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Abstract: Water clarity (Secchi disk depth, SDD) provides a sensitive tool to examine the spatial
pattern and historical trend in lakes’ trophic status. However, this metric has been insufficiently
explored despite the availability of remotely-sensed data. Based on the published SDD datasets
derived from Landsat images, we analyzed the spatial and inter-annual variations in water clarity
and examined the impact of natural and anthropogenic factors on these trends at multiple scales,
i.e., five lake regions, provinces, and watersheds. Lake clarity was lowest in Northeast (0.60 ± 0.09 m)
and East China (1.23 ± 0.17 m) and highest in the Tibet Plateau (3.32 ± 0.38 m). Over the past 35 years,
we found a significant trend of increased SDD in 18 (out of 32) provinces (only Yunnan province
exhibited a significant decreasing trend) and in 77 (out of 155) watersheds (only 5 watersheds showed
a significant decreasing trend). Lakes in eastern-northeastern China exhibited a higher probability
of decreasing trend, while the trend was inverse for lakes in the Tibet-Qinghai region. The results
of water clarity interannual change trends showed they were closely related to the spatial scale of
analysis. At the watershed level, these trends were mainly driven by anthropogenic factors, with
night-time brightness (13.84%), agricultural fertilizer use (11.17%), and wastewater (9.64%) being the
most important. Natural factors (temperature, wind, and NDVI) explained about 18.2% of the SDD
variance. Our findings for the SDD spatio-temporal trend provide valuable information for guiding
water protection management policy-making and reinforcement in China.

Keywords: Landsat images; climate change; anthropogenic activities; water clarity; multiple scales

1. Introduction

Lakes and reservoirs (herein lakes) play crucial roles in the aquatic environment for
wildlife and serve as freshwater water sources for drinking, industrial, and agricultural
uses [1–3]. No doubt, China has made huge achievements, especially in socio-economic
development, since the “Reform and Opening-up” policy was initiated in 1978. However,
China also has been facing increasingly severe water pollution, scarcity, and security
problems ever since [4]. Agricultural nonpoint pollution, industrial production-related
pollution, population growth, and urban expansion have exerted increasing stress on water
quality [4,5]. Eutrophication is the most severe problem with respect to water quality, and
great efforts have been devoted to controlling or reducing trophic water levels [6–8]. At the
same time, China also invests a huge amount of money in environmental improvement,
which has exerted a strong impact on the environment in the last 20 years [6,9]. Further,
afforestation and returning grassland or wetlands from agriculture projects have also been
reinforced in the past three decades, which have turned China greener [10].

Across the country, a limited number of stations have been deployed over differ-
ent sections of inland waters to monitor water quality [11]. As for water resource man-
agers in China, they need suitable assessment tools to monitor inland water quality over
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time [12]. Water clarity or transparency is a comprehensive proxy for evaluating the wa-
ter trophic state [13], which is closely linked with the presence of suspended sediment,
planktonic algae, zooplankton, and colored dissolved organic matter (CDOM) in the water
column [14–16]. Water clarity is commonly measured by Secchi disk depth (SDD) which
is relatively easy to operate and, thus, is a very practical measure to monitor water qual-
ity [17,18]. Nevertheless, these traditional approaches are limited in their suitability for
monitoring water bodies with large surface areas due to the dynamic nature and lakes in
large geographic regions [19,20]. Though the operation of SDD measurements is easy, lakes
in remote areas, large geographic regions, or without aquatic vehicles make it impossible
to collect clarity data [21,22]. Optically active constituents (OACs), i.e., phytoplankton,
non-algal particle, and CDOM, govern water clarity and are the major components that
determine water-leaving radiance, which can be detected by remote sensing sensors [23,24].
Remote sensing has been widely used for monitoring the spatio-temporal dynamics of
SDD at regional, national and global scales [21,25–27]. The Landsat images can be used to
monitor the spatio-temporal variation of SDD and track the long-term trend in the past
35 years with its free-of-charge images. Such an analysis can provide valuable information
for evaluating water eutrophication status, which can be used for water resource planning
and management or attempting to decrease eutrophic levels [27–29], yet the option of
applying long-term archived Landsat images has not been fully explored.

The spatial distribution and temporal variation of SDD can be influenced by natural
factors and anthropogenic activities [25,30]. In recent years, a few researchers have ex-
amined the driving factors for SDD interannual changes across China. Liu et al. (2020)
paid more attention to the influence of natural elements on SDD variations across China,
i.e., wind, water depth, temperature, NDVI, precipitation, and basin slope, and only chose
one anthropogenic element (population). Wang et al. (2020) selected four natural factors
(precipitation, temperature, lake depth, lake altitude) and two anthropogenic factors (pop-
ulation, GDP) to explore the linkage between these factors and SDD variations. The above
studies mainly focused on the large lakes and reservoirs (area > 10 km2), and the anthro-
pogenic factors they selected represented the indirect effects of human activities on water
quality. In this study, the combined effect of climatic (temperature, wind, precipitation,
NDVI) and socio-economic factors (agriculture fertilizer use, wastewater discharge, NTL)
on the temporal and regional variability of lake SDD (area > 1 ha) have not been systemati-
cally examined. The overall purpose was to explore the natural and anthropogenic factors
driving SDD variations based on published SDD datasets (1984–2018) derived from Landsat
images [31]. Specifically, the objectives were to: (1) examine the inter-annual variability of
SDD at multiple scales, specifically, five lake regions, provinces, and watersheds; (2) investi-
gate the correlation analysis and relative contribution of natural and anthropogenic factors
on the temporal trends of lake SDD at each of these scales through hierarchical partitioning
for canonical analysis.

2. Materials and Methods
2.1. Study Area

According to the regional characteristics of geography and climate, our study regions
across China have been grouped into five lake regions [32], i.e., the Inner Mongolia–Xinjiang
lake region (MXR), Tibetan–Qinghai Plateau lake region (TQR), Northeastern lake region
(NLR), Yungui Plateau lake region (YGR), and Eastern lake region (ELR) (Figure 1a). The
MXR and TQR are located in arid or semi-arid climates and have higher evaporation and
lower annual precipitation and temperature than the other three lake regions. Additionally,
the lakes situated at high altitudes in the plateau region are less affected by human activities
and generally display better ecological conditions than lakes in the other regions [33]. The
NLR, YGR, and ELR are influenced by the Asian monsoon climate, and these lakes are fre-
quently influenced by anthropogenic activities [9,28]. During the period 1984–2018, the char-
acteristics of climate in the five lake regions exists discrepancy in space (Figure 1b–d), i.e., an-
nual mean precipitation is in the descending order: ELR > YGR > NLR > TQR > MXR, an-
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nual mean wind speed is: NLR > MXR > ELR > TQR > YGR, annual mean temperature
is: ELR > YGR > ELR > TQR > YGR. The lakes with SDD records of more than 10 years
obtained from Tao et al. (2022) include natural lakes and artificial lakes (also named reser-
voirs), with sizes ranging from 1 ha to 4,483 km2 (Qinghai Lake, 2018). The maximum mean
depth of the lake, named Changbaishan Heavenly Lake, is up to 204 m. The trophic status
of lakes in China varies from oligotrophic to mesotrophic to eutrophic, among which the
lakes releasing signals of eutrophic are mainly distributed in the ELR region [15].
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Figure 1. Examined lakes distributed in five lake regions across China (a) and annual mean me-
teorological data in five lake regions during 1984–2018, i.e., precipitation (b), wind speed (c), and
temperature (d). Note that the data on water bodies were sourced from Tao et al. (2022), and the
meteorological data derived from the National Meteorological Information Center.

2.2. Collection of Climatic and Socio-Economic Data

To help with the interpretation of results, we used three types of data in this study:
(1) climatic and physiographic data, including vegetation cover (as expressed by normalized
difference vegetation index or NDVI), annual average temperature, wind speed, and
precipitation; (2) data on anthropogenic activities, including agricultural fertilizer use,
wastewater discharge (industrial and sanitary sewage), and night-time light brightness
(NTL); (3) other ancillary data. More details about the various data sources are provided
in Table S1.

NDVI is a proxy for vegetation growth in a drainage basin and can affect soil erosion
and sediment discharge into lakes [34]. In this study, using NDVI as a surrogate for
vegetation cover, we downloaded AVHRR GIMMS NDVI data at 1/12-degree spatial
resolution from 1984 to 2015 (https://ecocast.arc.nasa.gov/data/pub/gimms/, accessed on
10 October 2022), and MODIS NDVI MOD13C1 products at 5.6 km spatial resolution from
2016 to 2018 (https://modis.gdfc.nasa.gov/, accessed on 10 October 2022). For this research,
both of the NDVI datasets were resampled to 8-km spatial resolution using the maximum
value compositing procedure to minimize the effect of cloud contamination (mean annual
NDVI are presented in Figure S1a) [35]. In order to quantify the impact of climatic factors
on SDD, we downloaded yearly average temperature, wind speed, and precipitation
from the National Meteorological Information Center (http://data.cma.cn/, accessed on
10 October 2022). Data were obtained from 613 stations distributed across China.

https://ecocast.arc.nasa.gov/data/pub/gimms/
https://modis.gdfc.nasa.gov/
http://data.cma.cn/
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The total amount of fertilizer used for agriculture and wastewater discharge (sum of
industrial wastewater and domestic wastewater) was obtained from the Provincial Statis-
tical Yearbook (http://tongji.cnki.net/, accessed on 10 October 2022). The two types of
data were related to water quality change as sources of TN, TP, and nutrients [9]. The night-
time light brightness (NTL) data were derived from products of the operational Line-scan
System of Defense Meteorology Satellite Program (DMSP-OLS) of the National Oceanic
and Atmospheric Administration’s (NOAA’s) National Geographic Data Center (NGDC)
across continental China during 1992–2013 (https://ngdc.noaa.gov/eog/download.html,
accessed on 10 October 2022), which has a strong correlation with human activities [36].
We chose stable light data, one of the three kinds of annual average data covering cities,
townships, and other lasting light emissions, and background noise was removed. Because
the original NTL data has a problem of non-continuity, non-comparability, and satura-
tion, according to the invariant region method of Liu et al. (2012), we resolved the first
two questions, and the last one was worked out through the approach proposed by Wu
et al. (2013), which consists of selecting a suitable reference NTL image with no sensor
saturation. Following these steps, data were projected with the Lambert Azimuthal Equal
Area projection and resampled to a pixel size of 1 km (mean annual NTL is presented
in Figure S1b).

2.3. Methods
2.3.1. Analyzing the Dynamics of SDD

Based on the published annual mean SDD datasets of China between 1984 and 2018,
there were 10,814 lakes remaining for analyzing the interannual dynamics of SDD with
results of each lake for more than 10 years [31]. The datasets were generated by using
empirical algorithms (red/blue band ratio) based on the Landsat top-of-atmosphere re-
flectance product with Google Earth Engine, where R2 = 0.79, RMSE = 100.30 cm, relative
RMSE = 61.90%, and MAE = 57.70cm. Before analyzing the dynamics of SDD, the results
of annual mean SDD needed to be obtained at three scales across China, i.e., five lake re-
gions, provinces, and watersheds. A total of 34 provinces (Figure S2a) and 161 watersheds
(Figure S2b) in China were included when calculating SDD results. Due to data deficiency
(Taiwan) or a limited number of lakes (e.g., Hong Kong and Macao), Taiwan, Hong Kong,
and Macao were excluded from the analysis when assessing for the relative contribution
of driving factors. To define watershed boundaries, we first obtained maps of secondary
and tertiary basins, and these were complemented with relational data about the basic
hydrological characteristics of each watershed. Maps were then georeferenced using avail-
able tools in the ArcGIS 10.3 software package. After that, for each lake region, province,
and watershed, the mean, standard deviation, and change trend of SDD were calculated.
The interannual change trend of lake SDD was obtained using linear regression analysis
using IBM SPSS Statistics 22. Based on the significance level (5%) and slope from the
linear regression model between SDD values and year, there were three interannual change
trends: significant increasing (slope > 0 and p < 0.05), significant decreasing (slope < 0 and
p < 0.05), and non-significant change (p > 0.05).

2.3.2. Quantizing the Driving Factors

Generally, we have trouble directly obtaining datasets of wastewater discharge and
agricultural fertilizer use within the extent of watersheds, which were recorded at the
province level. Therefore, before analyzing the correlation and contribution between driv-
ing factors and lake SDD, the two types of datasets should be derived at the watershed level.
We referenced the province-to-watershed conversion methods to obtain these two datasets,
and a detailed description can be seen from the study by Ma et al. (2020) and Fang et al.
(2022) (Figure S3). To obtain province-level and watershed-level NTL data based on vector
boundaries of provinces and watersheds on the platform of ArcGIS 10.3, interpolation
and extrapolation using linear regression were applied to obtain continuous data from
1984 to 2018. As for the meteorological data, Stations within each province and watershed

http://tongji.cnki.net/
https://ngdc.noaa.gov/eog/download.html
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boundary were selected to calculate the mean values of climatic factors. If a region did not
contain any stations, the closest station was selected to estimate the relative mean values
for that region (Figure S4). The datasets of the NDVI at the province and watershed scales
were directly obtained from the rater datasets according to the corresponding boundaries.

2.3.3. Statistical Analysis

Based on the province and watershed scale datasets of driving factors prepared, when
a significant trend (increasing or decreasing) in SDD is detected, correlation analysis was
conducted (at the province or watershed scale) to examine linkages with anthropogenic and
natural factors. Statistical significance was determined at the 1% or 5% level, and analysis
was conducted with the IBM SPSS software. Finally, we conducted a hierarchical parti-
tioning for canonical analysis (HPCA) using the RStudio 3.6.2 statistical software package
(named “rdacca.hp”) to estimate the relative contribution of the seven factors considered
as potential driving forces of inter-annual variation in lakes’ SDD. A notable advantage
of this method is that it eliminates the effect of multi-collinearity among explanatory
variables [37]. Additionally, the method of HPCA could standardize each variable in the
process of contribution analysis, which is conducive to analyzing the relative importance
of different variables.

3. Results
3.1. Spatial Pattern in Lake Water Clarity

Water clarity demonstrated remarkable spatial variation across the lake regions of
China, with lakes in the mountain regions generally exhibiting higher SDD than those
situated in the flat plain regions (Figure 2a). Among the five lake regions, lakes in the NLR
exhibited the lowest SDD (mean: 0.60 ± 0.09 m), followed by the ER (mean: 1.23 ± 0.17 m).
The MXR showed intermediate SDD values (mean: 1.63 ± 0.38 m), but lakes located in
the high mountain areas in the mid-south and northwest sections of that region exhibited
higher SDD. Lakes in the YGR exhibited relatively higher SDD (mean: 2.35 ± 0.21 m), likely
due to their location on the Yungui Plateau, where dense forests prevail. Lakes in the TQR
had the clearest water (mean SDD: 3.32 ± 0.38 m) but also exhibited the widest variation in
SDD (range: 0.13–12.70 m). The TQR includes large, deep, and clear alpine lakes on the
Tibet Plateau, as well as multiple small and shallow lakes that tend to be relatively turbid.

Variation in lake SDD was examined at the provincial scale (Figure 3a). Lake SDD was
lowest in the Heilong Jiang, Jilin, and Inner Mongolia provinces (in NLR) and in the Jiangsu,
Anhui, and Jiangxi provinces (in ER). These turbid lakes exhibited a narrow range (<1 m)
in SDD and small standard deviation (S.D). In contrast, for provinces in mountainous areas
of south and southwest China (Chongqing, Sichuan, Yunnan, Zhejiang) and in the TQR
region (Xinjiang), lake SDD was the highest (>2 m), but the variation in SDD was widest
(hence, large standard deviation). Lakes in the other provinces exhibited intermediate SDD
(1–2 m) and also intermediate variation in S.D.

SDD spatial pattern at the watershed scale generally resembled that at the provincial
scale (Figure 3b). As an illustration of the effect of land use and land cover (Figure S5), lakes
in the mountainous region and on the Tibetan Plateau (located in watersheds with dense
forest cover) generally showed high SDD and also larger S.D. values. Conversely, lakes
in the flat plain regions, e.g., the Songnen Plain, the Yangtze Plain, and also lakes situated
in north and northwest grassland or desert landscapes with semi-arid or arid climates,
displayed lower SDD with less inter-annual variation (S.D. < 0.5).

3.2. Temporal Trend in Lake Water Clarity

With the exception of the TQR, results for the other four lake regions indicated a
significant (p < 0.05) increasing trend in SDD during the study period (Figure S6). We
further examined the data at the provincial and watershed scales to examine the impact
of the scale of analysis on the temporal trend in lake SDD. At the provincial scale, lake
clarity in 18 provinces showed a significant increasing trend, with 1 province showing
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a significant decreasing trend (e.g., Yunnan Province) in the past 35 years (Figure 2b).
Specifically, according to Figure 3a, c, the number of provinces with mean SDD values that
fell into the levels of 0 to 0.5 m, 0.5 to 1 m, 1.0 to 1.5 m, 1.5 to 2 m, 2.0 to 2.5 m, and >2.5 m
represented 2 (5.88%), 5 (14.71%), 9 (26.47%), 3 (8.82%), 5 (14.71%), and 8 (23.53%) among
all 32 provinces (Hong Kong and Macao were merged into Guangdong province since there
very limited water bodies in these two special administrative units), respectively. Among
these categories of SDD, the number of provinces with SDD increase was 1, 3, 7, 0, 3, and
5, respectively.
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Figure 2. Interannual trends (1984–2018) in lakes SDD in five lake regions of China (a). Significant
decreasing (slope < 0 and p < 0.05), significant increasing (slope > 0 and p < 0.05), and non-significant
trends in SDD are presented for different provinces (b) and at the watershed scale (c). The green
and purple boundaries depict, respectively, regions of maximum increasing and decreasing trends in
SDD; the bright green and red boundaries represent, respectively, areas of minimum increasing and
decreasing trends. The significance of slope is determined by t-test at the 5% significance level.

At the watershed scale, the country was divided into 161 watersheds, but 6 watersheds
were excluded since they include no water body with 10 years of SDD records; thus, only
155 watersheds were further analyzed (Figure 2c; Figure 3b). Altogether, 77 watersheds
showed a significant increasing trend (Figure 2c), with the Qiandao Lake watershed exhibit-
ing the largest increasing trend (i.e., slope). Lake SDD in 5 watersheds showed a decreasing
trend, and no clear inter-annual trend was observed in the other watersheds (Figure 2c).
Using the same categories of annual mean SDD values that were employed at the province
level (i.e., 0 to 0.5 m, 0.5 to 1 m, 1 to 1.5 m, 1.5 to 2 m, 2 to 2.5 m, and >2.5 m), the number of
watersheds in each category was 14 (8.70%), 28 (17.39%), 39 (24.22%), 17 (10.56%), 7 (4.35%),
and 50 (31.06%) among all 155 watersheds, respectively. The number of watersheds with a
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significant increase in SDD was 10, 13, 26, 7, 3, and 23, respectively (Figure 3b,d). Based
on the above results, it could be seen that SDD interannual change trends depended
on the spatial scale of analysis, a result that needs to be considered when analyzing for
driving forces.
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Figure 3. Average and standard deviation (red circles) of lake SDD during 1984–2018 by provinces
(a) and by watersheds (b). Standard deviation data are presented only for the 19 provinces (a) and
82 watersheds (b) that had shown significant (p < 0.05) trends in interannual changes in mean
SDD. The histograms showed the distribution of lake SDD among provinces (c) and watersheds (d).
Histograms (c,d) are drawn for all lakes (brown hatched bars) and for the subset of lakes where a
significant trend in SDD was detected.

4. Discussion
4.1. Natural Versus Anthropogenic Factors

It is widely accepted that lake SDD can be affected by OACs, and the abundance of
these compounds in the water column can be influenced by natural factors and anthro-
pogenic forces [28,38]. For this study, a set of seven driving factors (natural and anthro-
pogenic) was considered, and the correlation between these factors and changing trends in
SDD was examined across 19 provinces and 82 watersheds at the 5% and 1% significance
levels (Figure 4). As for natural factors at the province level, lakes from 4 (p < 0.01) and
6 (0.01 < p < 0.05) provinces demonstrated a significant association between NDVI (normal-
ized difference vegetation index). As for temperature, 11 (p < 0.01) and 3 (0.01 < p < 0.05)
of the 19 provinces revealed a significant association with the SDD changing trend. Wind
speed also exerted a strong effect on SDD, with a significant effect on changing SDD trends
detected in 4 (at 1% level) and 3 provinces (at 5% level). Precipitation only showed a strong
association with changing trends in lake SDD at the 5% level. Precipitation affects surface
runoff and the delivery of materials (nutrients, suspended particles) into lakes, while wind
speed causes sediment resuspension in the water column, particularly in shallow water
bodies [16]. Vegetation cover (NDVI) has a great contribution to soil conservation, which
can alleviate erosion and reduce the transportation of soil particles into lakes [39]; thus, we
used NDVI as a surrogate for vegetation cover and examined its association with change
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in lake SDD. Temperature increase may enhance algal growth, coupled with elevated TP
and TN loadings, which might ultimately affect SDD [8,40,41]. Further, temperature can
also promote vegetation growth in regions where precipitation is not limiting [10,42]. In
addition, the lake area and water depth, not being considered in this study due to the
lack of data, are important driving factors for SDD spatio-temporal variation at the re-
gion scale [19,39]. Lake expansion and increasing water depth could weaken sediment
resuspension, resulting in clearer water quality.
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Figure 4. Histograms showing the number of provinces (a) or watersheds (b) where each of the listed
natural and socio-economic driving factors had a significant effect on SDD. Histograms are shown
for analysis conducted at the 5% and 1% significance levels.

Compared to natural factors at the province scale, anthropogenic factors exerted a
much stronger impact on lake SDD (Figure 4a and Figure S7a,b). NTL (night-time light
brightness) had a strong association with changing trends in SDD, with lakes from 12 and
5 provinces showing significant associations at the 0.01 and 0.05 levels, respectively. It is
well understood that NTL is a comprehensive proxy for socio-economic development and
can have strong links with GDP, population size, impervious surface area, and degree of
urbanization [10,43]. Thus, it is reasonable that NTL was found to be highly associated with
a change in SDD and able to explain a high percentage of the variance in SDD changing
trend. Similarly, fertilizer use (11 provinces at p < 0.01, 4 provinces at 0.01 < p < 0.05) and
wastewater (8 provinces at p < 0.01, 4 provinces at 0.01 < p < 0.05) also exerted a strong
impact on SDD changing trends.

At the watershed scale, the impact of natural and anthropogenic factors on SDD
mirrored the patterns observed at the provincial scale (Figure 4b and Figure S7c,d), e.g., the
stronger impact of anthropogenic factors than natural factors on lake SDD (Figure 4).
Of the 82 watersheds with a significant changing trend in SDD, precipitation had an
effect in only 3 watersheds (at p < 0.01 level) and 7 watersheds (0.01 < p < 0.05 level).
Temperature, NDVI, and wind speed had a relatively strong impact on the change in SDD
(Figure 4b and Figure S7c,d). Among the anthropogenic factors, NTL had the strongest
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impact on change in SDD, with significant impact detected in 58 and 9 watersheds at 1%
and 5% levels, respectively. Both fertilizer use and wastewater discharge had a strong
impact on SDD change, with a significant impact detected in 52 and 43 watersheds at
p < 0.01 level. Wastewater (sanitary sewage and industrial sewage) generally contains a
high amount of CDOM, which strongly affects light attenuation and SDD [44]. Further,
sewage discharge delivers a high amount of TN and TP to water bodies, which stimulates
algal growth and ultimately affects lake SDD [13,29,45].

4.2. Relative Contribution of the Driving Factors

To quantify the relative contribution of the seven natural and anthropogenic factors
on temporal trends in SDD over the past 35 years, HPCA was carried out. At the province
level, the contribution of several factors was found to vary among the different provinces
(Figure 5a and Figure S8a). The driving factors can explain >70% of the variance in SDD in
Heilongjiang and Henan provinces but only <25% in Guangdong and Shandong provinces.
Among the anthropogenic factors, NTL contributed to a large proportion of the SDD vari-
ance, ranging from 3.34% in Guangdong province to 21.05% in Heilongjiang province.
NTL is a comprehensive variable and, among other things, reflects socio-economic de-
velopment, population, and construction investment [36,46]. As such, NTL can co-vary
with wastewater discharge. Fertilizers and wastewater also played an important role in
controlling SDD change in some provinces, contributing >10% of the variance in provinces
such as Anhui, Henan, and Inner Mongolia. NDVI explained 5.82% of the variation in
lake SDD, particularly in the provinces where significant changes in NDVI occurred dur-
ing the past 35 years (Figure 5a). NDVI is a comprehensive index, reflecting not only
weather-related (temperature, precipitation) parameters that stimulate vegetation growth
but also the effect of ecological restoration projects [10,47]. Thus, the impact of NDVI
may include the contribution of temperature and precipitation, as well as the effect of
management of other beneficial human interventions [10,48]. Surprisingly, wind speed
and precipitation explained a small proportion of the variance (5.51% and 2.46%, respec-
tively) in lake SDD. Altogether, in 9 provinces (out of 19 provinces), anthropogenic factors
explained more of the variance in lake SDD than natural driving factors (27.50 ± 13.44%
and 22.28 ± 7.93%, respectively).

At the watershed scale, the seven natural and anthropogenic factors explained a
greater proportion of the SDD variance, with NTL (13.84%) and fertilizer (11.17%) being
the two key factors (Figure 5b and Figure S9b). As noted previously, the greater proportion
of variance explained by these two variables may be due to the finer scale of analysis
(compared to the provincial scale), making it possible to capture the effect of even small
disturbances. As shown in Figure 5b, wastewater was another dominant factor in some
watersheds, particularly for the watersheds located in the Yangtze Plain, North China
Plain, and East China. This is reasonable since secondary industrial production and major
population centers are mainly distributed in these regions. In addition, in some watersheds,
temperature played an important role in explaining SDD variance. Since most lakes in
China are not n or p-limited [9], an increase in temperature could result in increased algal
abundance [8], which ultimately could translate into lower SDD. Although a minor propor-
tion of the SDD variance was explained by precipitation, its impact may be contained in the
NDVI variation. Wind speed contributed to SDD variance in 7 (out of 82) watersheds. Alto-
gether, in 56 watersheds (out of 82), anthropogenic factors explained a greater proportion
of the SDD variance compared to natural factors (31.56 ± 16.42% vs. 21.43 ± 11.01%).
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Figure 5. The relative contributions (in percentage) of the seven examined factors driving the interan-
nual changes in mean SDD during 1984–2018 in the nineteen provinces (a) and eight-two watersheds
(b) that had shown significant (p < 0.05) trends in mean SDD. General boundaries of these provinces
and watersheds are depicted in Figure S2.
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5. Conclusions

As a comprehensive indicator of water eutrophication, encompassing nutrient en-
richment, algal abundance, and suspended sediment, SDD can serve as a valuable index
for tracking the ecological health of aquatic ecosystems and guiding the actions of wa-
ter resource managers. This information is highly valuable and can be extracted from
archived satellite data. Based on the published long-term SDD datasets (1984–2018) de-
rived from Landsat observation, the results of spatio-temporal variation were analyzed
at multiple scales, from five lake regions to watershed scale. Lake clarity was lowest
in Northeast (0.60 ± 0.09 m) and East China (1.23 ± 0.17 m) and highest in the Tibet
Plateau (3.32 ± 0.38 m). Our results showed a significant increasing trend in lake SDD in
18 provinces (out of 32) in the past 35 years (decreasing trend in the Yunan province and no
trend in the other provinces). At the watershed scale, an increasing and decreasing trend in
SDD was observed in 77 and 5 watersheds, respectively. The results of SDD interannual
change trends showed they were closely related to the spatial scale of analysis. In the
watersheds where a significant trend in SDD was observed, HPCA analysis showed that
NTL (13.84%), fertilizer use (11.17%), and wastewater discharge (9.64%) explained more of
the variance than temperature (7.37%), wind speed (5.59%), NDVI (5.26%), and precipita-
tion (3.22%), underscoring the overriding effect of anthropogenic driving factors on the
temporal evolution of lake SDD. The analysis results of this study would help environment
managers at local, provincial, or even national levels in decision-making for improving or
protecting inland water bodies across China.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14205091/s1. Figure S1: Spatial distribution and temporal
trend in normalized difference vegetation index (NDVI, a) and night-time light brightness (NTL,
b) across China. The displayed 19 provinces were that the lake clarity in these provinces showed a
significant changing trend. Figure S2: Boundary of China provinces (a) and watersheds (b) included
in this study. A number is assigned to each watershed in order to facilitate description and reporting
of results. Figure S3: Total amount of fertilizer used in agriculture (a) and wastewater discharge
(b) in 19 provinces of China during the period 1984–2018. Figure S4: Meteorological data across
provinces (left graph panels) and watersheds (right graph panels). The red dots correspond to the
location of weather stations at the province (a) and watershed (b) level. Mean annual precipitation
(province: c; watershed: d), temperature (province: e; watershed: f), and 2-min wind speed (province:
g; watersheds: h) for the period 1984–2018 are presented. Figure S5: The land use/land cover used in
this study displayed every 5 years from the year 1980 to the year 2015 with a spatial resolution of
1km. Figure S6: Non-significant (p > 0.05) and significant increasing (slope > 0 and p < 0.05) trends
in water clarity are presented for different lake regions across China during the period 1984–2018.
The green boundary depicts regions of maximum increasing trends in water clarity; the bright green
boundary represents areas of minimum increasing trends. Figure S7: Distribution of correlations
(significant at 0 < p < 0.05 and p < 0.01) between interannual mean SDD and the driving factors
(natural and anthropogenic) at the province level (a and b) and watershed level (c and d). Figure S8:
The contribution distribution of seven driving factors in province-level (a) and watershed-level (b),
respectively. The circles with different colors represented diverse driving factors, and the largest
circle demonstrated that one driving factor had the highest contribution in the relevant watershed,
followed by others. Table S1: Summary description of the different data sources used in this study.
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