
Citation: Bobkov, V.; Kudryashov, A.;

Inzartsev, A. A Technique to

Navigate Autonomous Underwater

Vehicles Using a Virtual Coordinate

Reference Network during Inspection

of Industrial Subsea Structures.

Remote Sens. 2022, 14, 5123.

https://doi.org/10.3390/rs14205123

Academic Editor: Erica Nocerino

Received: 3 September 2022

Accepted: 9 October 2022

Published: 13 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

A Technique to Navigate Autonomous Underwater Vehicles
Using a Virtual Coordinate Reference Network during
Inspection of Industrial Subsea Structures
Valery Bobkov 1 , Alexey Kudryashov 1,* and Alexander Inzartsev 2

1 Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Sciences,
690041 Vladivostok, Russia

2 Institute of Marine Technology Problems, Far Eastern Branch, Russian Academy of Sciences,
690091 Vladivostok, Russia

* Correspondence: alkud1981@mail.ru; Tel.: +7-(914)705-44-46

Abstract: Industrial subsea infrastructure inspections using autonomous underwater vehicles (AUV)
require high accuracy of AUV navigation relative to the objects being examined. In addition to
traditional navigation tools with inertial navigation systems and acoustic navigation equipment,
technologies with video information processing are also actively developed today. The visual
odometry-based techniques can provide higher navigation accuracy for local maneuvering at short
distances to objects. However, in the case of long-distance AUV movements, such techniques typically
accumulate errors when calculating the AUV movement trajectory. In this regard, the present article
considers a navigation technique that allows for increasing the accuracy of AUV movements in the
coordinate space of the object inspected by using a virtual coordinate reference network. Another
aspect of the method proposed is to minimize computational costs for AUV moving along the
inspection trajectory by referencing the AUV coordinates to the object pre-calculated using the object
recognition algorithm. Thus, the use of a network of virtual points for referencing the AUV to subsea
objects is aimed to maintain the required accuracy of AUV coordination during a long-distance
movement along the inspection trajectory, while minimizing computational costs.

Keywords: autonomous underwater vehicle; subsea production system; subsea object; stereo images;
navigation; virtual coordinate reference network

1. Introduction

One of the practically important fields for the deployment of unmanned underwater
vehicles (UUV) is inspection of objects of the industrial subsea infrastructure, such as
pipelines, communications, mining systems, etc. Today, well-proven remotely operated
underwater vehicles (ROVs) are used for these purposes. However, the application of
ROVs is associated with the use of bulky auxiliary equipment, which is inconvenient,
expensive, and in some cases it limits the capabilities of these vehicles. Therefore, alter-
native technologies associated with the use of autonomous underwater vehicles (AUV)
are being developed. The on-board computer allows for processing of the received data to
make decisions related to inspection operations, and the absence of a tether makes the use
of AUVs in some cases simply indispensable. An overview of the Subsea Infrastructure
Inspection issue and considerations on the necessity to develop novel technologies based
on AUV used today are provided in [1–5]. A successful inspection mission requires high
accuracy of AUV navigation relative to the objects being inspected, which is necessary for a
detailed examination of specified elements on these structures. In this regard, substantial
attention is paid to addressing the problem of precision navigation in the subsea environ-
ment. For this, various technologies with different types of sensors are used. Navigation
technologies for AUV are usually based on inertial navigation systems combined with
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auxiliary sensors or other techniques, such as a Doppler velocity log (DVL), compass,
pressure sensor, single/net fixed beacon, global positioning system (GPS), acoustic posi-
tioning system (APS), or geophysical navigation system, including optical cameras and
imaging sonar (techniques that use external environmental information as references for
navigation) [6]. Some examples of the designs of different navigation technologies for AUV,
including combinations of different types of sensors, different algorithms for processing
hydro acoustic and optical images and having different applications are considered below.

Technologies based on the processing of sonar images including laser scanning data. Technolo-
gies for obtaining information about the external environment based on the use of acoustic
images, laser scanning data, as well as options for joint processing of this in-formation are
widely presented in the literature. For example, acoustic image processing is applied during
automatic port inspections using AUVs [7,8]. A loop closure detector addressed to the
simultaneous localization and mapping (SLAM) problem at semistructured environments
using acoustic images acquired by forward-looking sonars was proposed in [9]. A novel
octree-based 3D exploration algorithm for AUVs to explore unknown underwater scenes in
close proximity to the environment is proposed [10]. The algorithm is based on data from a
hydroacoustic sensor and an optical camera. Experimental results using a 3D underwater
laser scanner mounted on an AUV for simultaneous localization and re-al-time mapping
are presented in paper [11]. The position of the robot is estimated using an extended
Kalman filter, which combines data from the AUV navigation sensors. An overview of
recent advances in integrated navigation technologies for AUVs and a guide for researchers
who intend to use AUVs for autonomous monitoring of aquaculture is presented in [12].

Technologies based on the processing of video mono and stereo images using visual odometry.
In recent years, navigation technologies with video information processing for underwater
applications have been actively developed, aimed at overcoming the negative effects
characteristic of the underwater environment: lack of navigation using GPS and bottom
relief maps, insufficient illumination, water turbidity, and the effect of currents.

The algorithms for tracking objects and calculating the AUV trajectory from a sequence
of mono and stereo images, including the results of experiments in port conditions, are
pre-sented in works [13–16]. Various visual odometry solutions for use in AUVs have
been tested in a study [17]. In particular, scale invariant feature transform (SIFT) [18] and
speeded up robust feature (SURF) [19] detectors were compared as regards their efficiency
in calculating vehicle movement.

Methods for underwater place recognition based on video information processing
are known in the literature as a solution to the “loop closing problem”. They are used
to neutralize the accumulated error of the SLAM algorithm. It implies that the accuracy
of AUV navigation can be improved by taking into account repeated visits to the same
places. To address it [20], a method was proposed referred to as BoW (bag-of-words).
This method is also applicable in our case when it comes to periodic AUV inspections
of underwater industrial structures compactly located on an area of 200 × 300 m. It was
further developed in a number of works [21–27], where ideas were put forward for using
visual stereo-odometry, a position graph, “loop closing” identification algorithms, anchor
nodes for working in multisession mode, and an image classification with the Fisher vector,
a vector of localized aggregated descriptors. The AUV localization technology based on
the recognition of artificial markers placed on the bottom or on objects is also popular. For
example, a method that uses visual measurements of underwater structures and arti-ficial
landmarks is proposed in [28]. The AUV localization method using ArUco markers placed
on the bottom or on objects (cyclic coding) is considered in [29].

The use of artificial neural networks. An AMB-SLAM online navigation algorithm based
on artificial neural network was pro-posed in [30]. The algorithm is based on the utilization
of measurements made from the randomly distributed beacons of low-frequency magnetic
fields, in addition to a single fixed acoustic beacon, on the featureless seafloor. Image
representation for visual loop closure detection based on convolutional neural network [31]
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is an image descriptor that can extract semantic information from an image and provide a
high degree of invariance property.

Underwater sensor networks. Underwater sensor networks, known as Underwater
Wireless Sensor Networks (UWSN), which are designed to perform remote monitoring of
underwater objects and processes are described in [32,33]. Deployment of these gadgets is
done in targeted acoustic zones for the collection of data and monitoring tasks. A detailed
survey of localization technique for elements of the Underwater Acoustic Sensor Network
(UASN) is given in [34,35]. However, the proposed techniques are focused on a single local-
ization of network elements. In addition, they are time-consuming, and the requirements
for localization accuracy are much less than those required when surveying objects.

Underwater localization acoustic based approach. Currently, acoustic positioning systems
of various types are often used to support the localization of underwater vehicles and divers.
The possible configurations of a localization system [36] includes Long Baseline (LBL), Short
Baseline (SBL), and Ultra Short Baseline (USBL) acoustic positioning systems. In the LBL
case, a set of acoustic transponders is pre-deployed on the seafloor around the boundaries
of the area of interest and the distance among transponders is typically hundreds of meters.
LBL systems measure the AUV coordinates within the transponder base with constant
accuracy. However, the coordinate measurement error is tens of centimeters and meters,
which is unacceptable for our case. SBL base [37] or USBL transceivers can be permanently
deployed on the seafloor or float on the water surface. However, in both cases, the accuracy
of the coordinate’s measurement decreases with the increasing distance between the AUV
and the transceiver. At a distance of several hundred meters, the error can also be tens of
centimeters and meters.

Other new approaches. Simulation of the behavior of a swarm of underwater drones
(AUV) describes the study [38] and the standoff tracking control of underwater glider
to moving targets is described in [39,40]. It should, however, be noted that many of
the above-mentioned methods bear some disadvantages: some of these have increased
needs in computing resources (which are not always available on board an AUV), others
require training neural networks, while most are designed for urban scenes or an indoor
environment. Therefore, the development of methods to address the “loop closure problem”
remains a highly relevant goal with respect to underwater scenes where GPS cannot be
used, where no pre-built maps and accurate coordinate information about location of the
objects being inspected are available in many cases, and the acoustic positioning systems
used do not provide sufficient accuracy for inspection. These problems even increase as the
depth of the inspected structure’s position grows.

However, in all of the above studies, the problem of calculating the AUV trajectory
directly in the coordinate space of a local underwater object is not solved, and insufficient
attention is paid to the use of 3D data obtained as a result of a video image. In particular,
the use of spatial coordinates makes it possible to efficiently perform object recognition
and AUV coordination relative to objects. As for the methods for recognizing underwater
places and using artificial neural networks, they remain quite computationally laborious or
require preliminary preparation.

In general, analysis of the above works has shown that the potential of video informa-
tion is not fully implemented in most modern AUV navigation systems. It should also be
noted that the growing demands for high-precision AUV navigation in terms of practical
applications necessitate further research in this field.

An important requirement to methods designed is also the high operating speed,
which is necessary for providing the opportunity to use them in real time mode. The
study [41] describes a technique for visual navigation using stereo imagery with the option
of 3D reconstruction of objects in the subsea environment. This technique of navigation
was used by the authors in the following works [42–44]. A technology for referencing
the AUV coordinates to a subsea object, based on the use of a preset 3D point model of
the object and the application of the structural coherence criterion when comparing 3D
points of the object with the model, is proposed in [42]. This technology was developed to
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reduce computational costs by using a limited number of characteristic points with known
absolute coordinates [43]. Interesting results were obtained when tracking an underwater
pipeline based on the integration of two sensors: a stereo video camera and a laser line [44].

In the present article, we provide a new approach to addressing the issue of accurate
AUV navigation using video information in the of a subsea production system (SPS)
coordinate space when performing inspection missions.

The approach is based on the integrated use of the proposed virtual coordinate refer-
ence network of AUV to objects of the subsea production system and also the visual naviga-
tion method and the underwater object recognition method that we previously developed.

The proposed technology is aimed at improving the accuracy of calculation of the
AUV localization with respect to the underwater objects being inspected, while minimizing
computational costs.

The present paper is structured as follows. In Section 2, the problem is formulated
and a general approach to its solution is described. Section 3.1 shows forming a virtual
coordinate reference network. In Section 3.2, referencing of the AUV to reference points
during a working mission is described. Sections 3.3 and 3.4 describe calculation of the
AUV inspection trajectory using a virtual coordinate referencing net. In particular, the
algorithm for calculating the AUV trajectory in the SPS coordinate space is described with
an example of its use. Section 4 shows experimentation to evaluate the efficiency of the
approach proposed. Section 5 presents a discussion. Section 6 briefly describes the essence
of the study conducted and specifies its further development.

2. Problem Statement: Description of the General Approach

It is assumed that, when performing an inspection, the standard navigation systems on
board an AUV do not provide the sub-meter accuracy required for inspection. These means
are only used for organizing the AUV’s approach to the object to be inspected. Therefore,
the issue of AUV navigation using video information, which can potentially provide a
high-precision coordination of AUV with respect to an underwater object, is considered
attentively. AUV is suggested to be equipped with a stereo camera recording a video stream
during the vehicle’s movement along the trajectory planned for the inspection mission. A
local cluster of SPS consisting of several underwater objects distributed over a limited area
is considered as an object of inspection (a schematic example of an SPS cluster, as a virtual
scene, is shown in Figure 1). The SPS has a two-level structure. Each object is characterized
by its own geometric model, which is represented by 3D feature points (FP) that define
the spatial structure of the object [23]. The FP coordinates are set in the coordinate system
(CS) of the object model. At the top level, all object models are combined into a SPS model.
The CS of each object is referenced to the SPS CS via a coordinate transformation matrix.
The goal is to organize the precision movement of the AUV in the SPS CS using the visual
navigation method (VNM) in real time mode.

Since the visual odometry technique tends to accumulate navigation errors during
long movements [26], in this article, we present an approach based on the application of a
virtual coordinate reference network (VCRN) to improve navigation accuracy and reduce
computational costs. The VCRN consists of two types of reference points. Reference points
of first type PR1 are aimed at reducing the error of the VNM used [41], while the AUV is
making long-distance movements during inspection.

Reference points of second type PR2—direct referencing of the AUV coordinates to
a subsea object through the use of our previously developed technique of object recogni-
tion/identification [42,43]—provides referencing of the CS of the current AUV position to
the SPS CS, and, accordingly, provides calculation of the AUV trajectory in the coordinate
space of the SPS.
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Figure 1. Local cluster of subsea production system (SPS).

According to the proposed technique, periodic inspection of the SPS cluster using AUV
begins with a preliminary (overview, or survey) run over the cluster objects. The survey
trajectory is set in such a way to move over the most characteristic places of the cluster
(places with the highest probability of identification). Moreover, the trajectory should be
such a length to make the error of video dead-reckoning accumulated during the movement
remain within the required sub-meter accuracy. During the survey run, the initial state of
the VCRN is formed. During subsequent runs performed to inspect structures, additional
PR1 can be created. As a result, with each run along the new trajectory, the virtual network
grows thicker, which eventually increases the accuracy of AUV navigation in the area of
SPS location in subsequent operation sessions.

PR1 is understood as some position of the survey trajectory of the AUV, with which the
data set is associated, required to link the CS of the current position of the AUV (inspection
trajectory) and CS PR1. This data set includes:

• a stereo-pair of images taken with the camera at this position of the AUV trajectory;
• coordinates of this AUV position in the CS of the initial position of the AUV trajectory

(with VNM used);
• matrix of geometric transformation of coordinates from the AUV CS at the initial

trajectory position into the PR1 CS (with VNM used);
• parameters of filming that determines the part of the bottom visible to the camera;
• measure of the localization accuracy of this PR1.

AUV’s coordinate referencing to the PR1 allows partial reduction in the error accu-
mulated by visual odometry in the previous segment of the trajectory due to the use (at
the “loop closing” moment) of more accurate navigational data stored in VCRN PR1. At
the same time, significant computational costs are not required in the referencing process
because only a single transformation is calculated: from the CS of the current AUV position
into the PR1 CS; the data already calculated and stored in PR1 is used.

A necessary condition for referencing is the presence of a visible area common for the
AUV video cameras from the current position and from the PR1.

Reference points of second type PR2 are used for the transformation from the CS of
PR2 into the CS of the SPS object. Each PR2 stores a matrix of AUV referencing to one of
the SPS objects. The process of forming and referencing to PR2 is the same as that for PR1,
but, unlike it, PR2 s can be located all along the trajectory, since the error in calculating the
matrix above is not related to the trajectory length.

It should be emphasized that the inspection operation does not necessarily require the
use of exact absolute coordinates (in the external CS) of AUV since the mere knowledge
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of its location in the SPS coordinate space is sufficient to control AUV movements with
respect to SPS objects.

The calculation of the AUV trajectory can be performed both in the CS of the object and
in the external CS, which is considered to be the CS of the initial position of the trajectory.
This CS for the overview (initial) trajectory will be denoted as WCS1, and for the current
(new) trajectory, the analogous CS will be denoted as WCS2. For each new trajectory, the
necessary connection between WCS2 and WCS1 is provided.

Thus, the deployment of VCRN to reference AUV to SPS objects is aimed to maintain
the required accuracy of AUV coordination during long-distance movements along an
inspection trajectory, while minimizing computational costs.

3. Methods

Figure 2 illustrates the coordinate systems and designations applied. The synonyms
initial/overview/survey/trajectory 1 will also be used to designate the preliminary trajec-
tory mentioned below. The WCS1 coordinate system is associated with it. An inspection
trajectory is also called a working trajectory, trajectory 2, or a new trajectory in different
contexts. The WCS2 coordinate system is associated with it.
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Figure 2. Used coordinate systems: WCS—world coordinate system (external CS); WCS1—CS of
AUV at the start position of the survey/initial trajectory (trajectory 1); WCS2—CS of AUV at the
start position of the inspection/working trajectory (trajectory 2); CS AUVj1—CS of AUV at position
j1 of the inspection trajectory; CS AUVj2—CS of AUV at position j2 of the inspection trajectory; CS
PR1

i1—CS of the first type reference point of virtual of network VCRN on the survey trajectory at
position i1; CS PR2

i2 —CS of the second type reference point of virtual network VCRN on the survey
trajectory at position i2. Relationships between coordinate systems are indicated by dashed lines.

The following designations will further be applied:

• SWCS2
2 is the trajectory 2 starting point in the WCS2;

• SWCS1
2 is the trajectory 2 (working) starting point in the WCS1;

• PAUV
i is the AUV coordinates in the AUV CS at the i position of trajectory 2,

i.e., PAUV
i (0, 0, 0, 1);

• PSPS
i is the AUV coordinates at position i of the trajectory 2 in the SPS CS;

• PWCS1
i is the coordinates of point Pi at the position i trajectory 2 in the WCS1;

• PWCS2
i is the coordinates of position Pi at the position i trajectory 2 in the WCS2;

• objn SPS is the SPS object with identifier n;
• PRt

s—reference point of the type t at position s trajectory 1 (t = 1—first type, t = 2—second
type, s—position number, if s = cur, then at current position);
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• Hi,PRt
S

is the coordinate transformation matrix from the AUV CS at the ith position of

trajectory 2 into the CS of PRt
s of VCRN at position s of trajectory 1;

• HWCS1,WCS2 is the coordinate transformation matrix from the WCS2 to the WCS1;
• Hi,j is the coordinate transformation matrix from the ith position to the jth position of

trajectory 2 in the WCS2 (obtained by the VNM);
• H1,j is the coordinate transformation matrix from the start point of trajectory 2 into the

jth position of the AUV trajectory (in the WCS2);
• HPR2

s ,objnSPS is the coordinate transformation matrix from the CS of PR2 (trajectory 1)
into the CS of the SPS object n, stored in PR2.

3.1. Forming a Virtual Coordinate Reference Network

The reference process consists of several steps:

1. comparison of feature points in the stereo-pair images taken from the current position
of the AUV trajectory and the stereo-pair images stored in a data set associated with a
virtual point of referencing;

2. calculation of spatial coordinates of the respective two 3D clouds from the resulting
set of features compared;

3. calculation of the local coordinate transformation matrix relating the CS of the current
AUV position and the CS of reference point;

4. extraction of the stored transformation matrix into the required CS. In the case of
referencing to an SPS object, use of the object recognition algorithm with calculation
of the reference matrix.

3.1.1. Formation of First Type Reference Points

As noted above, the initial state of VCRN is formed when the AUV is moving along
a trajectory over the SPS for the first time. With the repeated inspection procedures over
the same SPS places, the VCRN is extended. PR1 are always generated at the initial part
of the trajectory, where no significant accumulation of error occurs in the VNM operation.
A respective data set is generated and stored in PR1 (see above). Since the cumulative
error in the navigation accuracy calculation depends on a multitude of factors (such as
seafloor surface topography, speed of AUV movement, frame rate, trajectory parameters,
and calculated step on the trajectory), the threshold value for determining the length of
the initial trajectory segment is estimated experimentally. Accordingly, the number of PR1

formed in this trajectory segment is selected in advance, for the reason of tradeoff between
the requirements to navigation accuracy and the need for real-time mode. The necessary
“relation” of the two trajectories to build up VCRN implies referencing the second trajectory
to the WCS of the initial trajectory. There are two possible options for the spatial position of
the new trajectory starting point relative to the initial trajectory starting point (Figure 3).

In the first option, the new trajectory starting point is located in the neighborhood
of the initial trajectory starting point (Figure 3a). In this case, the relation is performed
by comparing features in the stereo-pair images taken at the initial positions of the for-
mer and latter AUV trajectories (similar to that performed in VNM when calculating the
local transformation).

Thus, the coordinates of the new trajectory starting point are calculated as follows:

SWCS1
2 = SWCS2

2 ·HWCS2,WCS1 (1)

where SWCS1
2 is the new trajectory starting point in the WCS1; SWCS2

2 is the new trajectory
starting point in the WCS2; HWCS2,WCS1 is the matrix of geometric transformation from
the CS of the new trajectory starting point to the CS of the initial trajectory (obtained by
matching the features on the images related to the starting positions of the two trajectories).
Here and below in the text, we use the matrix form of geometric transformations, where a
point is represented by a line of homogeneous coordinates, while the matrix has a dimension
of 4 × 4.
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In the second option, the new trajectory start point is located at a distance from the
initial trajectory start point (outside its neighborhood) (Figure 2b). In this case, the new
trajectory is referenced to one of the PR1 of the initial trajectory. The first PR1 to which
referencing from the point of the new trajectory becomes possible is assumed to be such a
PR1. For this, a stereo-pair of images taken at the point (AUV position) of the new trajectory
and a stereo-pair of images belonging to the PR1 of the initial trajectory are used. The
referencing process is based on the comparison of features in the stereo-pair images, as in
the previous case. Then, the coordinates of the new trajectory start point are converted into
WCS1 as follows:

SWCS1
2 = SWCS2

2 ·H1,j·Hj,PR1
i
·HPR1

i ,wcs1 (2)

where SWCS1
2 is the new trajectory start point in the WCS1; SWCS2

2 is the new trajectory
start point in the WCS2; H1,j is the coordinate transformation matrix from the WCS2 of
the new trajectory start point into the CS of the jth position of the new AUV trajectory;
Hj,PR1

1
is the coordinate transformation matrix from the CS of the jth position of the new

AUV trajectory into the CS of the PR1
i (ith position of initial trajectory); HPR1

i ,WCS1 is the

coordinate transformation matrix from the CS of the ith position initial trajectory into
the WCS1.

3.1.2. Formation of Second Type Reference Points

The use of PR2 points solves the same “loop closing” problem—implementation of the
navigational advantages of revisiting the same places—as done by the use of PR1. In the first
case the trajectory of the AUV is refined due to the more accurate navigation information
stored in PR1; in the second case the conversion from the AUV CS into the coordinate space
of the SPS object is calculated using the algorithm of SPS object recognition. It is essential
that access to the recognition algorithm can be made from any point of the trajectory. PR2

points are formed at the first access to the algorithm; at subsequent references to PR2, the
already calculated coordinate conversion matrix is used. PR2 stores a set of data similar to
that stored in PR1, which allows for referencing the AUV to PR2.

Algorithm of referencing the AUV coordinates to SPS object. The input data for the
algorithm are images taken with the stereo camera and a pre-built geometric model of
SPS. The SPS object model is a set of 3D points belonging to it, which characterize its
spatial structure. The points are set in the CS related to this object. At the first stage
of the algorithm’s run, characteristic points to build the 3D cloud are highlighted in the
images obtained with the camera (using a Harris Corner Detector). The points of the 3D
cloud are described in the AUV CS. Then, recognition of the subsea object is performed
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based on the analysis of the points of the obtained 3D cloud. The analysis consists in
searching for 3D points that match the geometric model of the object. The matching of the
identified 3D cloud points to the points of the object model is evaluated on the basis of a
structural coherence test (similar relative positions of spatial points in the compared sets).
The transformation matrix, relating the AUV CS and the CS of the SPS object, is calculated
using the identified points. A detailed description of the algorithm can be found in [44,45].

3.2. Referencing of AUV to Reference Points during a Working Mission

To be successful, the planned inspection mission requires precision navigation of AUV
in the SPS space, in particular, coordination of the AUV relative to each of the SPS objects.
The necessary accuracy is achieved through the coordinated operation of the VNM, the
technique of AUV referencing to the PR1 and PR2 of the formed virtual network VCRN.
While the AUV is moving along the trajectory, regular search and referencing to the specified
reference points (if possible) are carried out, and the AUV position in the SPS CS is calculated.
The data stored in reference points of VCRN are used. During referencing to PR1, the error
in the VNM operation is partially reset due to the “loop closing problem” solution, while the
minimization of computational costs in referencing the AUV to SPS structures is provided
by using the conversion matrices from AUV CS to SPS CS, stored in PR2.

The work of the AUV to PR1 referencing algorithm (in the case of a single trajectory) is
illustrated in Figure 4. The search and verification of reference points to which referencing
is possible is carried out on the basis of known data on the camera parameters and the
calculated trajectory parameters (AUV position coordinates etc.). A necessary condition is
the overlap of the seafloor area visible for the stereo camera at the current ith position of the
trajectory, and the corresponding visibility area for PR1. The overlap is calculated using a
threshold distance that guarantees the necessary degree of overlap of visibility areas. Here,
the predicted rate of accumulation of the AUV navigation error through dead-reckoning is
also taken into account. In the case of multiple AUV’s runs over SPS objects, all coordinate
calculations should be performed in a single coordinate space, which is provided by the
presence of a geometric transformation between WCS1 and WCS2. The WCS1 and WCS2
are related by the visual odometry technique.
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Calculation of the coordinate transformation matrix Hpos i, PR1 , relating the AUV CS
at the ith position and the PR1 CS when the condition of overlapping visibility areas is
satisfied, is performed by the ICP algorithm.

After referencing the AUV to the PR1, the current result of the VNM operation at the
ith position is adjusted by using stored data. The adjustment is performed as follows: the
chain of local transformations, accumulated from the initial position to the ith position, is
replaced by a shorter one belonging to PR1, plus the transformation H relating the current
position with PR1. In Figure 4, a segment of the trajectory from the start position to the
PR1 position corresponding to this short chain is highlighted as a bold line. Thus, the error
corresponding to the trajectory segment from PR1 to the ith position (in the figure, this
segment is highlighted as a thin line) is reset, which leads to an abrupt decrease in the error.

The coordinate referencing of AUV to PR2 is performed in a similar way using the
ICP algorithm that links the CS of the current position of the AUV and the CS of PR2.

The direct referencing of the AUV to the SPS object is performed using the transforma-
tion matrix stored in PR2 (obtained during the formation of PR2 using the above mentioned
recognition algorithm).

3.3. Calculation of the AUV Inspection Trajectory Using Virtual Coordinate Referencing Net

The proposed technique for calculating the inspection trajectory is based on regular
AUV referencing to the reference points of VCRN during movement. The computational
scheme for calculating the trajectory is shown in Figure 5. After the AUV enters the specified
area of the SPS location (using standard navigation systems), the visual navigation system
starts working. In this case, the potential for referencing an AUV to any reference point
is evaluated:

• the AUV localization relative to the points of referencing of the virtual network VCRN
is checked continuously (with a certain frequency). For each point of referencing, the
square of the neighborhood is outlined (with rough coordinate setting in the external
CS); i.e., a test is performed if the AUV position belongs to this neighborhood;

• after confirming the AUV’s entry into the neighborhood area, the possibility of ref-
erencing the AUV to the point of referencing is tested, i.e., availability of a common
visibility area is checked (based on the known data on camera parameters and calcu-
lated trajectory parameters). Upon confirming the possibility of referencing, the AUV
is referenced to the virtual point. If referencing was done to the PR1, then the current
position is corrected. This leads to a step-like increase in navigation accuracy. If the
referencing was done to the PR2, then the AUV coordinates at subsequent positions
are calculated using the matrix of referencing to the SPS object that is stored in the PR2.

As shown in the computational scheme (Figure 5), the trajectory calculation algorithm
is based on the following main points:

1. the inspection trajectory conditionally divided into segments determined by the points
of AUV referencing to PR1 and to PR2;

2. the trajectory is calculated for each of the segments in taking into account the previous
AUV referencing;

3. the calculation of AUV motion within a segment is performed by the VNM method
(visual odometry);

4. the calculation of the AUV coordinates in the SPS object CS and/or in WCS1 (initial
trajectory CS) on the current segment is provided by the joint use of the VNM method
and the data stored in the involved virtual network reference points.

For PR1, these are the coordinates of the reference point and the coordinate transfor-
mation matrix in WCS1, which improves navigational accuracy. For PR2, this is the matrix
of direct binding of AUV to the SPS object, which allows for reducing computational costs.

The corresponding resulting coordinate transformation matrices are constructed based
on the union of the above participating coordinate transformation matrices.
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3.4. Demo Example of the Trajectory Calculation Algorithm Using VCRN

As mentioned above, the inspection/working trajectories are divided into two types,
depending on the proximity of the starting point of the working trajectory to the starting
point of the initial/survey trajectory, since each type implements its own way of linking
WCS2 (CS of the working trajectory) with WCS1 (CS of the initial trajectory). For a clearer
representation of the algorithm, consider examples of how it works for each of the two
types of work trajectories:

• the starting point of the working trajectory is located in the neighborhood of the ini-tial
trajectory beginning;

• the starting point of the working trajectory is located outside the neighborhood of the
initial trajectory beginning.



Remote Sens. 2022, 14, 5123 12 of 23

3.4.1. Close Location of the Starting Points of the Trajectories

Figure 6 illustrates the process of calculating the coordinates of the current position of
the AUV inspection trajectory using coordinate referencing to the virtual PR1 and PR2 of
VCRN located on the initial trajectory.
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We refer to the last point to which referencing was made from some position of
the inspection trajectory as the current point of referencing. Denote the current point of
referencing as PR1

cur for PR1 and as PR2
cur for PR2. After referencing to PR2

cur at the ith

position, the AUV coordinates at an arbitrary position (i + d) can be calculated using VNM
and by coordinate transformation into the CS of the SPS object, stored in PR2

cur. Note that,
according to the above described SPS model, the CS of each SPS object is related to the
SPS CS and, therefore, the resulting conversion from the AUV CS into the CS of the SPS
object also means referencing to the SPS CS. The VNM technique provides the conversion
of Hi,i+d from the CS at the ith position (at which the referencing to PR2

cur was performed)
into the CS of the current position (i + d). Then, the desired transformation Hi+d,objnSPS
from the AUV CS at the i + d position of trajectory 2 into the CS of objn SPS is calculated as
follows:

Hi+d,objn SPS = (Hi,i+d)
−1·Hi,PR2

cur
·HPR2

cur,objn SPS
(3)

HPR2
cur ,objnSPS is the transformation matrix from the CS of PR2

cur into the CS of the SPS object
n, stored in PR2

cur.
Accordingly, the AUV coordinates are recalculated from the CS of the AUV position

(i + d) into the CS of SPS as follows:

PSPS
i+d = PAUV

i+d (0, 0, 0, 1)·Hi+d,objn SPS (4)

PAUV
i+d (0, 0, 0, 1) is the AUV uniform coordinates at position (i + d) of trajectory 2 in the CS

related with the AUV.
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In the next segment of trajectory 2 (after being referenced to PR1
cur), the transformation

Hj+k,objnSPS from position j + k into the CS of SPS objn is calculated in a similar way:

Hj+k,objnSPS =
(

Hi,j+k

)−1
·Hi,PR2

i
·HPR2

i ,objnSPS (5)

Since referencing to PR1
cur is performed at the jth position, the position of the AUV in

the WCS1 can be refined due to this reference:

PWCS1
j+k = PWCS2

j+k ·
(

Hj,j+k

)−1
·Hj,WCS1 (6)

Thus, the matrix Hj,WCS1 is calculated as follows:

Hj,WCS1 = Hj,PR1
cur
·
(

HPR1
cur,WCS1

)
(7)

where HPR1
cur ,WCS1 is the coordinate transformation matrix from the CS of PR1

cur (calculated
when forming PR1

cur) into the WCS1.

3.4.2. The Far Location of the Starting Points of the Trajectories

First, calculate the matrix relating the WCS2 with the WCS1, using the AUV reference
at point Pj1 of trajectory 2 to PR1

i1 of trajectory 1 (see Figure 7)

HWCS2,WCS1 = HS2,j1·Hj1,PR1
i1
·
(

HWCS1,PR1
i1

)−1
(8)
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The coordinates of the start point S2 in the WCS1 will be, accordingly, as follows:

SWCS1
2 = SWCS2

2 ·HWCS2,WCS1 (9)

Now calculate trajectory 2 by the proposed technique in each of the segments separately.

1. Calculation of trajectory 2 in the segment [S2, Pj1].

Since AUV movement is controlled in increments, in the absence of reference to PR1

and to SPS objects, therefore, both WCS1 and WCS2 can be used. Then, the coordinates of
an arbitrary point Pk1 at position k1 (trajectory 2) are transformed in the WCS1 as follows:

PWCS1
k1 = SWCS2

2 ·H1,k1·HWCS2,WCS1; (10)

In the WCS2, the coordinates are as follows:

PWCS2
k1 = SWCS2

2 ·H1,k1 (11)

2. Calculation of trajectory 2 in the segment
[
Pj1, Pj2

]
Calculate the coordinates of an arbitrary point Pk2 at position k2 in the WCS1:

PWCS1
k2 = PWCS2

k2 ·
(

Hj1,k2

)−1
·Hj1,WCS1 (12)

Here, the matrix Hj1,WCS1 is calculated by the following equation:

Hj1,WCS1 = Hj1,PR1
i1
·
(

H1,PR1
i1

)−1
(13)

where H1,PR1
i1

is the coordinate transformation matrix from the position S1 to position i1 of

trajectory 1 (calculated when forming PR1
i1).

3. Calculation of trajectory 2 in the segment
[
Pj2, Pj3

]
:

At position j2, the AUV is referenced to the SPS object. As the AUV proceeds to
position j3, the VNM works with its respective error accumulation.

Calculate the coordinates of an arbitrary point Pk3 in the CS of SPS:

PSPS
k3 = PAUV

k3 ·
(

hj2,k3

)−1
·Hj2,PR2

i3
·HPR2

i3,SPS (14)

where HPR2
i3,SPS is the coordinate transformation matrix from the CS of PR2

i3 to the CS of
SPS (obtained using the algorithm of AUV referencing to SPS).

Now we can relate the two coordinate systems: WCS1 and CS of SPS. For this, calculate
the coordinates of three points in this segment in the CS of SPS (using Equation (14)) and
in the WCS1. The coordinates of the point in the WCS1 are calculated using the current
reference of AUV to PR1 (in this case, it is PR1

i1) by:

PWCS1
k3 = PAUV

k3 ·
(

Hj1,k3

)−1
·Hj1,WCS1 (15)

For calculation of the matrix Hj1,WCS1, see Equation (13).
Using these three points, calculate the transformation matrix HWCS1,SPS (which will

be required for calculating the trajectory in the following segment).

4. Calculation of trajectory 2 in the segment
[
Pj3, E2

]
:

There are two possible approaches to calculating the coordinates of an arbitrary point
PAUV

k4 in the segment
[
Pj3, E2

]
in the coordinate space of SPS:

Approach 1. The coordinates of an arbitrary point PAUV
k4 in the segment

[
Pj3, E2

]
in the

WCS1 are calculated using the AUV reference to PR1
i2 (the reference is assumed to reset the
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error accumulated by visual odometry in the segment [j2, j3]). The previously obtained
transformation HWCS1,SPS is applied to these coordinates:

PSPS
k4 = PAUV

k4 ·
(

Hj3,k4

)−1
·Hj3,PR1

i2
·
(

HWCS1,PR1
i2

)−1
·HWCS1,SPS (16)

where HWCS1,PR1
i2

is the coordinate transformation matrix from the WCS1 to the CS of PR1
i2

(calculated when forming PR1
i2).

Approach 2. The coordinates of an arbitrary point PAUV
k4 in the segment

[
Pj3, E2

]
are

calculated using the last AUV reference to SPS (the same as for PSPS
k3 ), i.e., as follows:

PSPS
k4 = PAUV

k4 ·
(

Hj2,k4

)−1
·Hj2,PR2

i3
·HPR2

i3,SPS
(17)

4. Results

To assess the efficiency of the proposed technique (compared to the standard visual
odometry technique), two types of experiments were set up with:

• a virtual scene on the base of simulator [45];
• a manually used Karmin2 stereo camera under laboratory conditions.

The personal computer specifications were as follows: AMD Ryzen 9 3900X 12-Core
Processor 3.60 GHz//32Gb//AMD Radeon 5600XT. A Karmin2 camera (Nerian’s 3D
Stereo Camera, baseline 25 cm) was used for the laboratory experiment. For processing the
imagery taken, the feature detector SURF from the OpenCV library was used.

4.1. Simulator

The simulator used for experiments is designed to solve the problems of developing,
researching and debugging algorithms and methods used in the robot control system.
Examples of such tasks are: automatic navigation; search and survey of underwater
objects; survey missions; construction of terrain maps; and "intelligent behavior" algorithms
(trajectory planning, obstacle avoidance, emergency situations processing, group works).
The main functionality of the simulator:

• simulation of the mission of the robot;
• modeling of the external environment;
• simulation of the operation of sensor onboard equipment.

Other functionality allows you to:

• use the simulator as a training complex for AUV operators;
• test the operability of the AUV equipment and onboard software when it is connected

to the virtual environment of the simulation complex in the HIL mode (real equipment
in the simulation cycle);

• visualize simulation results for any moment of the mission.

The simulator architecture is built using distributed computing, a client-server model,
plugin technologies, and hybrid parallelism (GPGPU + CPU) in functional blocks.

4.2. Virtual Scene

The experiment consisted in comparing the accuracy of the technique proposed here
with that of the standard visual odometry technique for calculating an AUV inspection
trajectory. For each of the techniques, the error relative to the true (set in the model)
trajectory was calculated. The experiment was conducted as follows:

1. in the initial segment of the preliminary trajectory (trajectory 1), PR1 of VCRN
were formed;

2. for the working trajectory (trajectory 2), the AUV navigation error was calculated in
two variants:

(a) with the use of visual odometry only;
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(b) using (in addition to visual odometry) two types of coordinate references:
referencing to the PR1 of VCRN and direct referencing to SPS object using the
above-mentioned authors’ algorithm [43].

The scene generated in the simulation system [45] with an AUV moving along the
trajectory over a SPS is shown in Figure 8; the shapes of trajectories 1 (base trajectory)
and 2 (working trajectory) are shown in Figure 9a (in the seafloor plane). When modeling
the seafloor topography, an actual texture was used. The altitude of the AUV movement
over SPS objects was from 3 m to 5 m, the frame rate was 10 fps, and the image resolution
was 1200 × 900. The AUV coordinates were calculated at the trajectory positions every
10 frames of photography. Therefore, the numbers of the positions indicated in the figures
below correspond to the time values of the AUV movement measured in seconds.

Figure 9b shows a graph of the error of trajectory 1 calculated by the standard tech-
nique. The error is calculated as a deviation from the trajectory set in the model. In the
initial segment of trajectory 1, at positions 9 and 18 (see Figure 9a,b), the virtual points
of referencing PR1

1 and PR1
2 of VCRN are formed, to which the coordinates of the AUV

moving along trajectory 2 are referenced. The AUV’s referencing the specified PR1 is
respectively performed at positions 45 and 57 of trajectory 2 (Figure 9a). The AUV is also
directly referenced to the SPS object at position 51 by the above algorithm [43].

Trajectory 2 was calculated by the proposed technique for each of the segments (similar
to the diagram in Figure 7) using Equations (10)–(15). It was necessary to evaluate how
these two types of coordinate references (to the points of referencing PR1 VCRN and to the
SPS CS) reduce the cumulative error (characteristic of visual odometry during long-distance
AUV movements) when calculating the AUV’s trajectory 2.
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Figure 9. The virtual scene: (a) position numbers 9 and 18 of two PR1 of VCRN are indicated on the
AUV preliminary pass trajectory (trajectory 1). On the working trajectory (trajectory 2) the respective
numbers 45 and 57 of the binding positions of AUV to these PR1 of VCRN and the number 51 of
the binding position to the SPS object are indicated. The trajectories are shown in the plane of the
seabed; (b) the graph of the error of the preliminary run (trajectory 1). Points PR1

1 and PR1
2 of VCRN

are formed at positions 9 and 18, respectively.

Prior to the above-described experiment, estimates of the accuracy of the programs
used for referencing the AUV coordinates to the SPS CS and to VCRN were obtained for
this scene:

1. for the technique of direct AUV referencing to SPS, an error of 5.4 cm was obtained in
this scene;

2. the error of referencing to VCRN in this case is determined by referencing to the two
above-indicated PR1.

The accuracy error during generation was for them (see Figure 9b), respectively, 3.3
and 5.2 cm. Ultimately, the navigation error of the AUV at the current position after binding
to PR1 is the sum of the PR1 error and the coordinate transformation error between the
PR1 CS and the trajectory position CS. The graph of the error in calculating trajectory 2
by the proposed technique compared to that obtained by the standard technique for this
virtual scene is shown in Figure 10. As can be seen from the graph, the error of navigation
in referencing to the VCRN points decreases abruptly.
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With the reference to the first PR1 (at position 45), the error decreased, as compared
to the standard technique, from 27.1 cm to 9.4 cm. In the case of reference to the SPS CS,
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the error decreased (after increasing to 16.7 cm) to 8.7 cm vs. 43.6 cm for the standard
technique. In the case of reference to the second PR1 (at position 57), the error decreased to
14.2 cm vs. 51.8 cm for the standard technique.

Thus, both types of reference points reduce the AUV navigation error accumulated
by the VNM method stepwise to an acceptable level. The difference between them is that:
a) the efficiency of PR1 points (in terms of accuracy) is higher, the closer they are to the
beginning of the trajectory. While the effectiveness of PR2 points does not depend on
their location on the trajectory, it is determined by the accuracy of reference to the object,
which is provided by the applied referencing algorithm; b) items of the first type provide
AUV coordination in the WCS, and PR2 items provide coordination directly in the CS of
the object.

4.3. Experiment with a Karmin2 Camera

The experiment was set up under laboratory conditions: the camera was moved
manually at an altitude of 1.5 m from the floor at a speed of ≈0.25 m/s. As in the experiment
with the virtual scene, a run with the camera was made, first, along a “preliminary”
trajectory (trajectory 1) for organizing the VCRN (the trajectory was calculated by the visual
navigation technique) and then along the “working” trajectory (trajectory 2) (see Figure 11a)
that was calculated by applying our proposed technique.

The efficiency of the proposed technique was evaluated by comparing the results of
calculation of trajectory 2, which was obtained in two ways:

1. the traditional visual odometry technique;
2. the proposed technique, i.e., using coordinate referencing to the PR1 and PR2 of VCRN.

A paper box was used as an object. The accuracy error of the camera localization was
estimated as a deviation of the calculated trajectory from the true (drawn on the floor)
trajectory. In this case, a trajectory projection onto the floor was calculated, since it was
difficult to accurately measure the Z-coordinate for the moved manually camera. The start
points of the trajectory 1 and 2 in this experiment are superimposed only for the purpose of
avoiding the additional error in calculating the result; in actual scenes, this is not necessary.
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Figure 11. The real scene: (a) the preliminary run trajectory and the “working trajectory” with
the specified points of referencing to the two PR1 and to the object on the floor (in the XY plane);
(b) graph for error of preliminary trajectory (trajectory 1). Points PR1

1 and PR1
2 of VCRN are formed

at positions 32 and 68, respectively.

On trajectory 1 (see Figure 11a), two PRs were formed: PR1
1 at position 32 and PR1

2 at
position 68. The photograph frame numbers are plotted along the X-axis. As can be seen in
the graph (see Figure 11b), the accuracy error for trajectory 1 at position 32 is 0.028 m; at
position 68, it is 0.031 m. This accuracy fits the purpose of PRs.

Figure 12 shows a comparison between the accuracies of trajectory 2 calculation by
the standard technique (visual odometry) and by the proposed technique. The referencing
to PR1

1 was performed at position 200; the referencing to PR1
2, was at position 261; and the
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direct coordinate referencing to the object (the box) was at position 239. The graph shows
that the error in the initial segment of the trajectory up to position 200 increases (due to the
accumulation of the error of the visual odometry technique); after referencing to PR1

1, it
decreases from 0.142 m to 0.062 m. Then, the error increases again (due to the accumulation
of visual navigation error) to 0.086 at position 231 and becomes 0.115 m after referencing
to the object (this accuracy is provided by the algorithm for recognition and referencing
to the object). The error value at this position for the visual odometry technique is higher,
0.134 m. Then, the error increases from 0.115 m to 0.120 m at position 261 also due to the
error accumulation, and, upon referencing to PR1

2, it decreases to 0.078 m.
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Assessment of computational costs. It follows from the analysis of the computational
scheme (Figure 5) that the main computational costs are in the calculation of the local trans-
formation performed at each step in the VNM method. However, this cost is significantly
lower due to the use of the results of the most labor-consuming operations (extraction and
comparison of 2D features in stereo-pair imagery, construction of a 3D cloud belonging to
PR1) stored in the PR1.

To obtain specific estimates on the cost of referencing to PR1, measurements were
made on an actual trajectory with a length of 38.4 m, including 397 frames. The trajec-
tory was filmed with a Nerian Karmin2 stereo camera providing an image resolution of
1600 × 1200 × 2 px (stereo) and a frame rate of 10 fps. The trajectory was calculated by the
VNM technique. The cost of referencing to a single reference point was estimated. The cost
of calculating one frame by the VNM technique (using an AMD Ryzen 9 3900X) amounted
to 271.3 ms. The additional cost of detection and referencing to a single virtual point was
37 ms, which constituted 13.6% relative to the VNM cost. Hence, we can draw a general
conclusion that the computational costs of the use of virtual coordinate reference points
when moving along the inspection trajectory are quite acceptable. Under lab conditions,
the AMD Ryzen 9 3900X produces approximately 5 fps. To test the speed on a weaker CPU,
the algorithm was tested on an available Intel Core i5-2500K, where approximately 1.2 fps
was obtained. The more productive Intel Core i7-1160G7, which is installed on modern and
promising AUVs, (https://www.cpubenchmark.net/compare/Intel-i5-2500K-vs-AMD-
Ryzen-9-3900X-vs-Intel-i7-1160G7/804vs3493vs3911, Sydney, Australia, 12 August 2022) is
guaranteed to deliver over 1 fps.

To increase the operating speed of the visual navigation system in general, a less
cost-consuming VNM is required.

https://www.cpubenchmark.net/compare/Intel-i5-2500K-vs-AMD-Ryzen-9-3900X-vs-Intel-i7-1160G7/804vs3493vs3911
https://www.cpubenchmark.net/compare/Intel-i5-2500K-vs-AMD-Ryzen-9-3900X-vs-Intel-i7-1160G7/804vs3493vs3911
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5. Discussion

It can be seen from the comparative graph for the virtual scene (Figure 10) that from
a certain point in time of the AUV movement (in this case, from the 30th second) the
accumulated navigation accuracy error begins to grow rapidly. Referencing to VCRN
points, as expected, reduces the error almost to the value of the error of the point itself.
At that, the error in the PR1

1 point is less than in the PR1
2 point. This follows from the

fact that the PR1
2 point was formed on trajectory 1 later than the PR1

1 point. Points of
direct referencing to the object also reduce the error to an acceptable level. They may or
may not be on trajectory 1, as shown in the example in Figure 7 and in the experiments
(Figures 9a and 11a). In the first case, the referencing matrix calculated by the applied
referencing algorithm is stored in the referencing point PR2 and can be used in subsequent
inspection paths (reduction of computational costs). In the second case, the reference to the
object is carried out after the execution of the mentioned referencing algorithm. Additional
time is then spent, but the advantage is that coordinate referencing can be performed
without preliminary generating PR2 on trajectory 1.

Analysis of the comparison results for the real scene presented in Figure 12 confirms
the results obtained for the virtual scene. In particular, points PR1

1 and PR1
2 reduce the

accumulated error in the same way as for the virtual scene. The accuracy of direct coordinate
referencing to an object from the position of the working trajectory may be inferior to VCRN
points (for a real scene with a Karmin2 camera, the error is 0.115 m), but it always remains
within the limits of sufficient accuracy for inspection, since it is determined by the applied
referencing algorithm.

Thus, the regular use of coordinate referencing during AUV movement—referencing
to PR1 and to PR2 of VCRN—allows for acceptable navigation accuracy for the inspection
of artificial subsea structures of the SPS type with acceptable processing times.

Comparison with other methods. Precise localization of AUVs in relation to objects is
a key task for the inspection of subsea systems. There are various methods for solving
this problem, depending on the application specifics, the sensor equipment used, and the
availability of preliminary data. Along with methods based on the integration of traditional
sensors (hydroacoustics, IMU, and other sensors), vision-based navigation methods are
often used as an addition or alternative. They implement feature-based techniques (SIFT,
SURF), including the use of a priori given models, which generally improve the robustness
of estimation [11,46,47]. The navigation strategy for AUVs can be implemented based
on optical payloads [48]. The developed visual-inertial odometry algorithm has been
employed for vehicle translation estimation and this information has been fused with the
altimeter, Inertial Measurement Unit, and Fiber Optic Gyroscope measurements.

However, for long-term AUV movements, it is necessary to neutralize the accumulated
navigation error, which is provided by the methods of solving the “loop closing problem”.
In this context, the virtual net of reference proposed in the article is functionally equivalent
to other applied solutions, but computationally less time-consuming than, for example,
the well-known system [23] mentioned in the Introduction in which, along with other
ideas, a place recognition subsystem based on BoW representation is implemented. In our
article, we do not consider the use of artificial markers [28,29], as well as active lighting [49],
since this significantly limits the possible scenarios for using AUVs. In addition, artificial
markers such as ArUco quickly lose their functionality in the underwater environment due
to biofouling.

The new technology mentioned in the review, which combines an AUV with an
Unmanned Surface Vehicle [50], requires further improvement. Its disadvantages, along
with high cost, include cumbersomeness and significant restrictions on the conditions for
using AUVs (dependence on weather conditions on the sea surface and on the allowable
depths of using AUVs).

The technology of Underwater Wireless Sensor Networks (UWSN) also mentioned
in the review [32,33] is important for monitoring, but not sufficient for other inspection
mission operations. In the considered methods, the AUV localization is calculated in the
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camera coordinate system, but the task of direct calculation and planning of the trajectory
in the coordinate space of the object is not considered. This is important for performing
repair operations with AUV landing on the object. The authors of this article did not find
analogues in the literature that are directly close to the proposed approach. The main result
of this article is that the problem of AUV coordinate referencing to SPS objects is solved
without involving expensive technical means. Only a virtual network of reference points is
used, based on the processing of stereo images recorded when the AUV passes along the
trajectory. A distinctive feature of the proposed approach is the integration of two types of
virtual coordinate referencing, which provide:

1. neutralization of the accumulated visual odometry error when AUV moves between
reference points, and a guaranteed level of navigation accuracy in the object’s coor-
dinate space due to the use of a previously obtained AUV coordinate referencing
matrix to object (reference points are formed when the AUV passes along the survey
trajectory). The calculation of the matrix of referencing to an object is based on the
author’s algorithm for recognizing an object by its geometric model [42,43];

2. reduction of computational costs due to the use of the aforementioned pre-computed
and stored transition matrix to the coordinate space of the inspected object. The
mathematical modeling method is used to confirm the correctness of the theory
presented in the article. The limitations of the method include the fact that the error
in accuracy when processing model scenes is less than for real scenes. This is due
to the use of an ideal camera calibration, as well as the fact that the influence of
the aquatic environment is not taken into account. However, in our case, we are
talking about comparing the standard method for calculating the trajectory with the
proposed method for using the virtual referencing network, all other things being
equal. Therefore, the advantage of the method, confirmed for virtual scenes, should
be maintained at a qualitative level for real scenes.

6. Conclusions

In this article, we present a new approach, based on stereo imagery processing, to
providing accurate AUV navigation during subsea infrastructure inspection in case of
long-distance movements in the coordinate space of SPS. Its major distinguishing feature is
the regular AUV’s referencing to the VCRN and to objects of SPS structure. The proposed
technique can be practically implemented through integrated application of the visual
navigation technique, the technique for generation and use of virtual points of referencing,
and the object recognition technique previously proposed by the authors. In general, this
technique allows for mitigating the cumulative error of visual odometry and providing
a sufficient accuracy of navigation in the SPS space during inspection missions with ac-
ceptable computational costs for the on-board computer. The relevance of the proposed
approach is confirmed by the results of computational experiments set up on the basis of
both model and actual data (obtained with a Karmin2 stereo camera).
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