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Abstract: Aligning indoor and outdoor point clouds is a challenging problem since the overlapping
area is usually limited, thus resulting in a lack of correspondence features. The windows and doors
can be observed from both sides and are usually utilized as shared features to make connections
between indoor and outdoor models. However, the registration performance using the geometric
features of windows and doors is limited due to the considerable number of extracted features and
the mismatch of similar features. This paper proposed an indoor/outdoor alignment framework
with a semantic feature matching method to solve the problem. After identifying the 3D window
and door instances from the point clouds, a novel semantic–geometric descriptor (SGD) is proposed
to describe the semantic information and the spatial distribution pattern of the instances. The best
object match is identified with an improved Hungarian algorithm using indoor and outdoor SGDs.
The matching method is effective even when the numbers of objects are not equal in the indoor and
outdoor models, which is robust to measurement occlusions and feature outliers. The experimental
results conducted in the collected dataset and the public dataset demonstrated that the proposed
method could identify accurate object matches under complicated conditions, and the alignment
accuracy reached the centimeter level.

Keywords: semantic–geometric descriptor; window and door detection; improved Hungarian algorithm

1. Introduction

Three-dimensional (3D) building reconstruction has been studied for decades, and has
promoted the technical development in autonomous navigation [1], augmented reality
(AR) [2], virtual reality (VR) [3], etc. The integration of indoor and outdoor models is
necessary for 3D building reconstruction as it exhibits the full view of the scene rather than
only capturing the “surfaces” from one side [4]. A full 3D building model enables functions
involving both the exterior and interior structures for the above-mentioned applications.
For example, visitors can walk into a building in the VR world, rather than just wandering
in the street [5]. Another example is ancient heritage building preservation, for which a
complete digital model is necessary [6].

However, aligning the indoor and outdoor 3D models is challenging due to the lack of
common visual correspondence [7]. Since the views from the two sides are often blocked by
the walls, there are few overlapping areas, and thus insufficient corresponding features [8].
This problem is further aggravated when the captured data are sparse or incomplete.
The shared objects observed from both sides, such as doors and windows, become the
necessary links for the alignment problem. In earlier works, most researchers used the
objects’ geometric features to build the connection, including points [9,10], lines [7,11]
and planes [12–14]. However, some practical problems limited the performance of such
geometric-based registration methods. On the one hand, a substantial number of geometric
features can be detected, and these features are easily corrupted by measurement noises.
As a result, finding a correct geometric correspondence with many outliers is difficult,
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and the computational cost for the feature matching algorithms is considerable. On the
other hand, the previous geometric-based methods did not consider the 3D property of
objects. Consequently, the matched correspondences may actually describe different parts
of an object, for example, the inside and outside edges of a window frame, which could
cause registration errors.

Therefore, the semantic instance is a reasonable replacement of the geometric features
in correspondence identification. Compared to geometric features, the number of semantic
instances is limited, and the object recognition accuracy is much less sensitive to measure-
ment noises [15]. The first demonstration of using semantic instances is the work in [16],
where the windows were adopted as the alignment reference. They detected the window
instances from RGB images and provided the alignment results by examining the shape
similarity for all possible correspondence pairs. Due to the demand for colorful images,
their method could not be directly applied to point cloud registration. More importantly,
only the shape similarity between objects was considered, but not their distribution pat-
terns. Without the latter constraints, the algorithm loses the global understanding of the
objects’ relative relationship and could fail when multiple objects shared identical or similar
shapes, which is a common phenomenon in the structures of buildings.

In this paper, we proposed an indoor/outdoor point cloud alignment algorithm with
a semantic feature matching method, as shown in Figure 1. The 3D window and door
instances are recognized, segmented and localized from the indoor and outdoor point
clouds, with a similar approach to our previous work [17]. We designed a semantic–
geometric descriptor (SGD) to include both the objects’ semantic information and spatial
distribution pattern. The SGD is utilized to find the best instance matches between the
indoor and outdoor semantic instances, even with unequal numbers of candidates in the
two sets. Then, the indoor and outdoor models can be registered and connected. The major
contributions of this work include:

1. A novel framework to use semantic objects in indoor–outdoor point cloud align-
ment tasks is proposed. It is the first work to include the objects’ distribution pat-
tern in model matching, which inherently prevents the ambiguity caused by objects’
shape similarity.

2. A unique feature descriptor called the SGD is proposed to include both the semantic
information and relative spatial relationship of 3D objects in a scene. The Hungarian
algorithm is improved to detect the same object distribution patterns automatically
and output optimal matches.

3. The algorithms are tested on both an experimental dataset and a public dataset.
The results show that the SGD-based indoor–outdoor alignment method can provide
robust matching results and achieve matching accuracy at the centimeter level.

The rest of the paper is organized as follows. In Section 2, related works about indoor
and outdoor registration are introduced. The window and door detection method and the
procedure of SGD generation are proposed in Section 3, followed by the SGD matching
algorithm in Section 4. The experiential results in Section 5 demonstrate the effectiveness
of the proposed method and the paper is concluded in Section 6.
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Figure 1. The overview of the proposed method. By matching the SGDs of indoor and outdoor point
clouds, the corresponding objects can be recognized and the transformation between indoor and
outdoor point clouds can be calculated accordingly.

2. Related Works

Registering the 3D point clouds of a building’s interior and exterior models requires
finding common features from both sides [18]. Previous studies have developed two types
of features for this purpose: geometric-type and semantic-type features. They are all related
to the doors and windows on the wall, the most commonly seen objects shared by views
from the two sides.

Geometric-type features, such as points, lines and planes, can be extracted abundantly
in the point clouds of a building. Muhammad Imanullah et al. [19] proposed a 2D SIFT
(scale invariant feature transform) keypoint-based registration approach by extracting the
SIFT features from the RGBD images. Rami Assi et al. [9] directly detected the 3D SIFT
features from the point clouds. By point cloud voxelization, Biao Xiong et al. [20] caught the
keypoints from the voxel grid and registered point clouds with the four-point congruent set
technology. Compared to the point features above, line features, which can be extracted by
sliding a sectioning plane through the point cloud [21], are more robust since they capture
quadrilateral structures of the windows or doors [22]. Chenglu Wen et al. [22] used the
iterative closest point (ICP) algorithm on the extracted 3D line segments. A patch-based
classifier was adopted on the point cloud to identify the plane first, and the line structures
were extracted from the plane. Another line-based method by Tobias Koch et al. [7] also
assumed that lines located on the window plane. Rather than using ICP, they found the
transformation between indoor and outdoor models by minimizing the perpendicular
length of line segments. For point and line features, some researchers took plane polygons
from the point clouds to restrict their positions and limit the number of potential matches,
thus reducing the computational complexity. For example, Rahima Djahel et al. [12] pro-
posed an algorithm matching the planar polygons by clustering polygons based on their
normal direction and the offset in the normal direction. A plane-based descriptor that
characterized the interrelation among nonparallel plane/lines was proposed by Songlin
Chen et al. [23]. The difficulties of using geometric-type features in indoor–outdoor align-
ment mainly lie in two aspects. However, there are potentially two limits. First, it is hard
to exclude geometric features that do not belong to windows or doors. As a result, there
are many outliers in the feature detection. Second, plenty of geometric-type features can
usually be identified in indoor and outdoor models. The large number of features decreases
the matching efficiency, especially for buildings with complex structures.

With the development of deep learning technology, object recognition and segmenta-
tion technology have been fully developed. Therefore, semantic objects, such as windows
and doors, can be used as prior information to find entity correspondence between the in-
door and outdoor models [24,25]. In earlier works, Langyue Wang and Guoho Sohn [26,27]
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emphasized the benefits of having both semantic and geometric information in the full
building model. However, they could only extract the semantic objects from 2D floor plans
and use lines of the 3D model section planes for feature detection. The method could not
provide an accurate 3D localization of the objects, and the alignment could be corrupted
when the point cloud was particularly incomplete. A more recent work [16] used RGBD
sensors to push forward the research into a 3D semantic object alignment direction. The
authors recognized windows in the RGB images and extracted their corresponding 3D
locations in the indoor and outdoor point clouds. A brute-force search was applied for
all possible matching choices between the two sets of window objects by examining the
shape similarity, the building outline fitness and the matched number. The one with a
comparatively low cost in these three aspects was output as the correspondence match-
ing result. The method was sensitive to symmetry conditions without considering the
relative positions among the objects, and manual assistance was required to select the
best candidate.

From the literature discussed above, it is clear that both geometric and semantic in-
formation is valuable for indoor–outdoor alignment tasks. On the one hand, semantic
instances can provide less noisy and less complex feature expressions for the windows
and doors. On the other hand, not only the shape similarities of the objects but also their
relative topology and position relationships matter when finding the correct correspon-
dence between the indoor and outdoor data. This article thereby aims to invent a unique
descriptor and the corresponding matching method to solve the problem, which considers
both semantic and geometric affinities between two 3D object sets.

3. SGD Construction

SGD is the essential element in this paper to describe the features of semantic instances.
In this section, we introduce the method of object detection and localization as a prerequisite.
With a carefully designed procedure, as shown in Figure 2, the doors and windows can
be localized and bounded by 3D boxes, which provide both the semantic information
and geometric location for the detected objects. Since the objects’ distribution pattern is
identical in indoor and outdoor point clouds for the same scene, it can be utilized as a
matching reference with a properly defined descriptor, i.e., the SGD proposed in this paper.
The important abbreviations and symbols used in the paper are listed in Table 1 for clarity.

Figure 2. The procedure of windows and doors’ bounding-box detection from the point clouds.
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Table 1. List of important abbreviations and symbols used in the paper.

Abbreviation Definition Abbreviation Definition

{αj
i , β

j
i, θ

j
i}

The included angle between origin
vector and the x–y–z axes in

Oi coordinates
Gi

The relationship of object Oi with
respect to other objects in the

point cloud

{αe, βe, θe}
The absolute angle errors between

angle elements HA Hungarian algorithm

{rotxj
i , rotyj

i , rotzj
i}

The Euler angles that represent the
rotation between Oi coordinates and Oj

coordinates
ICP Iterative closest point

{rotxe, rotye, rotze}
The absolute rotation errors between

two local coordinates IoU Intersection over union

CSGD
out
in

The adjacency matrix between indoor
and outdoor models N The number of recognized objects

CSGDU
l
k

The distribution matrix between
SGDUk and SGDUl Oi The ith recognized object

Cg
q
p The matching element in CSGDU Si The semantic category of object Oi

D The matrix definition of SGD SGD Semantic–geometric descriptor

dj
i

The Euler distance between the origins
of local coordinates of Oi and Oj

SGDU Semantic–geometric descriptor unit

de
The absolute distance error between

two distance elements SVD Singular value decomposition

3.1. Window and Door Detection in Point Clouds

Three-dimensional object detection from LiDAR point clouds has been widely stud-
ied [28,29]. However, window and door detection is not a trivial task for two reasons.
First, they usually present as hollow structures instead of solid bodies in point clouds.
The nature of sparse information makes it hard to be directly identified. Second, as they
are used for map alignments, the final merging error is largely affected by the localization
accuracy of the semantic objects. General 3D object detection and localization techniques
cannot provide 3D bounding boxes with sufficiently high precision. To solve the first
problem, we used the projected 2D image of the point cloud for 3D segmentation with deep
learning neural networks [30]. The details are found in our previous work in [17]. There
are inevitable outliers on the 2D segmentation edges, which induce extra points in the
background. We used an X–Y projection and point-clustering method to group the points,
which is similar to the method in [28]. The points belonging to the target objects could
be extracted as the group in the front. Since doors and windows are flat objects, a plane
fitting was further used to remove possible noises induced by the edge effect [31]. Outliers
were removed if their distance to the fitted plane was beyond the threshold. After the
procedure above, groups of points with the rough contour of the doors and windows could
be extracted.

To achieve a higher bounding-box accuracy, we designed a refining step. Due to
their different geometric properties, the refining methods for the windows and doors
were separately designed. For the windows, we first projected the point cloud on the
fitted plane and generated a 2D image. The image was further processed by dilating and
eroding it to eliminate small holes. The window edge was taken as the innermost closed
edge. The 3D points with a projection inside the detected edge contour were taken as
the window points, and the bounding box could be generated accordingly. As for the
doors, we utilized the fact that a door usually has a different texture from the surrounding
wall. Therefore, their reflection measurements are distinct. We clustered the points by
their reflection value, and the group with the largest number of points was taken as the
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door. The surrounding points belonging to the wall were removed. The final results of the
door and window localization are shown in Figure 2, as an example. With the refinement
procedure, the localization accuracy is evidently improved.

It is worth mentioning that the reflectivity measurement may not be available if the
data resource is not LiDAR. In this case, some steps in the procedure above may fail.
The readers need to find an alternative way to obtain an accurate 3D box for the objects,
for example, using the depth image to replace the reflectivity image. Alternatively, the RGB
channels for an RGB-D point cloud can provide a similar function as the reflectivity mea-
surement in the LiDAR data. No matter how the 3D localization of the windows and doors
is obtained, the following SGD generation and the corresponding matching algorithms can
be applied.

3.2. SGD Design

Given a point cloud F, the objects’ semantic labels and spatial positions are known
after the detection procedure above (Section 3.1). The local coordinates of each object
are built based on their bounding boxes. Figure 3 describes the principle of the local
coordinates’ definition. The origin locates at the center of the bounding box; its x-axis
points to the outside of the building, the z-axis points upward and the y-axis is built by the
right-hand rule.

Figure 3. The principle of generating local coordinates on the bounding box.

The SGD of F describes the number and categories of the objects, as well as their
relative positions and poses with respect to each other. The SGD is defined as a matrix
D ∈ RN×(8N−7), as illustrated in Figure 4, where N is the number of recognized objects in F.
Each row element {SGDUi = (Si, Gi) ∈ R8N−7|i = 1, ..., N} in D is the semantic–geometric
descriptor unit (SGDU) of the ith object Oi. The first element Si in SGDUi describes the
semantic category of Oi. The other element {Gi = (1Gi, ...,j Gi)|j = 1, ..., n, ..., N; j 6= i} in
SGDUi depicts the relationship of Oi with respect to the rest of the objects. Each component
jGi in Gi contains eight elements, denoted as jGi = {(Sj, dj

i , α
j
i , β

j
i, θ

j
i , rotxj

i , rotyj
i , rotzj

i)|j 6= i}.
Specifically, Sj means the semantic label of Oj, dj

i represents the Euler distance between the
origins of the local coordinates of Oj and Oi. Taking a vector from the origin of Oi to the
origin of Oj, the included angles between this vector and the x-y-z axes in the Oi coordi-

nates are calculated as {αj
i , β

j
i, θ

j
i}, respectively. {rotxj

i , rotyj
i , rotzj

i} are the Euler angles that
represent the relative rotation between the Oi and Oj coordinates. Figure 5 illustrates the
example of the components in 2G1.
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Figure 4. The SGD of a frame F: each row element in the SGD is the SGDU of object Oi. The first
element in an SGDU describes the semantic category of Oi, and the other elements in SGDU depict
the spatial relationship of Oi with respect to the other objects.
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Figure 5. The description of each element in 2G1 = {(S2, d2
1, α2

1, β2
1, θ2

1 , rotx2
1, roty2

1, rotz2
1)}. S2 is the

semantic labels of object O2, d2
1 is the Euler distance between O1 and O2. {α2

1, β2
1, θ2

1} are the included
angles between the vector O1O2 and the x-y-z axes in O1. {rotx2

1, roty2
1, rotz2

1} are the Euler angles
that transform local coordinate 1 to local coordinate 2.

4. Semantic Object Matching with SGDs

The uniqueness of the SGD, compared to the commonly seen 2D and 3D descriptors,
such as SIFT [32], SURF [33] and ORB [34], is that the values of the elements in an SGDU
are dependent on the geometric relationship between the current object and the others.
Therefore, the SGDU changes with the sequence of identified objects. As a result, we need
to define the distance between two SGDUs in a creative way. The matching between the
SGDs of the indoor and outdoor frames can be solved accordingly.

4.1. SGDU Distance Definition

Each SGDU represents the semantic label of one object and its spatial relationship
with the other identified objects. The distance between two SGDUs describes whether
they belong to the same semantic category and whether they are placed in similar relative
positions with respect to the rest of the objects in the scene. Given {SGDUk = (Sk, Gk)}
in frame 1 and {SGDUl = (Sl , Gl)} in frame 2, their distance CSGDU

l
k can be calculated

in two steps. First, the semantic labels Sk and Sl are compared. If they have different
semantic labels, the distance CSGDU

l
k is assigned as the infinity. Otherwise, we need to

design an SGDU distance involving the similarity evaluation between SGDUk and SGDUl

regarding their distribution pattern with respect to other objects. We define a distribution
matrix CSGDU

l
k.
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CSGDU
l
k =



Cg
1
1 Cg

2
1 · · · Cg

q
1 · · · Cg

Nl
1

Cg
1
2 Cg

2
2 · · · Cg

q
2 · · · Cg

Nl
2

...
...

. . .
...

...
Cg

1
p Cg

2
p · · · Cg

q
p · · · Cg

Nl
p

...
...

...
. . .

...
Cg

1
Nk

Cg
2
Nk
· · · Cg

q
Nk
· · · Cg

Nl
Nk


(1)

where Nk and Nl denote the dimensions of Gk and Gl separately. The element Cg
q
p

in CSGDU
l
k represents the matching value of the relationship between the kth object in

frame 1 with the pth object in SGDUk and the relationship between the lth object in
frame 2 with the qth object in SGDUl . The matching cost Cg

q
p is set to be infinity if

Sp in frame 1 does not equal Sq in frame 2. Otherwise, the geometric errors, de = |dp
k − dq

l |,
αe = |αp

k − α
q
l |, βe = |βp

k − β
q
l |, θe = |θp

k − θ
q
l |, rotxe = |rotxp

k − rotxq
l |, rotye = |rotyp

k − rotyq
l |

and rotze = |rotzp
k − rotzq

l |, are examined. Each error is assigned a threshold as dt, αt, βt,
θt, rotxt, rotyt and rotzt, respectively. If any error is larger than its threshold, Cg

q
p is set to

infinity. Otherwise, it can be calculated by the following equation:

Cg
q
p = λ1 ∗ de + λ2 ∗ αe + λ3 ∗ βe + λ4 ∗ θe + λ5 ∗ rotxe + λ6 ∗ rotye + λ7 ∗ rotze (2)

where {λ1, λ2, λ3, λ4, λ5, λ6 and λ7} are the weight factors. There is no guarantee that
the object sequences in SGDUk and SGDUl are identical, and the object numbers can be
different. Therefore, we need to find the best sequence correspondence among all the
possibilities when calculating the distance between SGDUk in frame 1 and SGDUl in frame
2. We delete all columns or rows with all elements being invalid, and the matching matrix

is updated to C
′
SGDU

l
k. This is to further decrease the matching candidates and save the

computational cost for the following steps.
The Hungarian algorithm (HA) [35], which can solve the maximum weighted bipartite

matching problem, was adopted and improved for this purpose. Given a bipartite graph
that is made of two sets U and V with the same dimension and the corresponding square
adjacency matrix E, the HA can find the maximum-weight matching and output the best
correspondence assignment between the elements in U and V. This conventional HA
requires the dimensions of U and V to be identical, which is not satisfied in the case of
the indoor–outdoor object-matching problem. Therefore, we combined the HA with a
brute-force searching algorithm to solve the dimension inconsistency problem. Denoting
the dimensions of U and V as dU and dV , we regarded the smaller number of dU and dV as
the potential matching number η. Then, we applied the HA on all square submatrices of
E with a dimension of η. The best matching result should be the one with the minimum
matching weight. The details of the process can be found in Algorithm 1 and its worse-case
computational complexity is O(η4). Since the object numbers in both frames are limited,
the computation cost is acceptable.

Applying the improved HA on C
′
SGDU

l
k, we can find the matching cost and matched

object numbers between SGDUk and SGDUl , as presented in Algorithm 2. The distance
between two SGDUs is their matching cost.

4.2. SGD Matching

The SGD of a frame represents the categories of the recognized objects and their spatial
positions. Therefore, the SGDs of the indoor and outdoor frames contain the semantic–
geometric information of the recognized windows and doors. Given the SGD Din ∈ Rmin

of the indoor frame and the SGD Dout ∈ Rmout of the outdoor frame, the SGD matching
consists in finding the corresponding SGDUs in the two frames using their distances.
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Algorithm 1: The improved Hungarian algorithm
Data: Set U, set V, weight matrix E
Result: Matching cost Cost
(Row, Col) = the number of rows and columns of E;
η = min(Row, Col);
if Row > η then

E
′

is the set that contains all possibilities that choose η rows in E.
else

E
′

is the set that contains all possibilities that choose η columns in E.
end
costList = [];
for i = 1 : length(E

′
) do

Calculate the matching cost c of E
′
(i) with conventional Hungarian algorithm;

costList(i) = c;
end
Cost = min(costList);
return Cost;

Algorithm 2: Calculating the match cost between two SGDUs

Data: SGDUk, SGDUl

Result: Match cost value C, number of common adjacent objects Num
SGDUk = (Sk, Gk);
SGDUl = (Sl , Gl);
if Sk 6= Sl then
C = INF;
return (C, 0);

else
Calculate matching cost matrix CSGDU

l
k according to Equation 1;

Update CSGDU
l
k to C

′
SGDU

l
k by removing columns and rows with all elements

being invalid;

if C
′
SGDU

l
k is empty then

C = INF;
return (C, 0);

else

(Row, Col) = the number of rows and columns of (C
′
SGDU

l
k);

Num = min(Row, Col);

C = the matching cost calculated based on Algorithm 1, by taking C
′
SGDU

l
k

as the weight matrix E;
return (C, Num);

end
end

Inherently, it is again an unbalanced assignment problem. Therefore, we can repeat
the procedure in Section 4.1 for an optimal solution. The adjacency matrix is defined as

CSGD
out
in =


(C1_1

SGDU , Num1_1) (C1_2
SGDU , Num1_2) · · · (C1_mout

SGDU , Num1_mout)

(C2_1
SGDU , Num2_1) (C2_2

SGDU , Num2_2) · · · (C2_mout
SGDU , Num2_mout)

· · · · · · . . . · · ·
(Cmin_1

SGDU , Nummin_1) (Cmin_2
SGDU , Nummin_2) · · · (Cmin_mout

SGDU , Nummin_mout)

 (3)
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The element in CSGD
out
in is calculated according to Algorithm 2, and there are two

parts for each element. The first part is the SGDU match cost of the two objects, and the
second part is the number of their common neighbor objects. If the distance is infinity,
the corresponding element is invalid. We delete all columns or rows with all elements
being invalid to save further calculation costs, and the matching matrix is updated to

C
′
SGD

out
in . At last, C

′
SGD

out
in is provided as inputs to the same HA as in Algorithm 1, and the

best-matching pairs of the objects in the indoor and outdoor frames can be found.
The transformation between the two frames is finally calculated by the SVD method

on the corner points of the matched window/door bounding boxes. This is a commonly
used method for transformation calculation between two matched sets of points and thus
is not elaborated here. The procedure of SGD matching and transformation calculation
between indoor and outdoor models is presented in Algorithm 3 in detail.

Algorithm 3: SGD matching and transformation calculation between indoor and
outdoor models

Data: Din ∈ Rmin , Dout ∈ Rmout

Result: The transformation T from outdoor model to indoor model
for 1 ≤ i ≤ mk do

for 1 ≤ j ≤ ml do
Calculate the matching cost Ci_j

SGDU and matching num Numi_j between
SGDUi of Din and SGDU j of Dout according to algorithm 2;

CSGD
out
in (i, j) = (Ci_j

SGDU , Numi_j);
end

end
(m
′
k, m

′
l) = the number of rows and columns for CSGD

out
in ;

for 1 ≤ i ≤ m
′
k do

SGD_row = the ith row in CSGD
out
in ;

if All elements in SGD_row are invalid then
Removing ith row of CSGD

out
in ;

else
continue;

end
end
for 1 ≤ j ≤ m

′
l do

SGD_column = the jth column in CSGD
out
in ;

if All elements in SGD_column are invalid then
Removing jth column of CSGD

out
in ;

else
continue;

end
end

Update CSGD
out
in to C

′
SGD

out
in ;

Cv
SGD = the matching cost calculated based on Algorithm 1, by taking C

′
SGD

out
in as

the weight matrix E;
The corresponding matching relationship for Cv

SGD represents the final matching
result;

Ptsin = the bounding box’s corner points of corresponding matching objects in
indoor model;

Ptsout = the bounding box’s corner points of corresponding matching objects in
outdoor model;
T = SVD(Ptsout, Ptsin);
Return T
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5. Experimental Results and Discussion
5.1. Experimental Dataset Description

In this study, a custom-made laser scanning system was adopted to record the indoor
and outdoor point cloud data, as shown in Figure 6. The primary sensor of the scanning
system was a laser scanner (Hokuyo UST-30LX), which was installed on a rotating platform
and could measure the object’s distance and reflection value. The scanning system covered
a wide field of view (270◦ ∗ 180◦) with a resolution of 0.25◦ ∗ 0.1◦. The system could be
controlled remotely, which avoided the outliers caused by the operator. With the above
configuration, the scanning system could capture the panoramic point cloud data of the
environment. Additionally, the projected 2D image for each scanning was generated for
the window/door detection, and one example is illustrated in Figure 7.

Figure 6. The custom-made laser scanning system. The primary sensor is the Hokuyo UST-30LX
laser scanner, which covers a wide field of view 270◦ ∗ 180◦.

Figure 7. Example of a generated 2D image for one laser scan.

We collected data in two different scenarios, as shown in Figure 8. Scenario 1 included
an L-shape corridor as the outdoor model and two separate rooms as the indoor model.
Scenario 2 included a U-shape corridor with four separate rooms. Scene 3 and scene
4 contained two indoor frames for one large room. The outdoor frames corresponding
to the indoor frames are shown as magenta points. Several outdoor point clouds were
registered as a unified outdoor model for each scenario using an improved ICP method [36].
Eventually, there were two and five indoor–outdoor frame alignment tasks for scenario 1
and scenario 2, respectively. The collected dataset has been published.

5.2. Window and Door Detection Results

The indoor and outdoor frames in Figure 8 were projected as LiDAR images. Af-
ter applying the 2D segmentation method from Section 3.1, the windows and doors were
identified in the images, as shown in Figure 9. Though different in sizes and positions, most
windows and doors were successfully separated from the background. Occasionally, some
windows/doors may fail to be recognized due to occlusions in the indoor view. This only
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decreased the usable number of semantic objects but did not lead to assignment failures,
as shown in the following content.

Figure 8. The collected dataset in two different scenarios. The point clouds of the indoor frames are
presented in the left column, and the corresponding outdoor frames, colored in magenta, and their
locations in the outdoor model are presented in the right column.
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Figure 9. The projected LiDAR images for two scenarios and the windows and doors in the image
are recognized using the 2D segmentation method.

Figure 10 illustrates the 3D bounding box results of the recognized windows and
doors. We manually specified the bounding boxes as the ground truth. The accuracy
of the window and door detection was evaluated separately by calculating the mean
absolute error (MAE) of the corresponding bounding box corners, and the relative error
was calculated by dividing the error value by the diagonal lengths of the corresponding
windows and doors. Additionally, the intersection over union (IoU) of windows and
doors for each scene was calculated, respectively. Two-dimensional IoUs measured the
accuracy of window/door segmentation in the LiDAR images, and 3D IoUs measured the
localization accuracy of the 3D bounding boxes.

Scenario1

Scene1

Scenario1

Scene2

Scenario2

Scene1

Scenario2

Scene2

Scenario2

Scene3

Scenario2

Scene4

Scenario2

Scene5

Figure 10. The extracted 3D bounding boxes of the windows and doors for each scene. The green
boxes represent the door objects and the red boxes represent the window objects.

All evaluation results are shown in Table 2. Overall, the average MAEs of the windows de-
tection were smaller than the MAEs of the doors detection, which were 0.0810± 0.0242 m and
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0.1147±0.0192 m, respectively. The relative errors were 5.6657±1.5406% and 7.9993± 1.1879%,
respectively. The scene size was as large as twenty times that of the objects’ size, and the
detection error was less than 1% of the scene’s dimension.

Table 2. The accuracy of the windows and doors detection.

Scenario 1 Scene 1 Scenario 1 Scene 2 Scenario 2 Scene 1 Scenario 2 Scene 2 Scenario 2 Scene 3 Scenario 2 Scene 4 Scenario 2 Scene 5 Mean ± std
Indoor Outdoor Indoor Outdoor Indoor Outdoor Indoor Outdoor Indoor Outdoor Indoor Outdoor Indoor Outdoor

MAE of
windows (m) 0.0930 0.1454 0.0877 0.0711 0.0527 0.0921 0.0593 0.0501 0.0689 0.0790 0.0759 0.0940 0.0985 0.0666 0.0810 ± 0.0242

MAE of
doors (m) 0.1285 0.1251 0.1329 0.1375 0.1322 0.1187 0.1056 0.0878 0.0987 0.1322 0.0826 0.1213 0.1168 0.0855 0.1147 ± 0.0192

Relative error
of windows (%) 6.1200 9.6100 6.1300 4.9800 3.9100 6.6200 4.3100 3.7700 4.4500 5.3100 5.6400 6.3800 7.1800 4.9100 5.6657 ± 1.5406

Relative error
of doors (%) 8.4700 8.0900 8.4200 9.6400 9.6500 8.6900 7.8200 6.4200 6.3800 8.9300 6.1900 8.0500 8.7300 6.5100 7.9993 ± 1.1879

2D IoU of
windows 0.7681 0.8650 0.8970 0.8039 0.8908 0.8421 0.9283 0.8886 0.9621 0.9525 0.9052 0.8515 0.9063 0.9108 0.8837 ± 0.0538

2D IoU of
doors 0.8989 0.8765 0.9190 0.9216 0.9494 0.9810 0.9170 0.8894 0.8920 0.7618 0.8975 0.8618 0.9449 0.9373 0.9034 ± 0.0516

3D IoU of
windows 0.6316 0.5415 0.4017 0.4535 0.4948 0.5841 0.3758 0.6174 0.4002 0.4629 0.5072 0.6462 0.5680 0.5651 0.5179 ± 0.0896

3D IoU of
doors 0.5731 0.7792 0.7023 0.5829 0.6796 0.9245 0.5827 0.7861 0.3527 0.7851 0.7320 0.6737 0.3766 0.9417 0.6766 ± 0.1739

The 2D IoU was generally higher than the 3D IoU. The average 2D IoUs of the win-
dows and doors were 0.8837± 0.0538 and 0.9034± 0.0516, and they were 0.5179± 0.0896
and 0.6766± 0.1739 for the 3D IoUs. It is a commonly existing problem for indoor–outdoor
alignment. The surfaces inside the wall are hard to fully capture by sensors. Such incom-
plete information is the inherent reason for a less precise position estimation perpendicular
to the wall. In fact, the relative corner errors in the Y and Z directions were 7.94% and 2.79%,
respectively, but in the X direction, they were as large as 35.07%. Luckily, the dimensions of
the windows and doors in the X direction (the thicknesses) were small, thus the absolute
location error was acceptable.

5.3. Indoor and Outdoor Model Alignment Results

Figure 11 presents the identified corresponding objects of indoor and outdoor models
for each scene on the left. Accordingly, the transformation between the two models was
calculated, and they were aligned without visually observable errors, as shown in the
middle column. Even though the numbers of windows and doors were not equal in the
indoor and outdoor models, and their distribution patterns were distinct, the presented
algorithm could still identify correct matches. For example, there were four windows
and one door in the indoor model of scenario 2, scene 4, but only three windows and
two doors, located on perpendicular walls, were found in the outdoor model. Figure 12
presents its alignment procedure. The dimension of its adjacent matrix CSGD

out
in was 5× 5.

After eliminating the rows and columns with all elements being invalid, the dimension
of the updated adjacent matrix became 4× 4, and the best matches could be found with
Algorithm 1 accordingly. Eventually, the algorithm successfully found the corresponding
three windows and one door. The eliminated window in the indoor model was window
2, its theoretically matching window in the outdoor was not recognized in the window
detection phase. As for the eliminated door in the outdoor model, it was located on the
perpendicular wall to the door in the indoor model, thus could not be captured in the
indoor model. Compared to the geometric-feature-based matching methods, which usu-
ally need to identify the corresponding relationships among hundreds, even thousands,
of geometric features, we built the alignment only based on five semantic objects. Thus,
the computational efficiency was highly improved. Taking the line-based alignment algo-
rithm presented in [7] as an example, the number of extracted line segments was 102∼103,
and the computational magnitude for feature matching was 104∼106 with the classical
ICP method. In comparison, the computational magnitude of the proposed SGD-based
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matching method hardly reached the 103 level, much smaller than that of the geometric-
feature-based matching methods.

Figure 11. The alignment effect using semantic object matching results. The first column illustrates
the found correspondences between indoor and outdoor models. The second column depicts the
point cloud after alignment on the top view, where the indoor models are colored in red, and the
outdoor models are colored in purple. The third column shows the position of single-scene alignments
with respect to the full outdoor models.

For each scene, the outdoor model was fixed, and the indoor model was registered to
the outdoor model with the calculated transformation matrix. The accuracy was evaluated
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by the MAE of bounding box centers and corners between the identified windows/doors
among indoor and outdoor models (Table 3). The center error mostly reflected the transla-
tional error. The corner error included translational and rotational errors, as well as the
inevitable 3D box’s dimension discrepancy between the two models. The average center
error was only 0.0579 m, which achieved a centimeter level. The alignment accuracy was
considerably higher compared to previous related research [16].

Figure 12. The alignment procedure for scenario 2, scene 4. There are four windows and one door
in the indoor model and three windows and two doors in the outdoor model. The color of each
element in the adjacent matrix represents the matching distance, the lighter color means a small
matching distance and the darkest color means an infinite matching distance. The number in the
element is the number of adjacent objects after SGDU matching. The rows and columns with all
elements being invalid were eliminated (in the red line). Eventually, three windows and one door
were aligned correctly.

Table 3. The accuracy of indoor and outdoor model alignment.

Scenario 1 Scene 1 Scenario 1 Scene 2 Scenario 2 Scene 1 Scenario 2 Scene 2 Scenario 2 Scene 3 Scenario 2 Scene 4 Scenario 2 Scene 5 Mean ± std

MAE
of object centers (m) 0.0638 0.0630 0.1119 0.0614 0.0284 0.0688 0.0081 0.0579 ± 0.0328

MAE
of object corners (m) 0.1322 0.0821 0.1474 0.1145 0.1109 0.1221 0.1151 0.1177 ± 0.0202

As can be seen in Figures 13 and 14, the point clouds of the outdoor models were
usually very complex and noisy. The indoor data, especially in scenario 2, were captured
in a cluttered lab environment. Some partially blocked windows failed to be detected in
the indoor view. The overlap data between the indoor and outdoor models were highly
limited. Under such challenging conditions, the method proposed in this paper managed
to align all rooms with the outdoor model accurately and achieved desirable reconstruction
results with complicated building structures.

5.4. Evaluation on Public Dataset

To evaluate the robustness and generality of the proposed method, we compare our
method with Andrea’s method [16] on the same dataset. A diverse set of six datasets with
indoor and outdoor models were provided in their paper, and four of them were open
access. However, only the dataset “Hall” contained both indoor and outdoor models, so
it was chosen as the comparison case. The point cloud in the dataset was reconstructed
based on images with the structure-from-motion (SFM) approach and was not suitable
for our window/door detection method. For simplicity, we followed the same procedure
as in [16] to manually label the bounding boxes of windows/doors in the model. Then,
the SGD-based registration was applied, and the result is shown in Figure 15. Eleven
corresponding objects were identified after SGD matching, and the indoor–outdoor model
registration was calculated accordingly. The MAE of registration by our method was 0.13 m
and 32% smaller than that of Andrea’s method, which had an MAE of 0.19 m.
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Figure 13. The registration result of scenario 1, which is an L-shape corridor with one room located
on each edge. Two indoor models are colored in magenta and claret red separately. Several outdoor
point clouds in scenario 1 were registered as a unified outdoor model, and the corresponding outdoor
models for two scenes are colored in the same color as their indoor models.

Figure 14. The registration result of scenario 2, which is a complex lab environment. The registered
five scenes locate around a U-shape corridor and are colored in magenta, claret red, red, cyan and blue,
respectively. By removing the roof part, the complex structure of the indoor model is shown in the
bottom right of the figure. Even under such challenging conditions, the proposed method can achieve
accurate registration between each indoor and outdoor model.
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Figure 15. The registration result for the public dataset “Hall”. The windows and doors for indoor
and outdoor models were labeled manually, and the registration was conducted with the proposed
SGD-based method. The alignment result is illustrated on the right side of the image, and there are
no visually observable errors.

The experimental result demonstrated that the proposed method could identify the
corresponding windows and doors from indoor and outdoor models correctly and align
them accurately. Even if semantic objects were not identical in the two models, the proposed
method could still find the correct object correspondence. The accuracy of window/door
detection would affect the precision of the SGD for each model significantly. The most likely
cause for inaccurate window detection is the occlusion inside the window since the window
detection method is based on the assumption that the laser ray can penetrate through the
entire window. In addition, the resolution of the laser image is limited, and some very small
windows/doors may not be recognized, which could induce a failure in the correspondence
matching in extreme cases.

6. Conclusions

This study tackled the alignment problem of individual indoor and outdoor models.
The proposed window and door detection method identified the semantic information
and spatial relationship of windows and doors in the model accurately, and the novel
SGD model captured their spatial relationships. By matching the SGDs of the indoor and
outdoor models, the corresponding windows and doors were properly paired, and the
transformation matrix for the indoor–outdoor alignment was obtained accordingly. Since
SGD depends on high-level semantic objects, the measurement noises and irrelevant lo-
cal geometric features had little influence on the values of the descriptors. Therefore,
the proposed SGD matching method could output reliable alignment results for com-
plex and noisy environment data, such as scenario 2 in Figure 14. With the proposed
semantic–geometric descriptor, the average matching accuracy of indoor and outdoor
model alignment reached 0.0579 m.

The SGD describes the distribution patterns for semantic objects and helps discover
similarities among point cloud maps. Therefore, the method can be extended to other ap-
plications by utilizing semantic objects in more general scenes, such as typical urban views.
The SGD matching method would then be able to work with sequential laser-scanning
matching for unmarked map merging or loop closing for simultaneous localization and
mapping in future work.
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