LCC and relative SPAD values for 11 species in total (i.e., wheat, sugar
beet, barley, corn, bean, grass, linseed, oat, olive, orange, and vine). As with the model
evaluations for the individual dataset in Section 3.2, the linear, polynomial, and exponential
functional relationships between LCC and SPAD readings were satisfactory for most
species (with an R2 of not less than ~0.8 and RMSE less than 10 µg cm−2) (Figure 3). In
comparison, the linear and polynomial functions were slightly better than the exponential
functions. However, the performance of the homographic function exhibited substantial
variation. In wheat and grass, it performed poorly with the R2 of 0.02 and 0.04 and RMSE
of up to 642.50 µg cm−2 and 45.49 µg cm−2, respectively. However, in other species, the
homographic function had similar performance to the linear, polynomial, and exponential
functions. Similar to the results in Section 3.2, linear, polynomial, and exponential 2
functions performed similarly promisingly. In contrast, the performance of the exponential
1 function varied little, and the homographic function changed significantly.

Combining the model evaluations of the above three aspects, we documented the
distribution of R2 and RMSE for the five functions in Figure 4. Similar to the results in
Sections 3.2 and 3.3, there was slight variability in the exponential 1 function, and the per-
formance of the homographic function exhibited considerable variation and more caution
was required when using this type of function for an unknown species. In comparison, the
linear, polynomial, and exponential 2 functions were sufficiently accurate for most cases.
Taking into account the fact that even though the variation range of α in the exponential
2 function is smaller than coefficients from other functions, small changes of α can lead
to very large differences in LCC, such as corn in Figure 3b, and polynomial functions
have quadratic coefficients close to zero according to the above results. Therefore, we
recommended using a linear function to estimate LCC and listed the fitting coefficients of
linear functions for specific vegetation species in Table 4 for future usage.
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Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 18 
 

 

function had similar performance to the linear, polynomial, and exponential functions. 

Similar to the results in Section 3.2, linear, polynomial, and exponential 2 functions 

performed similarly promisingly. In contrast, the performance of the exponential 1 function 

varied little, and the homographic function changed significantly. 

 

Figure 3. The assessments of five functions for the estimation of the LCC of each species across all 

field datasets with the R2 (a) and RMSE (b). Exponential 1 is the exponential function LCC = 𝑎 ∗

𝑒𝑏∗SPAD , and Exponential 2 is the exponential function LCC = 0.0893 ∗ (10SPAD𝛼
) . Central lines 

represent the medians, boxes represent 50% of the data, squares represent mean values, whiskers 

represent minimum and maximum values, and symbols outside the whiskers represent outliers. 

Combining the model evaluations of the above three aspects, we documented the 

distribution of R2 and RMSE for the five functions in Figure 4. Similar to the results in 

Sections 3.2 and 3.3, there was slight variability in the exponential 1 function, and the 

performance of the homographic function exhibited considerable variation and more 

caution was required when using this type of function for an unknown species. In 

comparison, the linear, polynomial, and exponential 2 functions were sufficiently accurate 

for most cases. Taking into account the fact that even though the variation range of α in 

the exponential 2 function is smaller than coefficients from other functions, small changes 

of α can lead to very large differences in LCC, such as corn in Figure 3b, and polynomial 

functions have quadratic coefficients close to zero according to the above results. 

Therefore, we recommended using a linear function to estimate LCC and listed the fitting 

coefficients of linear functions for specific vegetation species in Table 4 for future usage. 

 

Figure 3. The assessments of five functions for the estimation of the LCC of each species across all field
datasets with the R2 (a) and RMSE (b). Exponential 1 is the exponential function LCC = a ∗ eb∗SPAD,

and Exponential 2 is the exponential function LCC = 0.0893 ∗
(

10SPADα
)

. Central lines represent
the medians, boxes represent 50% of the data, squares represent mean values, whiskers represent
minimum and maximum values, and symbols outside the whiskers represent outliers.



Remote Sens. 2022, 14, 5144 9 of 17

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 18 
 

 

function had similar performance to the linear, polynomial, and exponential functions. 

Similar to the results in Section 3.2, linear, polynomial, and exponential 2 functions 

performed similarly promisingly. In contrast, the performance of the exponential 1 function 

varied little, and the homographic function changed significantly. 

 

Figure 3. The assessments of five functions for the estimation of the LCC of each species across all 

field datasets with the R2 (a) and RMSE (b). Exponential 1 is the exponential function LCC = 𝑎 ∗

𝑒𝑏∗SPAD , and Exponential 2 is the exponential function LCC = 0.0893 ∗ (10SPAD𝛼
) . Central lines 

represent the medians, boxes represent 50% of the data, squares represent mean values, whiskers 

represent minimum and maximum values, and symbols outside the whiskers represent outliers. 

Combining the model evaluations of the above three aspects, we documented the 

distribution of R2 and RMSE for the five functions in Figure 4. Similar to the results in 

Sections 3.2 and 3.3, there was slight variability in the exponential 1 function, and the 

performance of the homographic function exhibited considerable variation and more 

caution was required when using this type of function for an unknown species. In 

comparison, the linear, polynomial, and exponential 2 functions were sufficiently accurate 

for most cases. Taking into account the fact that even though the variation range of α in 

the exponential 2 function is smaller than coefficients from other functions, small changes 

of α can lead to very large differences in LCC, such as corn in Figure 3b, and polynomial 

functions have quadratic coefficients close to zero according to the above results. 

Therefore, we recommended using a linear function to estimate LCC and listed the fitting 

coefficients of linear functions for specific vegetation species in Table 4 for future usage. 

 

Figure 4. Boxplots for the coefficients of determination of five functions for the relationships between
LCC and SPAD readings based on the model assessments of field datasets from three aspects:
(i) all datasets together, (ii) individual datasets from three different data sources, and (iii) individual
vegetation species. Central lines represent the medians, boxes represent 50% of the data, squares
represent mean values, and whiskers represent minimum and maximum values.

Table 4. Assessments of the linear function based on all datasets together, individual datasets, and
each species per dataset in terms of three field datasets.

Data Sources Species a b R2 RMSE
(µg cm−2)

All All 0.709 −1.576 0.52 11.11
Delegido et al. (2011) Wheat 0.788 −1.053 0.88 2.56

Sugar beet 0.486 8.664 0.53 3.16
Barley 1.174 −22.248 0.79 4.13
Corn 0.879 −8.602 0.84 3.17
All 0.840 −5.783 0.78 3.83

Vuolo et al. (2012) Bean 0.770 −6.765 0.85 4.48
Grass 0.797 −7.232 0.79 4.22
Wheat 0.879 −9.350 0.94 3.28

Linseed 0.776 −7.157 0.90 5.20
Maize 0.664 −1.761 0.88 3.62

Oat 0.828 −1.520 0.85 5.78
Olive 0.875 −27.494 0.87 4.36

Orange 0.388 −5.950 0.84 2.73
Vine 0.495 4.376 0.32 5.00
All 0.550 0.443 0.61 8.33

Houborg et al. (2009) Corn/All 1.639 −26.955 0.94 4.60

3.4. For the Simulated Dataset from the PROSPECT Model

In the simulated dataset, the linear, polynomial, exponential, and homographic func-
tional relationships between LCC and SPAD values were established across various leaf
structural parameters. For each type of leaf structure, a total of 972 LCC and SPAD values
were fitted by five functions. Similar to the evaluation results of field datasets from three
aspects, the linear, polynomial, and exponential 2 functions performed well with the R2

of ~0.99 over different leaf structural parameters (Figure 5), while the estimation error of
the exponential 2 function had a large variation from RMSE = 10.44 µg cm−2 for N = 1 to
RMSE = 2.46 µg cm−2 for N = 3. In comparison, the exponential 1 function showed a slight
change, and the homographic function varied significantly. The secondary coefficient of
the polynomial function was approximately zero, making it close to the linear function,
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implying that when the leaf structure was determined, the SPAD reading had a significantly
linear relationship with the LCC. Moreover, the performance of the linear, polynomial, and
homographic functions decreased with increasing leaf structural parameters, whereas the
behavior of the two exponential functions was reversed.
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Figure 5. The evaluations of five functions for estimating the LCC based on the simulated dataset from
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ponential 2 is the exponential function LCC = 0.0893 ∗
(

10SPADα
)

. N is the leaf structure parameter.
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To test the relationship between different transmittance ratios and LCC and check
whether T940 and T650 are the best combinations for LCC estimation, we further evalu-
ated the relationships between the transmittance-based index (including log10(Tλ1/Tλ2)
and Tλ1/Tλ2) and LCC using all possible combinations of wavelengths. In the case of
log10(Tλ1/Tλ2), the transmittance-based index was strongly related with LCC provided
that λ1 was located in the near-infrared region (between 700 nm and 1000 nm) and λ2 was
located in the visible range (between 400 and 700 nm) and vice versa. The best combi-
nation of wavelengths was found in the red-edge region, especially when λ1 = 677 nm
and λ2 = 679 nm (i.e., log10(T677/T679)), when the highest R2 value achieved was as high
as 1.00 (Figure 6a), providing some improvement over the SPAD meter (R2 = 0.90 for
log10(T940/T650)). Similar to log10(Tλ1/Tλ2), the transmittance-based index Tλ1/Tλ2 had
the highest R2 at λ1 = 677 nm and λ2 = 679 nm (R2 = 1.00) (Figure 6b), improving esti-
mates of LCC over the SPAD meter. However, it had a generally lower relationship with
LCC compared with log10(Tλ1/Tλ2), which was in line with the logarithmic algorithm of
the transmittance ratio designed by the SPAD meter. For the wavelengths used in the SPAD
meter, the R2 of the logarithm of the transmittance ratio (R2 = 0.90 for log10(T940/T650))
was significantly higher than the simple transmittance ratio (R2 = 0.50 for T940/T650).
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4. Discussion
4.1. Relationship between LCC and SPAD Readings

The quantitative interpretation of the relationship between SPAD readings and LCC
has been complicated by the fact that no algorithm is given in the SPAD manual to link
meter output values with LCC. The relationship between LCC and SPAD readings is
affected by multiple confounding factors such as leaf internal structure, leaf water content,
and leaf pigment distribution [39–41]. Incident photons reaching the leaf surface are
either absorbed, reflected, or transmitted, and their fates are significantly affected by
the chlorophyll distribution inside the leaf. However, if we assume a leaf is a turbid
medium and ignore the reflection in the air–leaf surface, the relationship between SPAD
readings and the LCC of a leaf can be approximated by using Beer’s law. According to
the designed algorithm of SPAD meters (Equation 1), the SPAD reading is proportional to
the logarithm of the ratio of leaf transmittances at the wavelengths of 940 nm and 650 nm,
i.e., SPAD ∝ log10(T940/T650). In Beer’s law, the absorbance Aλ and transmittance Tλ of a
leaf at a specific wavelength (λ) are related as Tλ = 10−Aλ [42]. Therefore, the SPAD value
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is proportional to the difference in leaf absorbances at 650 nm and 940 nm, which can be
expressed as:

SPAD ∝ log10

(
T940

T650

)
= log10

(
10−A940

10−A650

)
= A650 − A940 (4)

The absorbance can be linked with the molar absorptivity ε, content/concentration of
the absorbing substance C, and the length of the light path in the absorbing medium b, i.e.,
A = εbC. The absorbances at the wavelengths of 650 nm and 940 nm yield:

A650 = b ∑ ε650
i Ci + bε650

chl LCC (5)

A940 = b ∑ ε940
i Ci + bε940

chl LCC (6)

where b is the length of the path that light travels in an absorbing medium, which is
related to leaf structure. ελ

i and Ci are the molar absorptivity at a specific wavelength
and corresponding concentrations of other specific leaf constituents except for chlorophyll,
respectively. εchl and LCC are the molar absorptivity of chlorophyll and leaf chlorophyll
content, respectively.

Since chlorophyll has a strong absorption at 650 nm, and the absorbance at 940 nm
is not sensitive to chlorophyll, it can be obtained that the absorption from chlorophyll at
940 nm (i.e., bε940

chl LCC) is negligible and the difference between the absorbances at 650 nm
and 940 nm is:

A650 − A940 = b ∑
(

ε650
i − ε940

i

)
Ci + bε650

chl LCC (7)

The molar absorptivity ε is a constant for a specific constituent. Therefore, for leaves
that vary only in LCC, SPAD readings should theoretically be linearly proportional to LCC:
SPAD ∝ bε650

chl LCC. The simulations from the PROSPECT-5 model in Figure 5 confirm the
linear relationship between SPAD readings and LCC when the length of the path traveled
by light in the absorbing medium or leaf structure is constant. In most cases, even though
the polynomial function is slightly better than the linear functions, its secondary coefficient
is approaching zero, making it close to linear functions. Furthermore, in the small range of
LCC, the exponential function can be approximated by the linear function.

However, in reality, the content/concentration of other constituents Ci and the optical
length b usually vary among leaves due to the sieve effect and the detour effect caused by
spatial heterogeneity of chlorophyll distribution within leaves. The so-called sieve effect
occurs when light passes through leaf tissue without encountering an absorber, which
leads to an increase in the transmittance, and thus the SPAD reading is lower than that of a
leaf with uniform chlorophyll distribution [21,30]. The detour effect increases the optical
path length through the leaf and reduces light transmission in the visible spectral region,
resulting in higher SPAD readings compared to leaf samples with uniform chlorophyll
distribution [43,44]. As a result, the linear relationship between SPAD readings and LCC is
less reliable, and a universally applicable and analytical relationship is difficult to establish.
Nonetheless, the linear functions are still promising for most cases, since LCC usually
shows the largest variability compared with other leaf pigments. For different species,
leaf structure can be different. In this case, one linear function for several species might
not be sufficient (Figure 1). One solution to reduce the impact of leaf structure and other
constituents on LCC estimation would be to establish one linear function for each species
(Figure 3).

Alternatively, polynomial, exponential, and homographic functions are developed
to account for the effects of variation in other leaf constituents and optical lengths. The
increasing leaf structural parameters (i.e., N) may lead to the increased heterogeneity of
chlorophyll distribution inside the leaf, which in turn results in the relationship between
SPAD readings and LCC deviating more from linearity and enhancing the exponential
functional relationship (Figure 5). As in the field datasets, the leaf cannot simply be treated
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as a turbid medium, and by extension, Beer’s law is not fully valid. Therefore, the different
functions show different estimation accuracy in the field datasets.

In addition to the above ways of improving the estimates of LCC with the SPAD meter,
a backup solution is to update/improve the algorithm designed by the SPAD meter using
the optimal combination of wavelengths. The band combination log10(T677/T679) based
on the synthetic dataset provides the best relationship with LCC, significantly improving
the estimation accuracy of LCC compared to the original algorithm designed by the SPAD
meter (Figure 6). This is similar to the results presented by Brown et al. (2022), who
reported that transmittance spectroscopy could provide improved performance over the
SPAD meter using a range of field-measured datasets [45]. The fact that the optimal bands
are related to wavelengths not measured by the SPAD meter suggests that it may not
utilize all relevant spectral information, such as that contained at the red-edge wavelengths.
Indeed, Gitelson et al. (2003) demonstrated that information from the red-edge region has
previously been used to improve the estimation of LCC using reflectance-based indices [46].
Given the significant chlorophyll absorption characteristics in the red-edge region (around
680 nm) of the spectrum [47,48], the use of red-edge wavelengths has a clear physical basis.

4.2. Comparison of Different Functions

We evaluated the linear, polynomial, exponential, and homographic functional rela-
tionships between LCC and SPAD readings using three field datasets and one synthetic
dataset. For the field datasets, we compared the performance of these five functions from
three different aspects (i.e., all datasets together, individual datasets, and individual veg-
etation species). Model evaluations based on all datasets together showed that linear,
polynomial, and exponential functions were able to reasonably estimate LCC, similar to the
results revealed by Schaper and Chacko (1991), Monje and Bugbee (1992), and Uddling et al.
(2007). In contrast, the homographic functions were less reliable for several cases, indicating
this type of function is sensitive to the dataset and/or species. The nature of the leaves in
the field datasets does not fulfill the turbid medium assumption underlying the designed
algorithm of the SPAD meters. Hence, the linear relationship between LCC and SPAD
readings was relatively weak for all field datasets since various vegetation types of leaves
were examined together.

We further evaluated the performance of the five functions for estimating LCC for the
single dataset and species of three field datasets. For a single species in the field datasets,
the relationships between SPAD readings and LCC significantly improved compared
to all datasets together. The result supports the hypothesis that differently distributed
data sources decrease the association between LCC and SPAD readings. In most cases,
the accuracy of the polynomial function is overall slightly higher than that of the linear
function, partly due to the different variations in LCC and SPAD values for some species.
However, the quadratic coefficient of the polynomial function is close to zero, causing
it to approach a linear function, and it has higher degrees of freedom than the linear
function, making it inappropriate when the amount of data for calibration is insufficient.
Therefore, linear and exponential functions are recommended for a small amount of data,
and polynomial functions are suitable for sufficient data. The homographic functions have
significant variability, especially as the SPAD value approaches the calibration coefficient
b, and numerical singularity will occur in this function since the denominator gradually
approaches zero. All three field datasets include corn data, and the three corn data show
different variations, perhaps because leaf samples of the corn collected in the three datasets
were in diverse growth conditions. The different growth vigor may alter the relationship
between LCC and SPAD readings in plant species, resulting in different functions for the
same species in different datasets (Table 4). This is similar to the results delivered by Jiang
et al. (2017), who demonstrated the mathematical model used to estimate LCC with SPAD
readings is different for leaves at different growth stages [49]. The differences in growth
conditions of vegetation species should be taken into account as much as possible when
using SPAD meters to accurately estimate LCC.
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As for the synthetic dataset, the linear functions perform better than other functions
across various leaf structure parameters, probably because of the turbid medium assump-
tion of the PROSPECT-5 leaf radiative transfer model. Synthesizing model evaluation
results and analysis of the field and simulated datasets, we summarized the strengths and
deficiencies of these five functions in Table 5 to help select the appropriate function for
absolute LCC estimation using SPAD meters in the field.

Table 5. Comparison of five functions for estimating the LCC with SPAD readings.

Models Deficiencies

LCC = a ∗ SPAD + b Relatively lower accuracy compared to a polynomial model
LCC = a ∗ SPAD2 + b ∗ SPAD + c Unsuitable for limited data

LCC = a ∗ eb∗SPAD Moderate dependence on dataset and species
Slightly lower accuracy than the linear and polynomial models

LCC = 0.0893 ∗
(

10SPADα
)

Slightly lower accuracy than the linear and polynomial models

LCC = a ∗ SPAD
b − SPAD

Strong dependence on dataset and species
Significant variability
Numerical singularity

4.3. Limitations

We explored the potential of linear, polynomial, exponential, and homographic func-
tions for LCC estimation using three field datasets and one synthetic dataset, but model
evaluations based on field and simulated datasets also have several limitations. In the
field datasets, the data we used are mostly agricultural vegetation types. Nevertheless,
the study is still indicative and can be extended to forest leaves. The difference between
agricultural species and forests is primarily reflected in the leaf structure, and the perfor-
mance of estimating the LCC of forest leaves may be different for different functions. For
example, the linear, polynomial, and homographic functions could effectively estimate
the LCC of 13 neotropical trees with an R2 of >0.80 [32], and the exponential function
LCC = a ∗ eb∗SPAD showed promising results for the LCC estimation of six Amazonian
tree species with an R2 of 0.79 overall [50]. However, whether the exponential function
LCC = 0.0893 ∗

(
10SPADα

)
is applicable to forest leaves and the variation of leaves in

different woody types remains to be further investigated.
The model assessment from the synthetic dataset that we carried out is limited to

the simple leaf radiative transfer model, PROSPECT-5. The synthetic dataset only covers
the scenarios of homogenous leaves. In the PROSPECT-5 model, the leaves are treated
as a turbid medium, which does not consider the spatial heterogeneity of chlorophyll
distribution inside the leaves. Investigation of the radiative transfer model for more
complex leaf conditions is required. Stuckens et al. (2009) have developed a dorsiventral leaf
model (DLM) to simulate the radiative transfer of photons within the leaves by considering
the influence of the leaf asymmetry caused by the non-uniform distribution of pigments,
water, and dry matter, and by mimicking light scattering for adaxial and abaxial leaf
surfaces [51]. In future studies, a specially designed experiment integrated with DLM or
other similar models may lead to an improved understanding of the mechanical relationship
between SPAD readings and LCC. Despite the limitations, the results presented in this
study are similar to previous studies, and the use of simulated datasets and theoretical
analysis can help to further understand the relationship between SPAD readings and LCC.

5. Conclusions

In this study, we used three field datasets from existing research and one synthetic
dataset from the leaf transfer model PROSPECT-5 to assess the commonly used functions
that convert SPAD readings into absolute LCC values. The linear function outperforms
other functions in the simulated dataset, in which leaves show a relatively simple structure
due to the assumption of a turbid medium in the PROSPECT-5 model. The linear relation-
ship between SPAD readings and LCC revealed by the synthetic dataset is in line with the
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algorithm designed by the SPAD meter, which assumes leaf samples to be a turbid medium.
Compared with the synthetic dataset, the leaves in the field datasets are more complex
in terms of leaf structure and present more confounding factors. Thus, more complex
functions (i.e., polynomial, exponential, and homographic functions) have been developed
to link SPAD readings to LCC. We found that the functions do not work well for all three
datasets together, while their performance is promising for a single dataset or species.
The linear, polynomial, and exponential functions work similarly for various datasets and
species with an R2 of >0.8 and RMSE of <10 µg cm−2 overall in the field datasets. In
contrast, the homographic function has considerable dependence on datasets and species
and is prone to numerical singularities due to the idiosyncrasies of the function per se.
Therefore, more caution is needed when using this functional relationship to estimate LCC
for an unknown species. The polynomial functions provide more freedom since one more
fitting parameter is included, and they are approximated by linear models due to quadratic
coefficients approaching zero. The study recommends the use of linear and exponential
functions when calibration data for the conversion of SPAD readings into absolute LCC
values are insufficient, and a polynomial function when the amount of calibration data is
sufficient. The evaluation presented in this study is expected to assist in more accurately
estimating absolute LCC using SPAD meters in the field.
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