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Abstract: Climate change is a significant force influencing catchment hydrological processes, such
as baseflow, i.e., the contribution of delayed pathways to streamflow in drought periods and is
associated with catchment drought propagation. The Weihe River Basin is a typical arid and semi-
arid catchment on the Loess Plateau in northwest China. Baseflow plays a fundamental role in
the provision of water and environmental functions at the catchment scale. However, the baseflow
variability in the projected climate change is not well understood. In this study, forcing meteorological
data were derived from two climate scenarios (RCP4.5 and RCP8.5) of three representative general
circulation models (CSIRO-Mk3-6-0, MIROC5, and FGOALSg2) in CMIP5 and then were used
as inputs in the Soil and Water Assessment Tool (SWAT) hydrological model to simulate future
streamflow. Finally, a well-revised baseflow separation method was implemented to estimate the
baseflow to investigate long-term (historical (1960–2012) and future (2010–2054) periods) baseflow
variability patterns. We found (1) that baseflow showed a decreasing trend in some simulations of
future climatic conditions but not in all scenarios (p < 0.05), (2) that the contribution of baseflow
to streamflow (i.e., baseflow index) amounted to approximately 45%, with a slightly increasing
trend (p ≤ 0.001), and (3) an increased frequency of severe hydrological drought events in the future
(2041–2053) due to baseflows much lower than current annual averages. This study benefits the
scientific management of water resources in regional development and provides references for the
semi-arid or water-limited catchments.

Keywords: baseflow; Weihe River Basin; Loess Plateau; climate change; General Circulation Models

1. Introduction

Distinguishing the contributors of different streamflow components is vital to the
effective management of catchment water resources. Baseflow is the contribution of de-
layed pathways to stream discharge that maintains streamflow during drought periods,
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characterized by low precipitation, the dominance of groundwater discharge and/or snow
meltwater from upstream regions [1–3]. Baseflow influences the water quality/supply and
the health of the catchment ecosystem in regional development [4]. It has a profound influ-
ence on the hydrologic cycle in prolonged dry periods [5–7]. It is essential for the provision
of water resources and water security that can be influenced by climate conditions [8–10].
Therefore, estimating projected baseflow drought is critical to escalating our understanding
of hydrological processes in the changing climate.

Climate variability is the primary factor influencing the terrestrial hydrologic cycle
(e.g., baseflow) at regional and global scales [11–14]. For example, baseflow has a close link
with the redistribution of precipitation due to infiltration providing a vital contribution to
groundwater flow [15], which is characterized by a close interaction between groundwater
and surface water. Trancoso, et al. [2] showed that reduced precipitation diminished
baseflow and precipitation and positively affected baseflow in eastern Australia. However,
the land-surface air temperature has increased over the past three decades and led to
an energized/accelerated hydrological cycle by influencing precipitation amounts [16,17]
and by capturing longwave radiation [13]. Li, et al. [18] used an analytical approach that
integrated water balance and the Budyko hypothesis (evaporative index (ET/P) and aridity
index (PET/P) were used to describe the long-term water and energy balance [19,20]) to
separate the contributions of climate and anthropogenic effects on streamflow. Li, et al. [21]
investigated the response of baseflow to climate variability in a large forested catchment
and found that the contribution of climate variability to annual baseflow were greater
than the impacts from forest disturbance. Trancoso, et al. [2] predicted a decreasing
baseflow trend under certain climate changes (e.g., decreasing precipitation and increasing
evapotranspiration related to CO2–vegetation feedbacks). Ficklin, et al. [16] assessed
the impacts of climate change on baseflow and stormflow and found that baseflow had
consistent trends with stormflow across the northeastern and southwestern United States.
Additionally, Singh, et al. [4] quantified the response of baseflow levels to climate variability
cycles (e.g., the Pacific Decadal Oscillation) in the Flint River.

Hydrological models are often used to estimate the effects of climatic factors on water
yield. Climate projections have predicted that the frequency and intensity of extreme events
(e.g., droughts and floods) will increase under future climate conditions [22]. However, the
direct consequences of baseflow responses to future climate change are poorly understood.
Therefore, assessing baseflow responses under climate change is imperative to facilitate
the understanding of groundwater-related hydrological processes and provides scientific
guidelines for water adaptation measures [23] in water-limited regions to face future
droughts.

Generally, this approach uses alternative emission scenarios to investigate hydrolog-
ical responses to climate change [24,25]. For instance, Yang, et al. [26] used 16 climate
models from CMIP5 (the fifth phase of the Coupled Model Intercomparison Project) to
assess the responses of hydrologic drought/aridity to climate change. They demonstrated
that climate models did not capture vegetation water use under elevated CO2 condi-
tions. Semi-distributed rainfall-runoff models based on SWAT (Soil & Water Assessment
Tool, https://swat.tamu.edu/, accessed on 9 July 2016) have been widely used to eval-
uate streamflow variations in complex catchments [27]. Zhang, et al. [28] compared the
performances of two distributed hydrological models (e.g., SWAT and the Distributed
Hydrology Soil Vegetation Model) in separating the impacts of climate change and LUCC
(land-use cover change) on catchment hydrology. Lauffenburger, et al. [29] evaluated the
effects of agricultural irrigation and future climate change on groundwater recharge in
the northern High Plains aquifer, USA, and found a significant bidirectional shift, leading
to a reduction in future groundwater recharge. While those efforts improved our under-
standing of climate-variability effects on hydrological processes, baseflow responses to
future climate change are poorly understood for semi-arid catchments in loess deposition
regions, in which baseflow provides a significant water source for ecological restoration
and environmental protection.

https://swat.tamu.edu/
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The Weihe River Basin (WRB) is a representative catchment on the Loess Plateau. It
is one of the most important water sources for the environment and regional society of
northwest China. In this study, to attenuate the uncertainties of baseflow estimation (e.g.,
signal and magnitude [30]), historical daily streamflow data and future streamflow data
projected by two climate scenarios from three presentative GCMs were used to assess
temporal variations in baseflow and the dynamics of baseflow characteristics under future
climate changes in the WRB. The specific objectives were (1) projecting baseflow under
two scenarios (RCP4.5 representing a lower emissions scenario, and RCP8.5 representing a
higher emission scenario) from three GCMs (CSIRO-Mk3-6-0, MIROC5, and FGOALSg2);
(2) assessing baseflow responses under future climate conditions; and (3) highlighting
the role of baseflow in drought events at the catchment scale. Thus, this study provides
drought assessment for water-resource managers to face the future changing climate.

2. Study Area and Data Sources
2.1. Study Area Description

The Weihe River has a total length of 818 km and is located in the northern Qinling
Mountains. It is the largest tributary of the Yellow River. The WRB covers three terrain
sections, i.e., the Loess Plateau, the Guanzhong Plain, and the Qinling Mountains, and
spans 6.72 × 104 km2 from north to south (Figure 1). The Weihe River has its source at
Niaoshu Mountain (3485 m) in the Gansu Province, flows from west to east, and joins the
main channel of the Yellow River in Tongguan County. The longitudinal inclination of the
river is about 1.7‰ [31], and the lowest and highest elevations are 325 and 3485 m [32],
respectively.
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The climate of this basin is characterized by the continental monsoon with cold, dry,
and rainless winters; hot and rainy summers [33]; average annual temperature changes
between 7.8 and 13.5 ◦C; and annual precipitation between 558 and 750 mm [34]. The
seasonal distribution of precipitation is uneven, and high precipitation and flow mainly
occur in flood periods (June to September). Both precipitation and runoff have substantial
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inter-annual and intra-annual variabilities. The mean annual potential evaporation is
approximately 800 mm in the south to 1200 mm in the north [35].

The WRB has extensive loess deposits across the mid and northern catchment. Its
soil has a relatively high infiltration potential, and its southern part is primarily covered
by forested land in the Qinling Mountains. The predominant land use is agricultural (i.e.,
wheat and cotton production [36]) in the center of the basin, where cultivated soils have
been subjected to long-term agricultural development. Cultivated land covers more than
50% of the basin, followed by woodland and grassland [33]. The basin is highly productive
and supplies water and food for the region. However, streamflow and groundwater
have decreased rapidly with historical increases in population, agricultural production,
industries, and related developmental activities [35]. Land-use changes, particularly due to
the large ecological plan (e.g., the Grain for Green Program [37,38]) launched in the 1990s,
have significant impacts on the catchment’s hydrology [1,39].

2.2. Data Sources

Daily precipitation data, covering 1960 to 2012, from the 13 standard meteorological
stations (Table 1) in the WRB were obtained from the China Meteorological Administration
(http://cdc.cma.gov.cn, accessed on 22 August 2015). These meteorological stations are
maintained according to the standard methods of the National Meteorological Admin-
istration of China. For the same period, daily streamflow data from the Huaxian gauge
(Figure 1) was obtained from the Hydrological Yearbooks of China (http://loess.geodata.cn,
accessed on 10 May 2016). All meteorological and hydrological data used in this study
have been submitted to quality control by government agencies before release.

Table 1. Meteorological stations used in this study.

Station ID Station Latitude Longitude Elevation (m)

53738 WuQi 36.95 108.17 1331.4

53821 HuanXian 36.58 107.3 1255.6

53903 XiJi 35.97 105.78 1916.5

53915 PingLiang 35.55 106.57 1346.6

53923 XiFengZhen 35.73 107.63 1421

53929 ChuangWu 35.2 107.8 1206.5

53942 LuoChuan 35.82 109.5 1159.8

53947 TongChuan 35.08 109.07 978.9

57006 TianShui 34.58 105.75 1141.7

57016 BaoJi 34.35 107.13 612.4

57034 WuGong 34.25 108.22 447.8

57036 XiAn 34.3 108.93 397.5

57046 HuaShan 34.48 110.08 2064.9

3. Methods
3.1. Baseflow Separation Algorithm

To improve the accuracy of baseflow estimates in this study, revised and validated
baseflow separation was implemented [40]. Baseflow has a lag time concerning the last
precipitation event [41]. Generally, the baseflow recession is linked with the surface and
sub-surface flow characteristics and follows an exponential decay curve [42]:

Qb = Q0αt (1)

http://cdc.cma.gov.cn
http://loess.geodata.cn
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where Qb is the baseflow at time t, and α is the recession constant determined by recession
analysis. The baseflow can be calculated using the baseflow separation method.

Baseflow separation is a fundamental issue that has been comprehensively docu-
mented [8,43,44]. Several algorithms have been proposed to separate baseflow from total
observed streamflow [45–47] and can be classified as trace-based, water balance, and graph
approaches according to general applications. Digital filters are the most widely used
tools for small-data input and is reducible (e.g., only daily streamflow records and more
objective) [40]. The Lyne–Hollick method was used here, expressed as [48]:

Qq (i) = αQq (i − 1) +
1 + α

2
(Qi − Qi − 1) (2)

where Q is total streamflow (m3/d), Qq is quick flow (mm/d), i is the time step (day), and α
is the filter parameter (recession constant, in 1/day). Baseflow (Qb, m3/d) can subsequently
be calculated as Qi minus Qq. The baseflow index (BFI, calculated as total Qb/total Q), is a
standard indicator of the baseflow contribution to total streamflow. Herein, the calibrated
Lyne–Hollick method was employed to separate the long-term baseflow. This approach
has been validated by Zhang, et al. [40].

The recession constant can be obtained using the recession analysis developed by Brut-
saert, et al. [43]. This recession approach efficiently reduces uncertainties when estimating
the initial points in the recession limb. Details of recession analysis are given in Cheng,
et al. [44].

3.2. Selection of General Circulation Models

The general circulation model (GCM) is widely used to estimate the impacts of future
climate conditions on hydrological cycles [26,49–52]. The GCMs used in this study (Table 2)
were available in the Intergovernmental Panel on Climate Change (IPCC) data archive
(https://pcmdi.llnl.gov/mips/cmip5/, accessed on 16 October 2016). Based on monthly
precipitation data from 40 GCMs for two representative concentration scenarios (RCP4.5
and RCP8.5) and the future climate scenario period based on CMIP5, we divided GCM
data into two sections. The 45 years from 1960–2004 (historical climate period, HCP) were
considered the baseline period, and the 45 years from 2010–2054 were the future climate
period (FCP).

Table 2. Summary of 40 general circulation models (GCM) selected in this study.

ID GCM Originating Group (s) Country Resolution (◦)

1 ACCESS1.0 CSIRO-BOM Australia 1.88 × 1.25
2 ACCESS1.3 CSIRO-BOM Australia 1.88 × 1.25
3 BCC-CSM1.1 BCC China 2.81 × 2.81
4 BCC-CSM1.1.M BCC China 1.13 × 1.12
5 BNU-ESM BNU-ESM China 2.81 × 2.81
6 CanESM2 CCCMA Canada 2.81 × 2.79
7 CCSM4 NCAR USA 1.25 × 0.94
8 CESM1(BGC) NCAR USA 1.25 × 0.94
9 CESM1(CAM5) NCAR USA 1.25 × 0.94
10 CESM1(WACCM) NCAR USA 2.5 × 1.89
11 CMCC-CM CMCC Italy 0.75 × 0.75
12 CMCC-CMS CMCC Italy 1.88 × 1.88
13 CNRM-CM5 CNRM-CERFACS France 1.41 × 1.40
14 CSIRO-Mk3.6.0 CSIRO-QCCCE Australia 1.88 × 1.88
15 EC-EARTH MOHC UK 1.13 × 1.13
16 FGOALS-g2 LASG-GESS China 2.81 × 3.05
17 FGOALS-s2 LASG-IAP China 2.81 × 1.41
18 FIO-ESM FIO China 2.81 × 2.81
19 GFDL-CM3 NOAA GFDL USA 2.50 × 2.00
20 GFDL-ESM2G NOAA GFDL USA 2.50 × 2.00

https://pcmdi.llnl.gov/mips/cmip5/
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Table 2. Cont.

ID GCM Originating Group (s) Country Resolution (◦)

21 GFDL-ESM2M NOAA GFDL USA 2.50 × 2.00
22 GISS-E2-H NASA GISS USA 2.50 × 2.00
23 GISS-E2-H-CC NASA GISS USA 2.50 × 2.00
24 GISS-E2-R NASA GISS USA 2.50 × 2.00
25 GISS-E2-R-CC NASA GISS USA 2.50 × 2.00
26 HadGEM2-AO KMA/NIMR UK/Korea 1.88 × 1.25
27 HadGEM2-CC KMA/NIMR UK/Korea 1.88 × 1.25
28 HadGEM2-ES KMA/NIMR UK/Korea 1.88 × 1.25
29 INMCM4 INM Russia 2.00 × 1.50
30 IPSL-CM5A-LR IPSL France 3.75 × 1.89
31 IPSL-CM5A-MR IPSL France 2.50 × 1.27
32 IPSL-CM5B-LR IPSL France 3.75 × 1.89
33 MIROC5 MIROC Japan 1.41 × 1.40
34 MIROC-ESM MIROC Japan 2.81 × 2.79
35 MIROC-ESM-CHEM MIROC Japan 2.81 × 2.79
36 MPI-ESM-LR MPI-M Germany 1.88 × 1.87
37 MPI-ESM-MR MPI-M Germany 1.88 × 1.87
38 MRI-CGCM3 MRI Japan 1.13 × 1.12
39 NorESM1-M NCC Norway 2.50 × 1.89
40 NorESM1-ME NCC Norway 2.50 × 1.89

In the context of climate change, three GCMs (i.e., the dry, moderate, and wet effects)
were chosen to represent the future climate conditions. Then, daily precipitation and
temperature derived from GCMs were used as forcing data to project streamflow in the FCP.
The representativeness of the ensemble GCMs is considerably improved in the projection
of climate variables [53]. Among the 40 GCMs under the two scenarios in CMIP5, the
numbers of GCMs predicting increasing and decreasing future precipitation were 36 and 4,
respectively. To choose representative models and reduce uncertainties, three models
were selected to simulate future climate conditions, i.e., CSIRO-Mk3-6-0 (predicting dry
conditions with the largest precipitation declines), MIROC5 (wet conditions with the
largest precipitation increases), and FGOALSg2 (median conditions with a median change
in precipitation) (Figure 2).
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To generate the mean climate conditions, the GCMs’ climate projections were bias-
corrected with the delta-change method (for details, see Navarro-Racines, et al. [54]),
which simply superimpose the mean monthly anomalies between the GCMs-simulated
baseline and the future period on the observed historical precipitation and temperature to
represent future climate. Specifically, first, we calculated the ratio between the observed
and simulation precipitation data of the three selected GCMs in the historical period
(1960–2004). Second, we multiplied or added the precipitation and temperature data of the
three GCMs in the future period (2010–2054) with this ratio to obtain simulation data for
the FCP. Finally, we used the simulation data as forcing input data for running SWAT (Soil
and Water Assessment Tool) to estimate daily streamflow.

3.3. SWAT Model

The SWAT hydrological model is a continuous-time, computationally efficient, and
semi-distributed catchment-scale hydrologic model [55]. The catchment was divided into
hydrological response units (HRUs), and surface runoff volumes were simulated for each
HRU. SWAT has been widely used in different catchments worldwide and proved to be
an effective tool to examine hydrological responses to land use and climate changes [56].
More details on SWAT are given in Easton, et al. [57], Guo, et al. [58].

This study used daily meteorological data (precipitation, maximum and minimum
temperature, mean wind speed, radiation, mean relative humidity) from 1960–2012 as
forcing data to simulate daily runoff in the WRB. The performance of predicted runoff was
assessed against observed daily streamflow data in the same period. In the SWAT simula-
tion, 1983–2012 was the calibration period (warm-up period: 1983–1993), and 1960–1982
was the validation period (warm-up period: 1960–1969). Comparing the simulated runoff
between the calibration and validation period, the simulation of monthly runoff using the
SWAT model had a good performance in WRB (Figure 3).
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3.4. Trend Analysis

Trend analysis can provide effective and useful information on possible tendencies in
the future [59]. The nonparametric Mann Kendall test was used to identify trends and
trend significance in baseflow in this study. This test provides two parameters, i.e., the
significance level and slope magnitude [60]. p values ≤ 0.05 were considered significant.
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The Z (derived from a certain climate element sequence) and S are the trend and order
column and are used to detect the significance test. This test method has been widely
employed to detect significant monotonic increasing or decreasing trends in long-term
time-series data [8]. Method details can be found in previous studies [61,62].

3.5. Baseflow Drought Determination

Due to the hydrological drought with a higher accumulation period [63] and to provide
insights for water planning and drought alerts for other basins facing water shortage events,
the annual baseflow anomalies were implemented to determine hydrological droughts in
historical and future climate conditions.

4. Results
4.1. Baseflow Estimation

The meteorological outputs in the GCMs were extracted as the inputs to the SWAT
model to predict the streamflow in the future climate change, and then, a well-revised
Lyne–Hollick method was used to implement the baseflow separation. Overall, the SWAT
model had a good performance in both the calibration (Figure 3a) and validation (Figure 3b)
stages to simulate the streamflow on a long-term scale (e.g., with R2 > 0.7). In addition, the
annual mean baseflow in the calibration and validation of the SWAT model also is shown
in Figure 4.
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The baseflow time scale of predicted streamflow and recession constants are shown
in Table 3. The K and α are ranged from 62 ± 6 days (SD) and 0.98 ± 0.002 (SD) 1/day
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in the two future climate scenarios, respectively. For the CSIRO and FGOALSg2 models,
the prediction of streamflow under the two scenarios was very close. For the highest
streamflow condition, the MIROCS baseflow results were much higher than those of the
other two models.

Table 3. Recession analysis derived from three general circulation models and two scenarios for
future climate conditions (2010–2054).

Scenario GCM K (days) α (1/day)

RCP4.5
CSIRO-Mk3-6-0 53.2 0.981

FGOALSg2 64.5 0.985
MIROC5 69 0.986

RCP8.5
CSIRO-Mk3-6-0 54.3 0.982

FGOALSg2 67.1 0.985
MIROC5 63.7 0.984

4.2. Detection of Baseflow Changes

All three models showed an insignificant increasing trend in both scenarios before
2020 in the future period (Figure 5). From the perspective of changing points, there was
a similar and/or general pattern over a long future period; nevertheless, the numbers of
changing points were different. In 2020, 2026 and 2034, changing points occurred for CSIRO
and FGOALSg2 in both scenarios and for MIROC5 in the RCP8.5 scenario. After 2020, all
three models showed an insignificant decreasing trend in both two scenarios. Specifically,
in the FGOALSg2 model, there was a significant decreasing trend, and in the MIROC5
model, this trend occurred after 2049.
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Figure 5. Mann Kendall test statistics for three GCMs in two scenarios (RCP4.5 and RCP8.5). UF
is the sequential values of a statistic under the random hypothesis; UB is the reversed UF data
statistic series. The positive and negative values indicate the increasing and decreasing trend. The
intersections of UF and UB present the changing point.

The baseflow derived from the observed daily streamflow (Figure 6) showed a chang-
ing point in 1970. Before this year, baseflow showed an insignificant trend. However, after
this year, there was a decreasing trend, both in 1977–1983 and after 1995.
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4.3. Quantitative Baseflow Analysis Combining Historical and Future Climatic Conditions

The baseflow exhibited a decreasing trend in the long-term periods (all p ≤ 0.005, see
Figure 7). Herein, we first calculated the baseflow anomaly for the entire time series and
then added the regression line for each GCM using local polynomial fitting. Specifically,
CSIRO had a relatively more variation compared to the other two GCMs in both climate sce-
narios. Despite the trend with fluctuations, the three GCMs showed a similar performance
in the two climate scenarios.
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5. Discussion
5.1. Baseflow Trends in Historical and Future Climate Periods

The baseflow separation algorithm used in this study was derived from the revised ver-
sion of the Lyne–Hollick algorithm. The outcomes of this method were more reproducible
than the traditional methods (e.g., graphical approaches and empirical function [40]), thus
this approach would greatly reduce the uncertainties of baseflow estimation. As baseflow
was not directly measured under experimental conditions and was often estimated from
the original total streamflow [40], in addition, the digital filter combined the recession
analysis with more physical meanings containing more catchment-specific groundwater
drainage characteristics [44] and provides a robust tool to decrease uncertainties in baseflow
estimation [64].

The climate scenarios provided a robust tool to project the water balance of the
catchment [65], and detecting trend characteristics was beneficial to understanding the
hydrological variability at a long-term scale. In this study, the MK test was adopted to
detect baseflow changes under future climate conditions (Figures 4 and 5). A declining
baseflow trend was predicted for future climate scenarios. The baseflow change point years
were 1970 and 1990. These years are not consistent with the streamflow change points
reported by Zhan, et al. [33]. It was demonstrated that runoff had a decreasing trend in
this basin after 1990 due to human activities, and the changing points of streamflow lagged
the baseflow changes by about 20 years. However, the baseflow change points were in the
range of the streamflow change points in another catchment on the Loess Plateau. Herein,
the streamflow change points for different sub-catchments ranged from 1970 to 1990 [66].
As a delayed water resource, baseflow provides water to the land surface and sustains
ecological health under dry spells.

Projections of baseflow and trend analysis are important to prevent and palliate
drought losses on the catchment and regional scale [67]. Analyses of climate variability
and baseflow improve our understanding of the effects of drought on environmental
protection [4]. A drier trend has been reported for most areas of China based on PDIS (the
Palmer Drought Severity Index) [67]. The degree of drought is characterized by a high
frequency and has a long-term effect on hydrological connections in the WRB. Baseflow
characteristics were used to evaluate hydrological droughts because baseflow is relatively
steady and can represent catchment water storage [68]. Quantifying the impacts of climate
variability on baseflow can provide insights for future water-resources plans [4]. Yang,
et al. [41] showed that baseflow recovery had a longer lag than streamflow recovery
across 130 unimpaired catchments in eastern Australia. Further, it has been reported that
the hydrological cycle is intensified with changes in global mean precipitation in GCM
projections [69]. This means that dry areas with limited water may become much drier.

5.2. Variability of the Baseflow Index

The BFI is an important hydrological indicator representing the water flow from
groundwater/delayed resources to streamflow. It contains a lot of information on catchment
characteristics [70,71], which reflects the holistic attribute of baseflow and terrestrial water
balance [72]. The relationship between total baseflow, streamflow, and the baseflow index
was demonstrated in Figure 8. To address the total baseflow contribution to streamflow,
we also assessed the BFI for the historical observed and the simulated results for the three
GCMs (Figure 9). There was an increasing trend in the BFI in the long-term climatic period.
This means that the role of baseflow was remarkably strengthened in the sustenance of
local water in this catchment. Compared to baseflow yield, the BFI is a relative ratio that
varied from 0.42 to 0.49 and averaged 0.45 in our study. This means that the contribution
of baseflow from groundwater storage or delayed sources accounted for 45% in the WRB
from the perspective of future climate conditions in GCM projections. The magnitude of
baseflow was very similar in the three models. Nevertheless, streamflow showed relatively
greater variations. This confirmed that the baseflow is a relatively stable flow that sustains
the terrestrial hydrological ecosystem [73].
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Additionally, to clarify baseflow and streamflow trends, the relationships of historical
data and/or projected streamflow and baseflow from the three models under two scenarios
were also assessed (Figures 4 and 5). The response of baseflow to streamflow had a relative
laggy time interval. This may be related to the increasing degree of anthropogenic activities
in this basin due to the heavy exploitation intensity of groundwater resources. Singh,
et al. [72] reported that groundwater abstraction significantly influenced flow regimes, with
higher baseflow under constrained pumping conditions. Further, the effects of baseflow
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increase vary among river reaches, and baseflow and stormflow increases have relatively
greater impacts on downstream areas by increasing flow volume [16]. Estimating other
anthropogenic pumping effects is a meaningful way to assess the baseflow response to
local hydrological variations.

5.3. Factors Influencing Baseflow Variations

It has been reported that climate change and anthropogenic activities are drivers of
groundwater storage [74,75]. The baseflow yield is associated with the interactions between
climate variability and vegetation changes [66,76] and would be influenced by a variety
of catchment physical factors [72]. It is characterized by seasonal precipitation variations,
i.e., from June to September, which creates the summer-dominated baseflow feature in
this basin [1]. Furthermore, land-use change has affected 50% of the area on the Loess
Platea [66]. This directly influences streamflow and leads to changes in baseflow. The basin
covers three geological classes. Land use was predominantly agricultural in the long term.
However, due to the widely distributed loess-deposition areas is in this region, extensive
agricultural development causes heavy soil erosion and water-conservation issues [77]. To
sustain the water quality and supply of the WRB, the government has taken measures to
prevent ecosystem recession (e.g., soil-conservation measures [78]). This should lead to
delayed surface runoff and increase the baseflow in small catchments [60]. However, in dry
seasons on a long-term scale, the baseflow should be reduced by the loss of groundwater
through more plant evapotranspiration. This is associated with vegetation-type changes
from grass/bare land to the forested area [79]. Additionally, this complex effect is also
influenced by other potential conditions such as topography. For example, Li, et al. [80]
showed that the topography plays a paramount role in low flows (flow magnitudes ≤ Q75%)
in snow-dominated catchments.

The effects of anthropogenic activities associated with agricultural production also
strongly control the water cycle in catchments [35]. It has been shown that the plantation
intensity on agricultural land reduces downstream water availability [76]. Irrigation is
an important factor influencing groundwater processes [29], leading to variations in base-
flow [8]. The WRB is the main agricultural region, with large irrigation areas responsible for
the food production for the regional population. To maintain living standards and sustain
ecological health, the water demands have been increased for decades, and groundwater
pumping supports much of the municipal water demand. Additionally, from the perspec-
tive of water depletion, agricultural development, and ecological recovery projects were all
needing a large amount of water, including surface water and groundwater, it would create
a baseflow shortage event for the Loess Plateau. For example, large-scale afforestation may
exacerbate baseflow conditions as evapotranspiration increases through the amplification
of leaf area and rooting depth [2,81]) for the catchment with constant precipitation input.
This impact on baseflow variations would be amplified by climatic variations in this basin.

5.4. Implications of Baseflow Droughts

To provide insights for water planning and drought alerts for other basins facing
water-shortage events, the annual baseflow anomalies were implemented to determine
the hydrological droughts in historical and future climate conditions (Figure 7). It is
noted that the baseflow has an apparent decreasing trend overall. Specifically, there was a
relatively richer baseflow in approximately 2035. However, there was a lack of baseflow
in 2041–2050, leading to a prolonged impact on the hydrological cycle (e.g., baseflow
hydrological droughts) in the long term (~10 years).

It has been reported that, when disentangling climatic effects (e.g., precipitation) on
hydrology, the uncertainties were much larger in the high-emission scenario RCP8.5 than
the relatively low-emission scenario RCP4.5 [52]. In the baseflow estimation in the FCP,
there was no remarkable difference between higher- and lower-emission scenarios, and
the annual baseflow anomalies were very similar (Figure 7). The uncertainties of this
study were likely associated with coarse temporal or spatial resolution and systematic
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errors derived from GCMs [67]. Besides, the baseflow relies upon runoff estimates in
the model, confined by temperature and precipitation [82]. The variations of the climate
phenomenon of wet-getting-wetter and dry-getting-drier [83] also influence baseflow
changes in the catchment.

6. Conclusions

Climate selection is an important factor influencing hydrological processes. In this
study, a physical-based baseflow separation filter was used to separate baseflow from
total streamflow to assess baseflow responses to climate (e.g., varying temperature and
rainfall). Three representative general climate models with two climate scenarios were
used to predict baseflow and analyze trends and driving forces in the Weihe River Basin.
Our analyses proved that the GCMs could capture the streamflow variations under future
climate conditions and could be used to investigate baseflow characteristics at the basin
scale. Our findings showed that the selection of climate had an approximate impact on
the baseflow projection. The baseflow derived from three climate models (i.e., the future
climate conditions) with two representative scenarios demonstrated a decreasing baseflow
trend in this basin, reaching a strong decreasing trend approximately in 2040. For the
historical periods, the baseflow had two intersects using the MK test, showing that the
response of baseflow was much more sensitive than that of streamflow. Streamflow flow
lagged about 20 years behind baseflow. Annual baseflow anomalies are an efficient tool
that can be used to evaluate drought events under future climate conditions. Our study
predicted baseflow droughts (~10 years) in this catchment starting in 2041. Although it
is challenging to forecast water-storage variations accurately (e.g., drought events), the
baseflow projection from climatic scenarios in GCMs is a promising way to assess baseflow
responses to future climatic changes.
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