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Abstract: A novel framework for a low-cost coding digital receiving array based on machine learning
(ML-CDRA) is proposed in this paper. The received full-array signals are encoded into a few radio
frequency (RF) channels, and decoded by an artificial neural network in real-time. The encoding and
decoding networks are studied in detail, including the implementation of the encoding network, the
loss function and the complexity of the decoding network. A generalized form of loss function is
presented by constraint with maximum likelihood, signal sparsity, and noise. Moreover, a feasible loss
function is given as an example and the derivations for back propagation are successively derived. In
addition, a real-time processing implementation architecture for ML-CDRA is presented based on the
commercial chips. It is possible to implement by adding an additional FPGA on the hardware basis of
full-channel DRA. ML-CDRA requires fewer RF channels than the traditional full-channel array, while
maintaining a similar digital beamforming (DBF) performance. This provides a practical solution to
the typical problems in the existing low-cost DBF systems, such as synchronization, moving target
compensation, and being disabled at a low signal-to-noise ratio. The performance of ML-CDRA is
evaluated in simulations.

Keywords: coding digital receiving array; machine learning; low-cost DBF system; few-RF-channel;
encoding and decoding

1. Introduction

Digital beamforming (DBF) is a key requirement in modern wireless systems. The cost
and power consumption are the main challenges for the wide application of DBF [1], due to
the higher number of radio frequency (RF) channels and analog-to-digital converters (ADC)
that are required. Therefore, it is critical to develop a novel, low-cost, power-efficient DBF
system with few RF channels.

To reduce RF channels, the received array signals have to be compressed/encoded at
the beginning of the front-end. However, the decrease in sampled signal dimension will
lead to an unacceptable DBF performance. Thus, it is necessary to recover/decode the
original received full-array signals to ensure that the signal dimension for DBF is consistent
with the traditional full-channel array. Considerable efforts [2–11] have been made to
reduce the digital receiving array (DRA) cost based on the above encoding and decoding
architecture. According to the difference in codec, these approaches can be classified into the
compressed-sensing-based coding DRA (CS-CDRA) [2–6] and the orthogonal-coding-based
coding DRA (OC-CDRA) [7–12], as shown in Table 1.

For a typical CS-CDRA, the received full array signals are encoded by a measurement
matrix that complies with the restricted isometry property (RIP) [13], such as random
Gaussian matrix, random Bernoulli matrix, partial Hadamar matrix, and partial Fourier
matrix. Since the received array signal is compressible, it could be reconstructed by solving
a convex optimization problem [14].

However, it is impossible to recover the received array signal in real-time due to
the iteration requirements of the existing sparse reconstruction algorithms [15–17]. In
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addition, the sparse reconstruction algorithms cannot work stably with a low signal-to-
noise ratio (SNR).

Table 1. Different architectures for low-cost DBF systems.

Type RF Channels ADCs Cost 1
Real-Time
Processing

Low SNR
Available

Without
Data Loss

Without
Moving Target
Compensation

Without
Gate Lobe

DRA Massive Massive Expensive
√ √ √ √ √

Subarray Few Few Middle
√ √ √ √

×

C
od

in
g-

D
R

A

CS-based Few Few Middle × ×
√ 2 √ 2 √

OC-based TSPW Single Single Cheap
√ √

× ×
√

OC-based OSC Massive Single Expensive
√ √

× ×
√

ML-based Few Few Middle
√ √ √ √ √

1 System cost is mainly determined by the requirement of RF channels. 2 Data loss will occur if the reconstruction
is based on multi-snapshots. In the meantime, moving target compensation is necessary.

The OC-CDRA introduces a code division multiplexing (CDM) [18] technique to
identify each signal path associated with every unique antenna element. Specifically, the re-
ceived signal from each antenna element is mixed with a high-speed spread spectrum code,
such as the Walsh–Hadamard and Gold codes, and decorrelated with the same spread spec-
trum code after digitization. According to the mixer position, the OC-CDRA can be further
divided into on-site coding (OSC) architecture [7–9] and time sequence phase weighting
(TSPW) architecture [10–12]. The advantage of OSC architecture is that the received full
array signals are encoded at an intermediate frequency (IF) after down-conversion, which
is friendly to the implementation of the encoding network. The requirements of ADCs
and parallel input/output (I/O) channels at the digital back-end are significantly reduced,
but the RF channels are not. Therefore, the OSC architecture is not efficient in terms of
cost reduction. However, the TSPW architecture encodes the received array signal at
RF before down-conversion. The encoded signals are sampled by few RF channels and
ADCs, which significantly reduce the system budget. However, both TSPW and OSC
face problems in code synchronization (in both encoding and decoding) and moving tar-
get compensation [19]. More importantly, each information bit is decoded from L chips,
where L is the code length. the recovered signal in OC-based architecture is only 1/L data
volume of the full-channel array, which inevitably leads to data loss after decoding. The
system-accumulated gain will be decreased 10log(L) dB.

Different from the above coding DRA (CDRA), there is a generalized coding array,
called antenna selection (AS) architecture [20–22]. The fundamental idea behind AS is to
reduce the number of RF chains by judiciously activating a subset of antennas. This can
realize a reconfigurable array beamforming through element selection (not combination)
without decoding. However, meanwhile, the array accumulated gain will be decreased
according to the number of discarded array elements, which is also a form of data loss.

Artificial intelligence has shown great potential in various fields, and beamforming
systems are no exception. A beamforming neural network (BFNN) is proposed in [23] to
optimize the beamformer to maximize the spectral efficiency with hardware limitations.
It has strong robustness to imperfect channel state information (CSI). Ref. [24] proposes
a beamforming prediction network (BFNet) to jointly optimize the power allocation and
virtual uplink beamforming of Multiple-Input and Multiple-Output (MIMO) systems. This
can get rid of the complexity caused by excessive iteration to realize real-time calculation.
For the local scattering caused by sea surface, [25] introduce a convolutional neural network
(CNN) framework to estimate the transmitter’s incident angle.

This paper proposes a novel, low-cost, power-efficient DBF system framework called
machine-learning-based coding DRA (ML-CDRA). The received full-array signals are
encoded into a few RF channels, and decoded by an artificial neural network (ANN) in
real-time without any data volume loss. The proposed ML-CDRA can work stably at a low
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SNR, as verified in simulations at SNR = −60 dB. Since the recovered signals are decoded
by a single snapshot, the moving target compensation problem will not bother ML-CDRA.
Moreover, we present a generalized loss function of the decoding network, which is carried
out from three directions: maximum likelihood, signal sparsity, and noise (including noise
power suppression, equal power constraint, and noise whitening). A feasible loss function
is given as an example and the derivations for back propagation are successively derived.
At the end, the implementation of ML-CDRA is also discussed based on the existing
technologies and devices. A real-time processing architecture for ML-CDRA, with the
decoding network implemented by a field-programmable gate array (FPGA), is presented.

It should be emphasized that the proposed ML-CDRA is a novel, low-cost, DBF
system framework. The form of encoding and decoding networks are not fixed, which leads
to a systematic trade-off between cost, resources, and performance. The loss function of
decoding network should also be modified according to the applications.

2. Materials and Methods

As shown in Figure 1, the proposed ML-CDRA is composed of two networks: encoding
and decoding networks. The signals received from each antenna are selected and combined
into a few RF channels through an encoding network. After digitization, the sampled
signals are decoded by a decoding network based on machine learning to recover the
originally received full-array signals.

Figure 1. The block diagram of the proposed ML-CDRA.

2.1. Signal Model

The encoded signals sampled by ADCs are:

y = GΦ(x + n1) + n2 (1)

where y ∈ CM, G is the gain of receiver module, Φ ∈ CM×N is the encoding matrix (M < N,
M is the number of few RF channels, N is the number of antenna elements), x ∈ CN is
the received array signal, n1∼N (0, Σn1) is the independent and identically distributed
Gaussian noise in wireless channels, and n2∼N (0, Σn2) is the random thermal noise in
RF channels.

The traditional array signal model supposes that the noise in each channel is inde-
pendent and identically distributed. However, this is totally different in CDRA, which is
correlated due to the encoding. The same wireless channel noise may be mixed into two
different RF channels.
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Thus, it is necessary to clarify the composition of the noise in sampled signals.

η = GΦn1 + n2 (2)

where η is the noise in the sampled signal.
The power of n2 is determined by the noise figure F of the digital receiver module. For

example, considering the typical value F = 3 dB, the introduced thermal noise n2 has equal
power with the input noise after being amplified. In addition, the power of n2 in each RF
channel may be different, which is controlled by the encoding matrix Φ.

The covariance matrix of noise η is

Ση = G2ΦΣn1 ΦH + Σn2

= G2ΦΣn1 ΦH + γG2(ΦΣn1 ΦH) ◦ I
(3)

where γ = 10(F/10)−1, (·)H denotes the conjugate transpose, ◦ denotes the Hadamard
product, and I is the identity matrix.

Obviously, the noise in the sampled signal is correlated.

2.2. Encoding Network

The encoding network can significantly reduce the requirement of RF channels. The
received array signals are compressed into a few RF channels according to the encoding
matrix Φ, which describes the connection between antenna elements and RF channels. The
form of encoding matrix Φ is diverse. Different encoding matrices will bring a different
spatial sensitivity to CDRA.

Consider the single far-field target case; the received array signal x can be expressed as

x = a(θ)s (4)

where a(θ) ∈ CN is the steering vector, and θ is the direction of arrival.
The encoded signal of mth channel is

ym = GϕH
m(x + n1) + n2,m

= GϕH
ma(θ)s + (GϕH

mn1 + n2,m)
(5)

where ϕH
m is the mth row vector of Φ, and n2,m is the thermal noise of the mth channel.

Therefore, the SNR of mth channel is

SNRm =
Ps

Pn
=

G2|ϕH
ma(θ)|2σ2

s
D(GϕH

mn1) + σ2
n2,m

(6)

where σ2
s is the signal power, σ2

n2,m is the thermal noise power of mth channel, | · | denotes
the magnitude, and D(·) denotes the variance.

It is easy to find that the signal power Ps is a function of the direction. This means
that the signal from different directions may suffer losses after the encoding network
compared with the phased coherent combination. This loss is determined by the array
arrangement, direction of arrival, and encoding matrix. It will eventually be reflected
in the maximum SNR after DBF according to the weight of the corresponding direction,
namely, spatial sensitivity. Thus, the encoding network should be carefully designed in
different applications.

According to the difference in implementation, the encoding network can be divided
into the fixed encoding network and the tunable encoding network. As shown in Figure 2a,
the fixed encoding network is implemented by a multiple input–multiple output (MIMO)
feed network without any additional equipment. The tunable encoding network introduces
additional RF switches or phase shifters to the feed network, as shown in Figure 2b,c. An
RF switch or phase shifter can provide more freedoms for signal processing. Therefore,
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the received array signals can be encoded in various schemes to obtain optimal performance
in different applications by changing the encoding matrix.

(a) (b) (c)

Figure 2. Different encoding networks. (a) Fixed encoding network. (b) Tunable encoding network
with RF switches. (c) Tunable encoding network with phase shifters.

The main difficulty of the encoding network is the topological structure overlapping
of the feed network. The overlapping wiring can be realized by a multi-layer printed
circuit board (PCB) with through holes. Nevertheless, the design of an overlapping feed
network is still a challenge when the topological structure is too complex. The RF micro-
electromechanical systems (RF-MEMS) switches matrix [26] is one possible scheme to
realize the overlapping feed network. However, the RF-MEMS switch matrix still needs
further development, especially regarding large-scale and RF performance loss.

The most common feed network without overlap is the adjacent subarray structure. A
typical passive array antenna structure is given in Figure 3a. Each group of four adjacent
elements is combined into a single RF channel by a fixed feed network. The subarray
pattern of this structure is immutable, and the main lobe is aligned to the broadside of
the array. Figure 3b is a typical phased array antenna with subarray structure, and each
group of four adjacent elements is combined into a single RF channel after the phase shifter.
However, its subarray pattern can be changed by switching the phase shifter.

2.3. Decoding Network

Due to (1) is an under-determined equation, which has an infinite number of solutions.
It is impossible to recover the original received array signal from the few-channel signal
by a linear transformation with a single snapshot. Therefore, non-linear processing is an
inevitable choice for the decoding network.

Considering the computational complexity and the real-time processing require-
ments in engineering, the existing sparse reconstruction algorithms are unsuitable for
CDRA [15–17]. ANN, which has been rapidly developing in this decade, has the ability to
cope with these difficulties.

The decoding network of the proposed ML-CDRA is carried out by an ANN in this
paper. The forward propagation of ANN is implemented by limited multipliers and
adders with a low latency. The pipeline architecture can achieve single-snapshot, real-time
decoding in a pressureless manner. It should be noted that the specific network structure
of ANN is open for ML-CDRA. This is a bargain between resources and performance.
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(a) (b)

Figure 3. The encoding networks with subarray structure. (a) Subarray without phase shifter.
(b) Subarray with phase shifter.

Here, a generalized loss function of the decoding network based on the maximum a
posteriori estimation (MAP) is given as

J = J1 + αJ2 + βJ3 (7)

where J1 is derived from the maximum likelihood estimation. J2 and J3 are the constraints
for signal and noise, respectively. α and β are hyperparameters. The details of the general-
ized loss function are presented in the next section.

The decoding network is trained based on back propagation, which is carried out by
gradient descent as

Zi+1 = Zi + µ
∂

∂Z∗
J(Z, Z∗) (8)

where Zi is the complex network parameter Z in ith iteration, µ is the iteration step-size,
∂

∂Z∗ J(Z, Z∗) is the partial derivative of J(Z, Z∗) to Z∗, J(Z, Z∗) is the loss function, and (·)∗
denotes the conjugate.

Figure 4 describes the training of a decoding network based on the proposed gen-
eralized loss function. The forward propagation of the network is performed by single
snapshot. Therefore, the reconstructed noise is independent in the time dimension. This
ensures that the time accumulation gains of ML-CDRA will not deteriorate compared with
the full-channel DRA. The back propagation of the network is performed by batch process-
ing. According to the authors’ experience, it is sufficient to accomplish the training of the
decoding network within 1000 batches. Moreover, the training time can be shorter if an
offline pre-training is performed based on a simulation or limited actual data. Considering
that the non-cooperative objects are more common, the online training ability is essential
for the decoding network.

2.4. An Example for Generalized Loss Function

It should first be emphasized that the form of loss function for the decoding network
is diverse. The basic idea of the proposed generalized loss function is to focus on the signal
and noise simultaneously, especially the noise.
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Figure 4. The training of decoding network.

A feasible loss function is given as an example based on the proposed generalized
loss function, as follows. The back propagation of the decoding network is carried out by
gradient descent, which is derived in Appendix A.

J = J1 + αJ2 + βJ3 (9)

where

J1 =
L

∑
t=1
‖y(t)− GΦx̂(t)‖2

Σ−1

J2 = K−
N

∑
n=1

exp
(
−λ2

n(Rx̂)

2δ2
s

)
J3 =

∥∥∥Rη̂ − δ2
n I
∥∥∥2

F

where ‖Z‖2
Σ−1 = ZHΣ−1

η Z, (·)−1 denotes the inverse of matrix, L is the number of snapshots,
Rx̂ = 1

L ∑L
t=1 x̂(t)x̂H(t) is the covariance of the decoded signal x̂, ‖·‖F denotes the lF-norm,

λn(Rx̂) is the nth eigenvalue of Rx̂, K is the sparsity, δs is the shape parameter, Rη̂ is the
covariance of the decoded noise, and δn is the noise power-suppression coefficient.

2.4.1. Maximum Likelihood Estimation

According to Section 2.1, the sampled signals are

y = GΦx + η (10)

where noise η obeys the normal distribution with mean 0 and covariance matrix Ση .
The maximum likelihood estimation is obtained by maximizing the Gaussian den-

sity function

f (x̂; x(t)) =

 1√
(2π)M|Ση |det

L

exp
(
−1

2
×

L

∑
t=1

(y(t)− GΦx̂(t))HΣ−1
η (y(t)− GΦx̂(t))

)
(11)

where | · |det denotes the determinant.
Therefore, the maximum likelihood estimation can be regarded as

J1 =
L

∑
t=1
‖y(t)− GΦx̂(t)‖2

Σ−1 (12)
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2.4.2. Sparsity Constraint for Signal

The eigenvalues of the received array signal covariance are sparse, since the targets
are limited. Therefore, the sparsity of signal can be constrained as

J2 = K−
N

∑
n=1
‖λn(Rx̂)‖0 (13)

where ‖·‖0 denotes the l0-norm.
As the l0-norm minimization is an NP-hard problem, it should be replaced by other

models, such as l1-norm and smoothed l0-norm (SL0) [27]. The SL0 approximates l0-norm
by a smooth Gaussian function, which is differentiable during the back propagation of the
decoding network. (13) can be rewritten by SL0 as

J2 = K−
N

∑
n=1

exp
(
−λ2

n(Rx̂)

2δ2
s

)
(14)

2.4.3. Noise Reduction and Whitening

Suppose the received array signals are accurately reconstructed by the constraints of J1
and J2. As we know, the SNR is determined by signal and noise. Thus, the noise constraint
can be designed as

J3 =
∥∥∥Rη̂ − δ2

n I
∥∥∥2

F
(15)

Noise reduction and whitening are carried out by δn and I, respectively. In addition,
the δ2

n I also implies an equal-power constraint for different channels.
The existing reconstruction algorithms [15–17] often neglect the statistical character-

istics of the reconstructed noise, which is crucial to signal accumulation (including array
signal processing and time-domain accumulation). The reconstructed noise power and
correlation directly determine the SNR after DBF. We can clearly point out that the upper
limit of the array signal reconstruction problem is determined by the noise constraint.

3. Results

To evaluate the performance of the proposed ML-CDRA, a 48-element 12-channel
ML-CDRA is studied and compared with different DBF systems as shown in Figure 5,
including a 48-element, traditional, full-channel DRA (48-DRA, which has the same antenna
elements), a 12-element, traditional, full-channel DRA (12-DRA, which has the same RF
channels), and a 48-element, single-channel TSPW array [10] with code length L = 48.

Figure 5. Different DBF systems studied in simulations.



Remote Sens. 2022, 14, 5086 9 of 21

As the receiving antenna of each scheme is a uniform, linear array antenna with half-
wavelength inter-sensor spacing, each antenna element is omnidirectional. The encoding
network of ML-CDRA is the 4-in-1 subarray structure without a phase shifter, as given in
Figure 3a. The decoding network is a three-layer, fully connected, multi-layer perceptron
(MLP) with 12 neurons in the input layer, 1024 neurons in the hidden layer, and 48 neurons
in the output layer. The loss function is given in Section 2.4. The other details of the
decoding network are given in Appendix A, including the activation function and the
gradient descent.

3.1. SNR after DBF

Assume that a far-field target at θ1 = 5◦ with single frequency. Both wireless chan-
nel noise n1 and RF channel noise n2 are Gaussian noise. The noise figure of the digi-
tal receiver module F = 3 dB. The beamforming weight w = (1, exp(−j2π

d sin(θ1)
λ ), · · · ,

exp(−j2π
(N−1)d sin(θ1)

λ )T), where d = λ/2.
As shown in Figure 6, the SNR after the DBF of ML-CDRA is almost consistent with

48-DRA, but only 1/4 RF channels are required. This is nearly 6 dB higher than 12-DRA,
which has the same RF channels. In addition, the simulation results also reflect that the
system-accumulated gain decreases in TSPW caused by data loss are 10log(L) = 16.8 dB.
More importantly, the ML-CDRA works stably even if the input SNR is as low as −60 dB.
According to the simulation results, it can be reasonably speculated that the proposed
ML-CDRA will still work effectively with a lower SNR.

0

Input SNR / dB

0

20

S
N

R
 a

ft
e

r 
D

B
F

 /
 d

B

48-DRA

12-DRA

TSPW

The Proposed

Figure 6. The SNR after DBF with different input SNR .

Furthermore, the spectrum of the decoded signal after DBF is given in Figure 7 to
prove that the proposed ML-CDRA can recover the received array signal perfectly. In
the normalized spectrum diagram, the noise power of ML-CDRA is basically the same
as 48-DRA, and lower than 12-DRA. It should be noted that the noise of ML-CDRA is
approximately uniformly distributed across the spectrum.

3.2. Beamforming Performance

The normalized array pattern of different DBF systems are given in Figure 8. The
proposed ML-CDRA has the same beamforming performance compared with 48-DRA,
and a narrower beamwidth compared with 12-DRA, which means a better directivity. The
traditional subarray, which has the same 4-in-1 structure without phase shifter as shown in
Figure 3a, can also achieve a similar narrow beam compared with ML-CDRA. However,
the spatial filtering cannot be effectively realized when the undesired targets appear at the
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gate lobe. This problem was solved in the proposed ML-CDRA by recovering the received
array signal.

0 10 20 30 40 50

Frequency / Mhz

0

0.5

1

P
o

w
e

r

12-DRA

48-DRA

0 10 20 30 40 50

Frequency / Mhz
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1
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w
e

r

12-DRA

The Proposed

Figure 7. The normalized spectrum diagram of the decoded signal after DBF with input
SNR = −20 dB.
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Theta / °

0

G
a
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 /
 d

B

The Proposed

& 48-DRA

Subarray

12-DRA

Figure 8. The normalized array pattern of different DBF systems.

3.3. Spatial Sensitivity

Different from the antenna pattern, the spatial sensitivity describes the relation-
ship between the maximum SNR after DBF and the directions. Signals from different
directions with the same input SNR are fed into ML-CDRA in turn. After decoding,
the recovered array signals are combined according to the DBF weight of the correspond-
ing direction, e.g., w = (1, exp(−j2π

d sin(θ)
λ ), ..., exp(−j2π

(N−1)d sin(θ)
λ )T, where θ is the

direction of arrival.
Figure 9 shows several subarray structure-encoding networks, and the spatial sen-

sitivities of these schemes are given in Figure 10a. Wherever the signal comes from,
the full-channel DRA can achieve the same maximum DBF gain by phased coherent combi-
nation. Therefore, both 48-DRA and 12-DRA appear as a flat line. It is easy to see that the
subarray structure ML-CDRA has a better performance than 12-DRA around the broadside
direction. The SNR after the DBF of the 4-in-1 structure is profitable in about (−20◦, 20◦)
compared with 12-DRA. Moreover, if the phase-shifters are introduced into the encoding
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network, as shown in Figure 3b, the ML-CDRA can obtain the maximum SNR after DBF in
any direction. As shown in Figure 10b, the maximum gain of ML-CDRA is achieved at 15◦

by adjusting the phase shifters.

Figure 9. Different subarray structure studied for spatial sensitivity.
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(a)
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(b)

Figure 10. The spatial sensitivity of subarray structure with input SNR = −20 dB. (a) Without phase
shifter. (b) With phase shifter and pointing at 15◦.

For the ML-CDRA with random encoding structure, as in Figure 2a, the received
array signals are combined into a few RF channels according to a random Bernoulli matrix.
Figure 11 shows that the SNR of this structure after DBF is similar to the 48-DRA in the
broadside direction, and fluctuates around the 12-DRA in other directions while obtaining
a narrower beamwidth, as discussed in Section 3.2. The random encoding structure ML-
CDRA can take care of the entire space simultaneously, and the SNR fluctuation in different
directions is more robust than the subarray structure.

A different encoding structure means a different spatial sensitivity, which may be
an advantage in some scenes. For example, in the case of target tracking, the subarray
structure ML-CDRA can obtain the maximum gain in the desired direction using phase
shifters, as in Figure 10b. The signal from other directions will be attenuated due to the
spatial sensitivity. Therefore, the ML-CDRA can naturally realize spatial anti-jamming.
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Figure 11. The spatial sensitivity of random encoding structure with input SNR = −20 dB.

4. Implementation

To further prove the “low-cost” property, the implementation of the proposed ML-
CDRA is discussed based on the commercial chips in this section. The complexity of the
decoding network is also studied.

A real-time processing implementation architecture for ML-CDRA is presented in
Figure 12. The forward propagation of the decoding network is performed by multipliers
and adders in FPGA. The back propagation is carried out by gradient descent in a digital
signal processor (DSP) and updated with a coherent processing cycle (CPI). For the full-
channel DRA, the DBF weight calculation is also performed in DSP based on the array
signals, as shown in Figure 12a. Therefore, the gradient descent of ML-CDRA can be
integrated into the same DSP chip without any additional data-transfer overhead.

(a)

(b)

Figure 12. The implementation architectures for the full-channel DRA and the ML-CDRA. (a) A
typical architecture for full-channel DRA. (b) A real-time processing architecture for ML-CDRA with
the decoding network implemented by FPGA.
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To realize the real-time decoding, each multiplication and addition operation of the
decoding network needs to be configured with independent resources. The pipeline
architecture shown in Figure 13, which can execute all the operations of each layer of the
decoding network in each clock cycle, is more suitable to realize the real-time decoding
compared with the instruction set architecture.

To be more specific, the resources consumed to implement the decoding network can
be divided into registers, adders, and multipliers. For a scale-limited network, the logic
cells and configurable logic blocks (CLB) in FPGA can supply the registers and adders
required in the decoding network. The activation functions of the hidden layer neurons
(such as Sigmoid, ReUL, sech, etc.) can be implemented by the look-up tables (LUT). In
addition, the multiplication ability can be evaluated by multiply accumulate (MAC). Many
operations (such as convolution, dot product, and matrix operations) can be converted
to multiple MAC operations. Therefore, the networks requiring convolution operation,
such as convolutional neural network (CNN), also have the possibility to be used in the
proposed ML-CDRA.

(a)

(b)

Figure 13. Types of processing architecture. (a) The pipeline architecture. (b) The instruction
set architecture.

Consider a N-element M-channel ML-CDRA, realized by a three-layer, fully connected
MLP with M neurons in the input layer, K neurons in the hidden layer, and N neurons in
the output layer. The system clock is fc. For the super-heterodyne receiver, the received
signal is divided into I&Q branches after down-conversion. Therefore, the number of
multiply accumulate operations performed per second is

2(MK + KN)× fc (16)

Take a 48-element 12-channel ML-CDRA as an example, which is studied in the simula-
tion. The decoding network is realized by a three-layer, fully connected MLP with 12 neurons
in the input layer, 1024 neurons in the hidden layer, and 48 neurons in the output layer. Sup-
pose the system clock is 100 MHz. Therefore, the number of multiply accumulate operations
performed per second is 2 * (12 * 1024 + 1024 * 48) * 100 MHz = 12,288 GMAC/s.

Table 2 gives several available commercial FPGAs [28,29]. The Virtex UltraScale+
FPGA VU11P and VU13P are powerful enough to implement the above decoding network
using only one chip. The Virtex-7 XC7VX690T can also be used to implement the decoding
network with lower complexity. In addition, these FPGAs have enough I/O to assign a
dedicated pin to each ADC without time division multiplexing. It should be noted that the
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decoding network mainly consumes the DSP Slice resources. The remaining resources in
FPGA can still be used for other functions.

Hence, the proposed ML-CDRA can be implemented by an additional FPGA on the
basis of full-channel DRA. As shown in Figure 12, the required RF channels, variable gain
amplifiers (VGA), ADCs and I/Os of ML-CDRA are significantly reduced compared with
the full-channel DRA. Moreover, the space requirement, heat dissipation and crosstalk of
RF channels can also be alleviated. Considering that the additional cost of the decoding
network is lower than that of the reduced RF channel overhead, the proposed ML-CDRA
is attractive.

Furthermore, for the large-scale decoding network, adding one chip cannot implement
the ML-CDRA. A multiple FPGA cascade is a possible means to solve this problem. In
addition, the sparsely connected networks may be a potential direction to reduce the
redundant computing and resource consumption. Resource reuse is also a good choice
in scenes with a low sampling rate. Some new hardware architectures/devices designed
for artificial intelligence, such as the Adaptive Compute Acceleration Platform (ACAP) of
Xilinx, may solve the real-time decoding challenge from the hardware level.

Table 2. Several available commercial FPGAs for ML-CDRA.

Device
Logic
Cells

CLB DSP RAM

I/O

Slices Flip-Flops LUTs
DSP

Slices
Fmax
/MHz

DSP
Performance

GMAC/s 1
Distributed
RAM/Mb

Block
RAM /Mb

Virtex-7
XC7VX

690T 693.12 K 108.3 K 866.4 K 433.2 K 3600 741 5335 10.8 52.92 1000

Virtex
UltraScale+

VU11P 2835 K 324 K 2592 K 1296 K 9216 891 16,422 36.2 70.9 624
VU13P 3780 K 432 K 3456 K 1728 K 12,288 21,897 48.3 94.5 832

1 Peak DSP performance numbers are based on symmetrical filter implementation, DSP performance = DSP Slices
× Fmax × 2.

5. Discussion

As shown in Figure 10, the maximum SNR of the ML-CDRA with 6-in-1 overlapping is
higher than 48-DRA in the broadside direction. This is an interesting result of the proposed
encoding and decoding architecture. We have two explanations for this result. The first
key point is the broadside direction, while the signal comes from the broadside of the
array antenna, there is no phase difference between the received array signals. Hence,
the array signal is lossless during the encoding. Another key point is the loss function of
the decoding network. The proposed generalized loss function includes the maximum
likelihood estimation, the signal sparsity constraint, and the noise constraint, where the
noise constraint has noise suppression and whitening abilities. Therefore, the proposed
ML-CDRA architecture should be considered to have denoising abilities. In conclusion, it
is possible to exceed the full channel array in theory.

The encoding and decoding network optimizations may be a key piece of research for
the ML-CDRA in the future. This paper does not require the specific network structure of
the decoding network, but its importance is indisputable. The system performance may be
further improved by using the network structures proposed in recent years. As explained in
Section 2.2, the spatial sensitivity of the ML-CDRA is determined by the encoding network.

6. Conclusions

This paper proposes a novel, low-cost DBF system framework called ML-CDRA. The
received full array signals are encoded into a few RF channels, and decoded by an ANN in
real-time without any data volume loss. The low-cost power-efficient ML-CDRA framework
has a similar digital beamforming performance compared with the traditional full-channel
receiving array. The encoding and decoding networks can be flexibly designed according



Remote Sens. 2022, 14, 5086 15 of 21

to their requirements in different applications. Moreover, they can be implemented based
on the existing commercial chips.
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Appendix A. Derivatives of the Loss Function

The decoding network is implemented by a three-layer, fully connected MLP network,
as shown in Figure A1, which is composed of an input layer, a hidden layer, and an
output layer. There are K neurons in the hidden layer, and the activation function of the
kth neuron is gk(t) = sech[vT

k × (y(t) − ck)]. The decoded signal x̂(t) = W g(t), where
g(t) = [g1(t), g2(t), ..., gK(t)]T.

Figure A1. The structure of three-layer fully connected MLP network.

The loss function given in Section 2.4 is

J = J1 + αJ2 + βJ3 (A1)

where

J1 =
L

∑
t=1
‖y(t)− GΦx̂(t)‖2

Σ−1

J2 = K−
N

∑
n=1

exp
(
−λ2

n(Rx̂)

2δ2
s

)
J3 =

∥∥∥Rη̂ − δ2
n I
∥∥∥2

F

The derivatives of this loss function to W∗, v∗k , and c∗k are derived as follows.

Appendix A.1. The Preliminary

The derivatives DZ J(Z, Z∗) and DZ∗ J(Z, Z∗) are defined by the following differen-
tial expression

d J(Z, Z∗) =DZ J(Z, Z∗)d vec(Z)

+DZ∗ J(Z, Z∗)d vec(Z∗)
(A2)
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where
DZ J(Z, Z∗) = vecT(

∂

∂Z
J(Z, Z∗))

DZ∗ J(Z, Z∗) = vecT(
∂

∂Z∗
J(Z, Z∗))

where vec(·) is the vectorization operator, (·)T is the transpose operator.

Appendix A.2. The Derivatives of J1

J1 =
L

∑
t=1
‖y(t)− GΦx̂(t)‖2

Σ−1

=
L

∑
t=1

(y(t)− GΦx̂(t))HΣ−1
η (y(t)− GΦx̂(t))

(A3)

(1) The derivative DW∗ J1 is

DW∗ J1 = Dx̂ J1 × DW∗ x̂ + Dx̂∗ J1 × DW∗ x̂∗ (A4)

where
DW∗ x̂ = 0

Therefore,
DW∗ J1 = Dx̂∗ J1 × DW∗ x̂∗

Deriving the derivatives Dx̂∗ J1 and DW∗ x̂∗,, respectively. The total differential of
(A3) is

d (J1) =
L

∑
t=1

(y(t)− GΦx̂(t))HΣ−1
η (−GΦ)d (x̂)

+
L

∑
t=1

(y(t)− GΦx̂(t))T(Σ−1
η )T(−GΦ∗)d (x̂∗)

Therefore, the derivative Dx̂∗ J1 is

Dx̂∗ J1 =
L

∑
t=1

(y(t)− GΦx̂(t))T(Σ−1
η )T(−GΦ∗)

The derivative DW∗ x̂∗ is
DW∗ x̂∗ = gH(t)⊗ IN

where ⊗ is the Kronecker product; IN is the N-order identity matrix.
Therefore, the derivative of J1 to W∗ is

DW∗ J1 =

L

∑
t=1

(y(t)− GΦx̂(t))T(Σ−1
η )T(−GΦ∗)(gH(t)⊗ IN)

(A5)

(2) The derivative Dv∗k
J1 is

Dv∗k
J1 = Dx̂ J1 × Dv∗k

x̂ + Dx̂∗ J1 × Dv∗k
x̂∗ (A6)

where
Dv∗k

x̂ = Dgk x̂× Dv∗k
gk + Dg∗k

x̂× Dv∗k
g∗k

Dv∗k
x̂∗ = Dgk x̂∗ × Dv∗k

gk + Dg∗k
x̂∗ × Dv∗k

g∗k
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Due to
Dgk x̂ = wk

Dg∗k
x̂ = 0

Dgk x̂∗ = 0

Dg∗k
x̂∗ = w∗k

where W = [w1, w2, ..., wK].
Therefore,

Dv∗k
J1 = Dx̂ J1 × Dgk x̂× Dv∗k

gk + Dx̂∗ J1 × Dg∗k
x̂∗ × Dv∗k

g∗k

Deriving the derivatives Dv∗k
gk and Dv∗k

g∗k ,, respectively. The total differential of the
activation function is

d (gk(t)) =sech′[vT
k (y(t)− ck)](y(t)− ck)

Td (vk)

+sech′[vT
k (y(t)− ck)](−vT

k )d (ck)

d (g∗k (t)) =(sech′[vT
k (y(t)− ck)])

∗(y(t)− ck)
Hd (v∗k )

+sech′[vT
k (y(t)− ck)](−vH

k )d (c∗k )

where sech′(·) is the derivative of sech(·).
Therefore,

Dv∗k
gk = 0

Dv∗k
g∗k = (sech′[vT

k (y(t)− ck)])
∗(y(t)− ck)

H

Dc∗k
gk = 0

Dc∗k
g∗k = −(sech′[vT

k (y(t)− ck)])
∗vH

k

Therefore, the derivative of J1 to v∗k is

Dv∗k
J1 =Dx̂∗ J1 × Dg∗k

x̂∗ × Dv∗k
g∗k

=
L

∑
t=1

(y(t)− GΦx̂(t))T(Σ−1
η )T(−GΦ∗)w∗k

(sech′[vT
k (y(t)− ck)])

∗(y(t)− ck)
H

(A7)

(3) The derivative Dc∗k
J1 is

Dc∗k
J1 =Dx̂∗ J1 × Dg∗k

x̂∗ × Dc∗k
g∗k

=
L

∑
t=1

(y(t)− GΦx̂(t))T(Σ−1
η )T(−GΦ∗)w∗k

(sech′[vT
k (y(t)− ck)])

∗(−vH
k )

(A8)

The derivation of derivative Dc∗k
J1 is the same as Dv∗k

J1.

Appendix A.3. The Derivatives of J2

J2 = K−
N

∑
n=1

exp
(
−λ2

n(Rx̂)

2δ2
s

)
(A9)

where Rx̂ = 1
L ∑L

t=1 x̂(t)x̂H(t).
(1) The derivative DW∗ J2 is

DW∗ J2 = Dx̂ J2 × DW∗ x̂ + Dx̂∗ J2 × DW∗ x̂∗ (A10)
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According to the derivatives of J1

DW∗ x̂ = 0

DW∗ x̂∗ = gH(t)⊗ IN

Therefore,
DW∗ J2 = Dx̂∗ J2 × DW∗ x̂∗

where
Dx̂∗ J2 = Dλn J2 × DRx̂ λn × Dx̂∗Rx̂

Deriving the derivatives Dλn J2, DRx̂ λn and Dx̂∗Rx̂, respectively.

Dλn J2 =
N

∑
n=1

λn(Rx̂)

δ2
s

exp
(
−λ2

n(Rx̂)

2δ2
s

)
According to [30], the derivative DRx̂ λn is

DRx̂ λn = vecT(
v∗nuT

n
vH

n un
)

where vH
n and un are the left and right eigenvector of Rx̂, respectively.

Rx̂un = λnun

vH
n Rx̂ = vH

n λn

The derivative Dx̂∗Rx̂ is

Dx̂∗Rx̂ =
1
L

L

∑
t=1

(IN ⊗ x̂(t))

Therefore,

DW∗ J2 =
N

∑
n=1

λn(Rx̂)

δ2
s

exp
(
−λ2

n(Rx̂)

2δ2
s

)
vecT(

v∗nuT
n

vH
n un

)

1
L

L

∑
t=1

(IN ⊗ x̂(t))(gH(t)⊗ IN)

(A11)

(2) The derivative Dv∗k
J2 is

Dv∗k
J2 = Dx̂∗ J2 × Dv∗k

x̂∗

=
N

∑
n=1

λn(Rx̂)

δ2
s

exp
(
−λ2

n(Rx̂)

2δ2
s

)
vecT(

v∗nuT
n

vH
n un

)

1
L

L

∑
t=1

(IN ⊗ x̂(t))w∗k (sech′[vT
k (y(t)− ck)])

∗(y(t)− ck)
H

(A12)

The derivation of derivative Dv∗k
J2 is the same as Dv∗k

J1.
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(3) The derivative Dc∗k
J2 is

Dc∗k
J2 = Dx̂∗ J2 × Dc∗k

x̂∗

=
N

∑
n=1

λn(Rx̂)

δ2
s

exp
(
−λ2

n(Rx̂)

2δ2
s

)
vecT(

v∗nuT
n

vH
n un

)

1
L

L

∑
t=1

(IN ⊗ x̂(t))w∗k (sech′[vT
k (y(t)− ck)])

∗(−vH
k )

(A13)

The derivation of derivative Dc∗k
J2 is the same as Dc∗k

J1.

Appendix A.4. The Derivatives of J3

J3 =
∥∥∥Rη̂ − δ2

n IN

∥∥∥2

F
(A14)

where Rη̂ = 1
L ∑L

t=1η̂(t)η̂H(t).
(1) The derivative DW∗ J3 is

DW∗ J3 = Dη̂ J3 × DW∗ η̂+ Dη̂∗ J3 × DW∗ η̂∗ (A15)

According to the derivatives of J1

DW∗ η̂ = 0

DW∗ η̂∗ = gH(t)⊗ IN

Therefore,
DW∗ J3 = Dη̂∗ J3 × DW∗ η̂∗

where
Dη̂∗ J3 = DRη̂

J3 × Dη̂∗Rη̂ + DR∗η̂
J3 × Dη̂∗R

∗
η̂

Deriving the derivatives DRη̂
J3, Dη̂∗Rη̂, DR∗η̂

J3 and Dη̂∗R∗η̂, respectively.

DRη̂
J3 = vecH(Rη̂ − δ2

n IN)

DR∗η̂
J3 = vecT(Rη̂ − δ2

n IN)

Dη̂∗Rη̂ =
1
L

L

∑
t=1

(IN ⊗ η̂(t))

Dη̂∗R
∗
η̂ =

1
L

L

∑
t=1

(η̂(t)⊗ IN)

Therefore,

DW∗ J3 =
[
vecH(Rη̂ − δ2

n IN)
1
L

L

∑
t=1

(IN ⊗ η̂(t))

+vecT(Rη̂ − δ2
n IN)

1
L

L

∑
t=1

(η̂(t)⊗ IN)
]
(gH(t)⊗ IN)

(A16)
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(2) The derivative Dv∗k
J3 is

Dv∗k
J3 =

[
vecH(Rη̂ − δ2

n IN)
1
L

L

∑
t=1

(IN ⊗ η̂(t))

+vecT(Rη̂ − δ2
n IN)

1
L

L

∑
t=1

(η̂(t)⊗ IN)
]

×w∗k (sech′[vT
k (y(t)− ck)])

∗(y(t)− ck)
H

(A17)

The derivation of derivative Dv∗k
J3 is the same as Dv∗k

J1.
(3) The derivative Dc∗k

J3 is

Dc∗k
J3 =

[
vecH(Rη̂ − δ2

n IN)
1
L

L

∑
t=1

(IN ⊗ η̂(t))

+vecT(Rη̂ − δ2
n IN)

1
L

L

∑
t=1

(η̂(t)⊗ IN)
]

×w∗k (sech′[vT
k (y(t)− ck)])

∗(−vH
k )

(A18)

The derivation of derivative Dc∗k
J3 is the same as Dc∗k

J1.

Appendix A.5. The Derivatives of J

Finally, the derivatives of J to W∗, v∗k , and c∗k are

DW∗ J = DW∗ J1 + αDW∗ J2 + βDW∗ J3

Dv∗k
J = Dv∗k

J1 + αDv∗k
J2 + βDv∗k

J3

Dc∗k
J = Dc∗k

J1 + αDc∗k
J2 + βDc∗k

J3

(A19)
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