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Abstract: Reliable quantitative precipitation forecasting is essential to society. At present, quantitative
precipitation forecasting based on weather radar represents an urgently needed, yet rather challeng-
ing. However, because the Z-R relation between radar and rainfall has several parameters in different
areas, and because rainfall varies with seasons, traditional methods cannot capture high-resolution
spatiotemporal features. Therefore, we propose an attention fusion spatiotemporal residual network
(AF-SRNet) to forecast rainfall precisely for the weak continuity of convective precipitation. Specifi-
cally, the spatiotemporal residual network is designed to extract the deep spatiotemporal features of
radar echo and precipitation data. Then, we combine the radar echo feature and precipitation feature
as the input of the decoder through the attention fusion block; after that, the decoder forecasts the
rainfall for the next two hours. We train and evaluate our approaches on the historical data from the
Jiangsu Meteorological Observatory. The experimental results show that AF-SRNet can effectively
utilize multiple inputs and provides more precise nowcasting of convective precipitation.

Keywords: quantitative precipitation forecasting; attention mechanism; multimodal fusion;
spatiotemporal prediction

1. Introduction

Every year, extreme heavy precipitation causes serious disasters in urban areas, which
seriously threatens the safety of people’s lives and property. Such intense precipitation is
highly heterogenous spatially and temporally. Therefore, the meteorological department
has an important responsibility to study the characteristics of intense rain and carry out
forecasts for disaster prevention.

The study of precipitation involves many fields such as hydrology, physics, and
atmospheric circulation. High-resolution, accurate, real-time quantitative precipitation
forecasting (QPF) is especially useful for preventing flood disasters and reducing socioeco-
nomic impacts [1]. However, the characteristics of convective preciptation, such as rapid
development, a short life cycle, and highly nonlinear dynamics make it challenging for
prediction. According to the forecast period, precipitation forecasts can be divided into
nowcasting (0–2 h) [2], short-term forecast (0–6 h) [3], short-range forecast (0–72 h) [4],
medium-range forecast (3–15 days) [5], and long-range forecast (10–15 days) [6]. In general,
for short-range and medium-term range forecasts, the numerical weather prediction (NWP)
models provide superior predictions, but models have poor performance in nowcasting [7].
For precipitation nowcasting, meteorological radars provide precipitation observations
with much higher resolutions than rain gauge networks, and there is a correlation between
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the distribution and intensity of radar echoes and the precipitation rate [8]. Therefore, radar-
based quantitative precipitation forecasting [9] can obtain more detailed spatial structure
and temporal evolution characteristics of precipitation, and has become a research hotspot.

Precipitation nowcasting needs to extract highly nonstationary features and predicts
precipitation’s intensity, distribution, movement, and evolution in the coming hours. At
present, radar echo extrapolation technology is currently a popular technology of pre-
cipitation nowcasting. Traditional optical flow methods [10] calculate the optical flow of
consecutive radar maps under the assumption that consecutive frames will not change
rapidly. However, the assumption may not hold when radar echo has a complex evo-
lution [11]. Still, in order to predict precipitation, the precipitation should be retrieved
according to the Z-R relationship [12] after the radar echo extrapolation. Therefore, the first
step is to achieve radar echo extrapolation, and the second step is to convert radar reflec-
tivity into rainfall rates through the Z–R relationship, but predicting the precipitation in
the two steps will easily cause the superposition of errors and reduce the accuracy of the
precipitation nowcasting. Over the past few years, deep learning techniques have been
increasingly applied in quantitative precipitation forecasting. Wang et al. [13] proposed
Eidetic 3D long short-term memory (E3DLSTM), which replaces the forget gate with the
recall gate structure. Specifically, the forget gate determines whether past information
can be “forgotten” like standard LSTMs. The recall gate uses an attentive module to com-
pute the relationship between the encoded local patterns and the whole memory space.
Wang et al. [14] proposed a spatiotemporal prediction model called PredRNN, which adds
spatiotemporal memory units and connects them through a zigzag structure to integrate
temporal and spatial features. By applying differencing operations on the nonstationary
and approximately stationary properties in spatiotemporal dynamics, Wang et al. [15]
proposed memory in memory (MIM) networks to capture complex nonstationary features
in radar echo extrapolation. To alleviate the blurring and unrealistic issues for radar echo
extrapolation, Geng et al. [16] proposed enforcement of the idea of the generative adversar-
ial network and developed a generative adversarial network-residual convolution LSTM
(GAN-rcLSTM) method. For short-term QPF, radar echo extrapolation remains a powerful
method because of the high temporal and spatial resolutions of radar echo maps. However,
these radar extrapolation-based QPF techniques suffer from the problem of uncertainty in
converting radar reflectivity to rainfall amount, and thus are still limited in improving the
accuracy of the QPF.

Direct use of precipitation data as input to predict rainfall within two hours is also
a method by which to achieve precipitation nowcasting. Kevin Trebing et al. [17] pro-
posed the small attention UNet (SmaAt-UNet) model, which uses the attention modules
and depthwise-separable convolutions (DSC) to extract spatial features in the process of
precipitation development. Song et al. [18] present a self-attention residual UNet (SE-
ResUNet) model, which uses UNet as the backbone network and adds residual structure
to extract spatiotemporal information. Cong et al. [19] introduced a new framework for
precipitation nowcasting named Rainformer. In this work, they utilized the global features
extraction unit and the gate fusion unit (GFU) in order to extract features. These methods
use precipitation data as the only predictor. Directly using precipitation maps can avoid the
uncertainty in converting radar reflectivity to rainfall amounts through a Z-R relationship.
However, due to the sparse distribution of ground observation stations, it is difficult to
achieve precise precipitation nowcasting.

In addition, ground-based radars are efficient tools for observing precipitation and
its microphysical structure. Some researchers consider taking multi-source meteorological
data as input to forecast the precipitation. Zhang et al. [20] proposed a dual-encoder
recurrent neural network called RN-Net. It takes the rainfall data of automatic weather
stations and radar-echo data as input to predict rainfall for the next 2 h. Wu et al. [21] used
echo-top height and hourly rainfall datasets to establish a new dynamical Z-R relationship
and achieve the radar-based quantitative precipitation estimation (RQPE) [22]. In fact,
utilizing multiple variables such as radar reflectivity and precipitation rate can capture
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richer physical information in QPF. However, many methods cannot realize the effective
fusion of multiple input variables.

This paper proposed an attention fusion spatiotemporal residual network (AF-SRNet).
Inspired by multimodal fusion and spatiotemporal prediction (MFSP-Net) [23] and squeeze-
and-excitation (SE) blocks [24], we investigate this model, which includes spatiotemporal
residual network and attention fusion block. The spatiotemporal residual network extracts
the spatiotemporal information from radar data and precipitation data independently,
and then the attention fusion block combines spatiotemporal information at the highest
semantic level.

2. Related Work

According to the first section, radar-based quantitative precipitation forecasting (RQPF)
has been widely used in precipitation nowcasting in recent years due to the spatiotemporal
discontinuity of precipitation station data. The process of RQPF is shown in Figure 1.
At first, station rainfall grid data is obtained after interpolation, and radar mosaic grid data
is obtained after quality control; then, these two data points are input into the spatiotempo-
ral sequence forecast model to predict precipitation in the future. Spatiotemporal feature
extraction and feature fusion are important parts of the spatiotemporal sequence forecast
model. However, there are some weaknesses in these two parts.

Figure 1. The process of radar quantitative precipitation forcasting (RQPF).

Shi et al. [25] modeled it as a spatiotemporal sequence forecasting problem, introducing
the encoding-forecasting structure of ConvLSTM to achieve quantitative precipitation
forecasting. Luo et al. [26] introduced a sequence-to-sequence architecture called PFST-
LSTM for RQPF. However, these works can only predict radar echoes. After the radar echo
extrapolation, the predicted radar echo intensity needs to be converted into rainfall rates
relying on the Z–R relationship, but different regions and different scales of precipitation
systems have different Z-R relationships, which causes errors in precipitation nowcasting.

Subsequently, Bouget et al. [27] fused radar echo images and wind velocity to predict
precipitation, and they also directly used rainfall as the target to enhance the effect of QPF.
Zhou et al. [28] proposed a model called LightningNet to achieve lightning nowcasting by
combining multisource observation data at different channels. However, these methods
cannot effectively fuse the spatiotemporal information of multisource data by simple
summation or channel concatenation.

In addition, more and more spatiotemporal sequence forecasting models are applied
in prediction tasks. Wang et al. [29] proposed the PredRNN++ with the structure of causal
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LSTM and highway units to capture spatiotemporal features. Chai et al. proposed CMS-
LSTM to capture multi-scale spatiotemporal flows. However, the precipitation system
concludes with a more complex spatiotemporal motion, and the spatial and temporal
information will affect each other in these methods.

Overall, most of the previous work for RQPF has some deficiencies. First, when
extracting the spatiotemporal information from the precipitation system, some features
can be lost because the temporal and spatial information will affect each other, making
it very difficult to achieve precise nowcasting. Secondly, radar and precipitation have
not been effectively fused, and it is difficult to extract microphysical features, resulting in
underestimation of high-intensity precipitation areas.

With regard to the above problems and the improvement of the QPF quality, this
research includes two important techniques in deep learning, namely encoder–decoder [30]
and attention mechanism [31]. Methods based on encoder–decoder were developed for
natural language processing but are widely used in spatiotemporal sequence forecasting.
Attention mechanisms can adaptively learn to reassign the importance of variable features,
and have been proven to perform well in fusing features. We use the structure of encoder–
decoder to improve spatiotemporal extraction and the attention mechanism to improve the
effect of feature fusion.

3. Methods
3.1. Problem Definition

We define the precipitation nowcasting problem as a sequence-to-sequence problem.
Given the radar echo sequence data and precipitation grid sequence data in the past period,
we predict the precipitation in the future period. More specifically, R = {Rt−n, Rt−n+1, . . . Rt}
is a collection of N radar echo maps from time t− n to time t, P = {Pt−n, and Pt−n+1, . . . Pt}
is the ground precipitation grid data with the same spatial and temporal resolution as the
radar echo data from time t− n to time t. The whole prediction process can be defined
as follows,

P̂ = Γ(R, P), (1)

where Γ is the nowcasting model, and P̂ =
{ ˆPt+1, ˆPt+2 . . . ˆPt+m

}
is the predict precipitation

from time t + 1 to time t + m.

3.2. Model
3.2.1. Whole Network

The overall network architecture of AF-SRNet is shown in Figure 2. Inspired by
LightNet [32] and STRPM [33], AF-SRNet consists of two encoders and a decoder. Encoders
have four spatiotemporal residual units (SRUs). The radar encoder extracts spatiotemporal
features from radar echo maps. The precipitation encoder extracts spatiotemporal features
of precipitation maps so that the two will not interfere in the early stage. The fusion module
based on the attention mechanism fuses the spatiotemporal features extracted by the two
encoders. Finally, the fused features are input to the precipitation decoder and predict
future rainfall. The operation and the aim of each part are now detailed.

3.2.2. Spatiotemporal Residual Unit

Some methods use the spatiotemporal long short-term memory unit (STLSTM) to
extract spatiotemporal information. However, the temporal and spatial data will affect
each other, making it difficult to extract the complex motion features in the precipitation
evolution. To deal with this problem, we designed a spatiotemporal residual unit (SRU)
to focus on modeling temporal evolution information and spatial evolution information
between previous and future frames in the feature space, which is shown in Figure 3.
The SRU consists of three modules: a temporal module, a spatial module, and a residual
spatiotemporal module. Each module includes a structure of residual. They can effectively
utilize the previous spatiotemporal state information so that the feature extraction has a
wider spatiotemporal receptive field.
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Figure 2. Architecture of AF-SRNet. It contains two encoders, a decoder, and a fusion block.

Figure 3. The structure of SRU. The SRU includes a temporal module, a spatial module, and a
residual spatiotemporal module. The temporal module extracts time-series information, the spatial
module extracts spatial evolution features, and the residual spatiotemporal module fuses spatial and
temporal information.

To preserve more useful temporal features from the past and use the current temporal
features to capture long-term and short-term dependencies, the temporal module jointly
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utilizes multiple temporal states to obtain the output state Hk
t , and the calculation formula

can be expressed as follows,

Tk
t =

(
tanh

(
WTE TE + WTk

t−1
Tk

t−1

)
+ ATTT

(
TRk

pre

))
� AT

AT = σ
(

WTE TE + WTk
t−1

Tk
t−1

)
,

(2)

where AT denotes the temporal residual gate, which can model the interframe residual
temporal information, tanh

(
WTE TE + WTk

t−1
Tk

t−1

)
represents the current temporal infor-

mation, and ATTT

(
TRk

pre

)
represents the preserved temporal information from previous

time steps before t. In particular, ATTT(·) denotes the temporal attention network which
is constructed with convolutional layers and can help fuse the multiple temporal states
according to the degree of importance. In order to effectively utilize the information of
multiple spatial states and capture global features and local features, similar to the tempo-
ral module, the spatial module jointly utilizes multiple spatial states to obtain the output
spatial state Sk

t , the state-to-state transitions can be represented as follows,

Sk
t =

(
tanh

(
WSE SE + WSk

t−1
Sk

t−1

)
+ ATTS

(
SRpre

t

))
� AS

AT = σ
(

WSE SE + WSk
t−1

Sk
t−1

)
,

(3)

where AS denotes the spatial residual gate, which can model the interframe residual spatial
information, tanh

(
WSE SE + WSk

t−1
Sk

t−1

)
represents the spatial information of current layer,

and ATTS

(
SRpre

t

)
represents the spatial information from previous layers. In particular,

ATTS(·) denotes the spatial attention network which is constructed with convolutional
layers and can help fuse the multiple spatial states according to the degree of importance.

The residual spatiotemporal module aggregates all spatiotemporal information to the
final hidden state Hk

t . The following are the calculation equations,

AST = σ
(

WSTSE
STSE + WTk

t
Tk

t + WSk
t
Sk

t

)
STk

t = W1×1 ∗ [ TE, SE]

STRt = AST � tanh
(

W1×1 ∗
[

Tk
t , Sk

t

])
Hk

t = S Tk
t + STRt,

(4)

where AST denotes the residual gate, which is utilized to aggregate the predicted temporal
and spatial residual information. STk

t represents the spatiotemporal input features and
STRt represents the spatiotemporal residual features between previous and future frames.

To further extract more efficient deep spatiotemporal features, four SRUs are typically
stacked into a single encoder, as shown in Figure 4. For the SRU at time step t in layer
k, the temporal features TE, the spatial features SE, and spatiotemporal features STE are
fed into the corresponding modules of SRU. In particular, for k > 1, these features are
represented with the hidden state from the previous layer Hk−1

t . The hidden state of the
last time step Hk

t−1 includes the spatial state Sk
t−1 and the temporal state Tk

t−1; they are fed
into the temporal module and spatial module, respectively. In addition, the input of the
SRU also includes the temporal residual information extracted at the time before t TRk

pre

and the spatial residual information before the k layer SRk
pre. In particular, when k = 1,

there is no spatial residual information.
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Figure 4. Stacked SRU structure.

3.2.3. Attention Fusion Block

In deep learning models, a typical method of using multiple input variables is to
concatenate the variable fields at the “channel” dimension and put them into the first
convolutional layer [34]. This fusion method is also called early fusion [28]. However,
more complex dependencies exist between input variables, incurring possible information
entanglement effects. We adopt the late-fusion strategy [35] by using two encoders to
independently extract radar echo features and precipitation features. Then two final hidden
states at the highest semantic level Hradar and Hprecip are obtained. Then we use a multi-
scale attention mechanism as shown in Figure 5. AFB constrains the local and global
features through the attention mechanism, which greatly alleviates the numerical difference
and avoids the problem that linear fusion cannot play a role due to the significant difference
between them. Moreover, AFB can effectively leverage the microphysics feature of the
precipitation system and achieve more precise precipitation nowcasting.

The fusion module based on the multi-scale attention mechanism takes the radar echo
hidden state Hradar and the precipitation hidden state Hprecip as input, obtaining the fused
state H f usion through the pointwise convolution (PWConv), and then H f usion is input into
the precipitation decoder for precipitation prediction. The entire attention fusion block can
be expressed as:

H f usion = M
(

Hradar ⊕ Hprecip
)
⊗ Hradar +

(
1−M

(
Hradar ⊕ Hprecip

))
⊗ Hprecip

M(X) = σ(L(X)⊕ G(X)),
(5)
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where M(·) denotes the attentional weights, which is a parameter obtained through
network learning, L(·) represents the convolution operation of local features, and G(·)
represents the convolution operation of global features. The specific implementation
is shown in Figure 3, where ⊕ denotes the broadcasting addition and ⊗ denotes the
element-wise multiplication.

Figure 5. The structure of attention fusion block. By using the attention mechanism, the radar echo
hidden state Hradar and the precipitation hidden state Hprecip extracted by encoders are fused to
obtain the fusion state H f usion.

3.2.4. Decoder

Similar to the encoders, we utilize the multiple spatiotemporal decoders to decode the
fused features from low-dimensional feature space back to high-dimensional temporal and
spatial data space, respectively, and then we can predict the subsequent frames.

4. Experiments
4.1. Dataset

This study uses the radar echo data and gridded precipitation observations from April
to September in 2019–2021 in Jiangsu Province, China.

Radar reflectivity dataset: This dataset is the time series of radar echo data, the physical
meaning of which is the radar-based reflectivity at the height of 3 km. The higher the
concentration of water droplets in the atmosphere, the higher the radar reflectivity. This
dataset is obtained after quality control and networking of several S-band weather radars
in Jiangsu, covering the entire area of Jiangsu Province. The data value range is 0–70 dBZ,
the horizontal resolution is 0.01◦ (about 1 km), the time resolution is 6 min, and the grid
size of single-time data is 480 × 560 pixels.

Precipitation dataset: This dataset is obtained by interpolating the precipitation data
of automatic meteorological observation stations in Jiangsu to a uniform grid through
the Cressman interpolation method [36]. Moreover, precipitation is the accumulated
precipitation of the automatic station in 6 min; that is, the accumulated value of the
precipitation observation in 6 min up to the current time. The value range is 0–10 mm.
The horizontal resolution, the time resolution, and the horizontal size are the same as
the radar.

In terms of data preprocessing, we first downsampled the original resolution data to
a size of 120 × 140 pixels through max pooling, considering the limitations of computa-
tional costs. The horizontal resolution after downsampling is 0.04◦ (approximately 4 km)
considering the limitations of computing power and training costs. We downsampled
the original resolution data to a size of 120 × 140 pixels, and the horizontal resolution
after downsampling is 0.04◦(approxmately 4 km), as shown in Figure 6. It can be seen
from the figure that there is a good correspondence between the high radar echo area and
the heavy precipitation area. Secondly, in order to predict the precipitation in the next
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two hours, we determined that we should use the past 20 times (2 h) data to predict the
precipitation of the next 20 times (2 h). The data was divided into 5143 groups; each group
included 40 consecutive frames. The first 20 frames are used as the model’s input, and the
last 20 frames were used as the ground truth. After that, we divided these sequence data
into the training set, validation set, and test set according to the ratio of 8:1:1. Finally, we
normalized both the precipitation data and the radar data to a range of 0–1.0.

Figure 6. Visual display of processed radar echo and precipitation data.

4.2. Loss Fuction

The statistical results of precipitation distribution according to different rainfall in-
tensities are shown in Figure 7. It can be seen that there exists the problem of imbalanced
frequencies of different rainfall levels in precipitation data. Specifically, among these cate-
gories, rainfall above 2 mm is the lowest proportion with a percentage of 2.2%, and rainfall
between 0 mm to 0.2 mm is larger than rainfall above 2 mm.

Figure 7. Precipitation statistics in the dataset.
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Therefore, according to [37], we adopt a weighted mean absolute error (WMAE) loss
scheme. The loss function is defined as follows:

Loss = 1/(20 ∗ 120 ∗ 140)
20

∑
t

120

∑
j

140

∑
k

W(Yt[j, k]) ∗
∣∣Yt[j, k]− Ŷt[j, k]

∣∣

W[x] =


1 x < 0.2

2.5 0.2 <= x < 0.5
5 0.5 <= x < 1

10 1 <= x < 2
20 x > 2

,

(6)

where Yt represent the actual tth six minutes accumulated rainfall and Ŷt represent the
predicted version.

4.3. Implementation Details

PyTorch [38] implements all models in this paper with a NVIDIA RTX A100 GPU. All
models were trained by using the Adam optimizer [39] with a starting learning rate of 10−4.
In addition, to ensure that experimental results are comparable, all models had the same
hyperparameters. All described models were trained for a maximum of 30 epochs, and we
also used an early stopping strategy when the validation loss did not increase. The batch
size was set to 8.

4.4. Performance Metric

In order to evaluate the performance of our model quantitatively, we use multiple
metrics from the meteorological field. Because meteorologists are more concerned about
the model performance under different rainfall levels, we binarize our prediction and the
ground truth with different thresholds. If the value is larger than the given threshold, we
set the corresponding value to 1; otherwise we set it to 0. Then, we calculate the number of
positive predictions TP (truth = 1, prediction = 1), false-positive predictions FP (truth = 0,
prediction = 1), true negative predictions TN (truth = 0, prediction = 0) and false negative
predictions FN (truth = 1, predition = 0). At last, the critical success index (CSI), probability
of detection (POD), false alarm rate (FAR) and Heidke skill sore (HSS) [40] can be computed
as follows:

CSI =
TP

TP + FN + FP

POD =
TP

TP + FN

FAR =
FP

TP + FP

HSS =
TP× TN− FN× FP

(TP + FN)(FN + TN) + (TP + FP)(FP + TN)
.

(7)

Note that for CSI, POD, and HSS, the larger the better, whereas for FAR, the smaller
the better.

Generally speaking, precipitation is divided into five categories: light rain, moderate
rain, heavy rain, rainstorm, and downpour. As shown in Table 1, we classified 6-min
rainfall into five different grades according to the study mentioned in [41].

For 1-h rainfall, according to [23], precipitation is divided into four categories, as shown
in Table 2, so we choose 0.5 mm/h, 2 mm/h, and 5 mm/h as the thresholds for 1-h precipi-
tation evaluation.
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Table 1. Categories of 6-min rainfall.

Category 6-min Rainfall (mm)

Drizzle [0, 0.1)
Light/moderate rain [0.1, 0.7)

Heavy rain [0.7, 1.5)
Rainstorm [1.5, 4)
Downpour [4, ∝)

Table 2. Categories of 1-h rainfall.

Rainfall Levels Rainfall Amount per Hour (mm)

No or hardly noticeable [0, 0.5)
Light [0.5, 2)

Light to moderate [2, 5)
Moderate or greater [5, ∝)

4.5. Experimental Results and Comparisons with SOTAs

We use some spatiotemporal prediction models as the benchmark models for precipi-
tation nowcasting, including ConvLSTM, PredRNN, Memory In Memory, and SE-ResUNet.
In order to ensure the comparability of the experiments, all models utilize radar and pre-
cipitation data, and we concatenate fields at the “channel” dimension of the two data as
the input of these models. Each model uses the past 20 times as input and predicts the
following 20 times in the future; that is, it predicts the rainfall in the next 0–2 h. When
the validation loss no longer decreases during the training phase, the model with the
smallest validation loss is selected as model well trained for prediction. Due to the low
rainfall amounts of 6 min, we calculated the cumulative rainfall for an hour to evaluate the
performance of these models. The average evaluation results of one frame of precipitation
amount nowcasting in the first hour are shown in Table 3, and the average evaluation
results of two frames of precipitation amount nowcasting in the first two hours are shown
in Table 4.

Table 3. Average evaluation results of one frame of precipitation amount nowcasting in the first hour.
The best performance is highlighted in bold. ”↑” means that the higher the score, the better, while “↓”
means that the lower the score, the better.

Method
r ≥ 0.5 mm/h r ≥ 2.0 mm/h r ≥ 5.0 mm/h

CSI↑ POD↑ FAR↓ HSS↑ CSI↑ POD↑ FAR↓ HSS↑ CSI↑ POD↑ FAR↓ HSS↑

ConvLSTM 0.4169 0.4548 0.1570 0.2528 0.2767 0.3285 0.2365 0.1802 0.1210 0.1522 0.2477 0.0865
PredRNN 0.4140 0.4545 0.1549 0.2517 0.2740 0.3316 0.2758 0.1798 0.1254 0.1623 0.2719 0.0895
MIM 0.4328 0.4651 0.1323 0.2629 0.2847 0.3314 0.2534 0.1870 0.1182 0.1387 0.2124 0.0839
SE-ResUNet 0.4168 0.5536 0.3327 0.2496 0.2619 0.4248 0.4712 0.1720 0.1272 0.2427 0.4951 0.0919
AF-SRNet 0.5159 0.6511 0.3051 0.3071 0.3360 0.2499 0.4643 0.2178 0.1545 0.2499 0.4274 0.1073

As shown in the above tables, we can see that AF-SRNet performs best in almost
all metrics. This means that the SRNet proposed in this paper can effectively extract the
spatiotemporal information in the precipitation system. Moreover, the model can fully
use the correlation between the radar high echo area and the precipitation high-intensity
area by using an attention fusion block, which improves the accuracy of short-term heavy
rainfall prediction to a certain extent. Secondly, MIM performs better than ConvLSTM, the
PredRNN, and the SE-ResUNet, as it can capture short-term dynamic features. As is well
known, convective precipitation has the the characteristic of rapid development, and the
MIM can model the non-stationary and extract complex features. Last but not least, it can
be seen from Table 4 that with the increase of prediction time, the effect in SE-ResUNet is
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constantly enhanced, even under the threshold of 5 mm/h. The POD is higher than our
model, but the FAR is also increasing at the same time. We suspect that the SE-ResUNet
model can extract spatial features well, but it is difficult to extract temporal evolution
information and capture the decline process in areas of high precipitation intensity.

Table 4. Average evaluation results of two frames of precipitation amount nowcasting in the first
two hours. The best performance is highlighted in bold. ”↑” means that the higher the score, the
better, while “↓” means that the lower the score, the better.

Method
r ≥ 0.5 mm/h r ≥ 2.0 mm/h r ≥ 5.0 mm/h

CSI↑ POD↑ FAR↓ HSS↑ CSI↑ POD↑ FAR↓ HSS↑ CSI↑ POD↑ FAR↓ HSS↑

ConvLSTM 0.3436 0.3845 0.2324 0.2097 0.2097 0.2580 0.3076 0.1387 0.0803 0.1052 0.2827 0.0582
PredRNN 0.3436 0.3867 0.2236 0.2104 0.2114 0.2637 0.3249 0.1408 0.0872 0.1151 0.2933 0.0630
MIM 0.3531 0.3890 0.1987 0.2165 0.2110 0.2530 0.3023 0.1412 0.0798 0.0961 0.2536 0.0574
SE-ResUNet 0.3475 0.5395 0.4724 0.2079 0.2235 0.3827 0.6118 0.1577 0.1024 0.2217 0.6819 0.0790
AF-SRNet 0.4196 0.5438 0.3662 0.2507 0.2560 0.4049 0.5039 0.1673 0.1121 0.1944 0.4558 0.0792

In order to further visually represent the AF-SRNet prediction ability for high-intensity
rainfall, a randomly chosen of visualization example is shown in Figure 7.

The first two columns of each row are the 6-minute precipitation results, and the last
two are the 1-hour precipitation results. First, Figure 8 shows that our model can predict
the area and the intensity of high-intensity rainfall that is much better than other SOTAs.
However, our model undeniably suffers from overestimation in some areas related to the
deep fusion of radar and precipitation features. Secondly, as the prediction time increases,
ConvLSTM and MIM present bad performance on predicting high-intensity precipitation.
The SE-ResUNet seems to have better prediction details, but the effect of the rainfall area
forecast is worse than other models. This is not surprising because these models cannot
fully utilize the advantages of multi-source data through a simple fusion. In summary,
the observation suggests that as the intensity of rainfall increases, the superiority of AF-
SRNet becomes more obvious.

We draw Figure 9 to describe the MSE curves of all models at all nowcasting lead
time stamps on the whole test set. We can see that our model has a lower prediction error
in the first seven times. It is worth pointing out that except for SE-ResUNet, our model
has a lower prediction error than other models’ rest times, demonstrating our approach’s
effectiveness. Similar to the above analysis, We suspect that the UNet model can extract
spatial features well but cannot extract temporal evolution information, resulting in a high
false alarm rate.

4.6. Ablation Experiments and Analyses

In this section, we explore the impact of the spatiotemporal residual network and
attention fusion block proposed in this paper by ablation experiments. Because spatiotem-
poral LSTM (STLSTM) is a common spatiotemporal feature extraction network, we use
STLSTM as the baseline model.

The results of the AF-SRNet without attention fusion block (denoted by SRNet) and
STLSTM are compared to see the impact of the spatiotemporal residues feature extracted by
SRNet. As shown in Tables 5 and 6, it can be seen that SRNet outperforms STLSTM under
all thresholds. The results indicate that SRNet extracts features from temporal information
and spatial information, respectively, which can effectively avoid the mutual interference
of temporal and spatial information.

To demonstrate the validity of attention fusion block (AF), we compare the results
of AF-SRNet without AF (denoted as SRNet) with the complete AF-SRNet. AF-SRNet
outperforms SRNet in all metrics. In addition, it can also be seen that when the threshold
is 5 mm/h, the effect of STLSTM with AF block (denoted as AF-STLSTM) is better than
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SRNet. Consequently, we can say that the AFblock proposed in this paper is superior in
fusing radar echo and precipitation features.

To make a visual comparison of the four methods, we depict the prediction results on
an example in Figure 10.

We can make the following conclusions from the above figure. First, the method
with the AF block performs well in the prediction of high-intensity precipitation, which
indicates that our method of fusing radar echoes and precipitation features is effective.
Secondly, SRNet performs significantly better than STLSTM, which indicates that the
separate modeling strategy of temporal and spatial features proposed in this paper can
extract more complex motion information. Finally, combining SRNet with AF block can
achieve more accurate precipitation forecasts.

!"#$%&'("$)*
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Figure 8. Visual comparison with other SOTAs results. The first row is the ground truth, and the last
row is the effect of our model. The first column of each row is the 6-minute cumulative precipitation
from time T to time T + 6 min, the second column is the 6-minute cumulative precipitation from time
T + 60 min to time T + 66 min, the third column is the 1-h cumulative precipitation from time T to
time T + 60 min, and the fourth column is the 1-h cumulative precipitation from time T + 60 min to
time T + 120 min.
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Figure 9. MSE comparison with different time intervals for the next 20 frames, with a 6-min interval
between each frame.

Table 5. Average evaluation results of one frame of precipitation amount nowcasting in the first hour.
The best performance is highlighted in bold. ”↑” means that the higher the score, the better, while “↓”
means that the lower the score, the better.

Method
r ≥ 0.5 mm/h r ≥ 2.0 mm/h r ≥ 5.0 mm/h

CSI↑ POD↑ FAR↓ HSS↑ CSI↑ POD↑ FAR↓ HSS↑ CSI↑ POD↑ FAR↓ HSS↑

STLSTM 0.4140 0.4545 0.1549 0.2517 0.2740 0.3316 0.2758 0.1798 0.1254 0.1623 0.2719 0.0895
AF-STLSTM 0.5025 0.6143 0.2892 0.3016 0.3300 0.4579 0.4296 0.2156 0.1506 0.2212 0.4123 0.1060
SRNet 0.4957 0.5970 0.2791 0.2985 0.3243 0.4439 0.4364 0.2128 0.1465 0.2156 0.4422 0.1035
AF-SRNet 0.5159 0.6511 0.3051 0.3071 0.3360 0.2499 0.4643 0.2178 0.1545 0.2499 0.4274 0.1073

Table 6. Average evaluation results of two frames of precipitation amount nowcasting in the first two
hours. The best performance is highlighted in bold. ”↑” means that the higher the score, the better,
while “↓” means that the lower the score, the better.

Method
r ≥ 0.5 mm/h r ≥ 2.0 mm/h r ≥ 5.0 mm/h

CSI↑ POD↑ FAR↓ HSS↑ CSI↑ POD↑ FAR↓ HSS↑ CSI↑ POD↑ FAR↓ HSS↑

STLSTM 0.3436 0.3867 0.2236 0.2104 0.2114 0.2637 0.3249 0.1408 0.0872 0.1151 0.2933 0.0630
AF-STLSTM 0.4113 0.5192 0.3794 0.2485 0.2532 0.3747 0.4903 0.1662 0.1071 0.1679 0.4587 0.0766
SRNet 0.3994 0.4935 0.3713 0.2424 0.2459 0.3541 0.4813 0.1633 0.1038 0.1623 0.4746 0.0745
AF-SRNet 0.4196 0.5438 0.3662 0.2507 0.2560 0.4049 0.5039 0.1673 0.1121 0.1944 0.4558 0.0792
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Figure 10. Visual comparison with ablation results. The first column of each row is the 6-min
cumulative precipitation from time T to time T + 6 min, the second column is the 6-min cumulative
precipitation from time T + 60 min to time T + 66 min, the third column is the 1-h cumulative
precipitation from time T to time T + 60 min, and the fourth column is the 1-h cumulative precipitation
from time T + 60 min to time T + 120 min.

5. Discussion

Currently, some precipitation nowcasting methods based on spatiotemporal sequence
prediction suffer from the problem that spatial and temporal information affect each other.
Moreover, most radar-based quantitative precipitation forecasting methods only use a
simple fusion method to utilize radar and precipitation data. It is difficult to effectively
establish microphysical constraints in developing precipitation systems. To solve these
problems, we explore the combination of independent spatiotemporal modeling and mul-
timodal fusion in precipitation nowcasting. The AF-SRNet proposed in this paper uses
both radar echo data and precipitation grid data as input to predict the rainfall in the next
0–2 h. By comparing the experimental results and visualization cases, we can draw the
following conclusions.

First, the precipitation grid data is obtained by interpolating station data, causing
the characteristic of weak continuity. Although the radar high echo area has a good corre-
spondence with the heavy precipitation area, we can effectively improve the quantitative
precipitation forecasting effect by fusing radar and precipitation features, especially for
heavy precipitation forecasting.

Secondly, the extraction of temporal and spatial evolution information plays an impor-
tant role in precipitation nowcasting, which affects the area and intensity of precipitation
accordingly. For this, the proposed AF-SRNet utilizes multiple residual spatiotempo-
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ral encoders to get a wider spatiotemporal receptive field and establish long-term and
short-term dependencies.

Thirdly, it can be seen from the experimental results that all models tend to blur with
the increase of forecasting steps. Therefore, we hope to improve the details of precipitation
nowcasting in our future study.

6. Conclusions

This paper aims at exploring making full use of multi-source meteorological variables
to improve the performance of quantitative precipitation forecasting. We proposed an
attention fusion spatiotemporal residual network (AF-SRNet) for radar quantitative pre-
cipitation forecasting. We design the spatiotemporal residual unit to extract deep features
in the spatial and temporal domains, respectively. In addition, we design the attention
fusion (AF) block for fusing radar and precipitation features and improving precipitation
nowcasting. Furthermore, we also use an improved loss function (WMAE) to overcome the
imbalanced distribution of dataset. Experimental results showed that the proposed model
performs well in forecasting precipitation area and heavy precipitation.

Generally speaking, the field of precipitation nowcasting has immense scope for
improvement. In the future, we will consider fusing more meteorological elements to
establish microphysical constraints in the precipitation process. In addition, we will also
explore the fusion methods to solve the problem that radar echo data excessively affects
precipitation forecasting.
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