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Abstract: Quantitative Precipitation Estimates (QPEs) from the Integrated Multisatellite Retrievals
for GPM (IMERG) provide crucial information about the spatio-temporal distribution of precipitation
in semiarid regions with complex orography, such as Catalonia (NE Spain). The network of automatic
weather stations of the Meteorological Service of Catalonia is used to assess the performance of three
IMERG products (Early, Late and Final) at different time scales, ranging from yearly to sub-daily
periods. The analysis at a half-hourly scale also considered three different orographic features (valley,
flat and ridgetop), diverse climatic conditions (BSk, Csa, Cf and Df) and five categories related
to rainfall intensity (light, moderate, intense, very intense and torrential). While IMERG_E and
IMERG_L overestimate precipitation, IMERG_F reduces the error at all temporal scales. However,
the calibration to which a Final run is subjected causes underestimation regardless in some areas,
such as the Pyrenees mountains. The proportion of false alarms is a problem for IMERG, especially
during the summer, mainly associated with the detection of false precipitation in the form of light
rainfall. At sub-daily scales, IMERG showed high bias and very low correlation values, indicating
the remaining challenge for satellite sensors to estimate precipitation at high temporal resolution.
This behaviour was more evident in flat areas and cold semi-arid climates, wherein overestimates
of more than 30% were found. In contrast, rainfall classified as very heavy and torrential showed
significant underestimates, higher than 80%, reflecting the inability of IMERG to detect extreme
sub-daily precipitation events.

Keywords: GPM-IMERG; satellite precipitation estimates; remote sensing; assessment; complex
orography; extreme precipitation

1. Introduction

The effects of climate change on future precipitation remain uncertain [1]. However,
climate model predictions simulate yearly decreases in semi-arid regions of the Mediter-
ranean [2]. Mountain areas are particularly vulnerable, where the cryosphere is directly
affected by global warming, which consequently leads to altered seasonal runoff pat-
terns [3]. Thus, hydrological cycles will gradually shift from being dominated by snow and
ice to being determined by rainfall [4]. Accurate precipitation measurements at different
spatial and temporal scales are of great significance for validating numerical weather and
climate models, managing water resources and predicting natural disasters.

However, quantitative estimates of precipitation often have significant uncertainty [5].
Rain gauges, which are the world’s most common method of obtaining accurate and
reliable measurements at high temporal resolutions, provide point-scale measurements.
This makes them unable to fully capture the spatial variability of the precipitation or to
capture extreme local events in many areas wherein the instrument density is low. Ground-
based radar-derived estimates are another feasible method, but due to their poor global
coverage, the effects of terrain blockage [6] and the difficulties associated with estimating
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mixed and solid phase precipitation [5,7], there are limitations to obtain reliable estimates.
Thus, satellite precipitation estimates (SPEs) offer an excellent way to compensate for some
of these limitations and, although they have their own shortcomings, can be considered a
complement to other methods [8].

Based on the success of the previous Tropical Rainfall Measurement Mission (TRMM),
the Global Precipitation Measurement Mission (GPM) core satellite plus a constellation of
satellites from partner countries provide one of the most accurate and fine-grained spatio-
temporal resources for global precipitation measurements [9]. GPM has advanced sensors
such as the GPM dual frequency precipitation radar (DPR) and microwave imager (GMI),
which quantify precipitation more accurately and detect light and solid precipitation [10].
The associated processing, Integrated Multisatellite Retrievals for GPM (IMERG), incorpo-
rates, fuses and intercalibrates several infrared, microwave (MW) and gauge observations
to provide precipitation estimates at relatively high spatial (0.1◦ × 0.1◦) and temporal
(30 min) resolutions [9].

Since the launch of the GPM (February 2014), the chronology of publications evaluating
the performance of the IMERG reflects a growing trend of research interest in the subject [11].
Most of the works that take a country or region of study stratify the results of the validation
process according to different time scales [12–18], topographic features [15,19–24], climatic
conditions [23,25–27] and in terms of precipitation intensity [19,20,28–33]. In this way,
a more specific description of IMERG behaviour under different conditions is obtained,
leading to the choice of a more suitable use for its application.

Several investigations with this approach have been developed in Mediterranean
countries. In Greece, Kazamias et al. [34] explored the performance of IMERG Final across
the country at daily, seasonal and annual scales, in different elevation zones and rainfall in-
tensities. Caracciolo et al. [35] studied the influence of morphology and land–sea transition
on the reliability of IMERG Final at hourly and daily scales, while Chiaravalloti et al. [36]
evaluated and compared the IMERG Early, Late and Final products over complex terrain in
southeastern Italy. Tapiador et al. [37] introduced for the first time the results of a validation
in Spain based on a comparison with a high-resolution grid of daily precipitation derived
from the records of approximately 2300 rain gauges covering the Iberian Peninsula and
the Balearic Islands. The study at annual, seasonal and daily resolutions also analysed the
spatial structure of precipitation and considered different precipitation thresholds for the
three IMERG products. Similarly, Navarro et al. [38] validated the IMERG at the south
of the Pyrenees and the Ebro valley according to four parameters: altitude, climate type,
seasonality and quality of surface observations. Finally, Tapiador et al. [39] selected the
IMERG Late product to evaluate the consistency of ground observations and satellite data
during the Storm ‘Filomena’ in January 2021. Pradhan et al. [11] recently reviewed valida-
tion studies of IMERG and identified the most common limitations in this type of work,
offering some suggestions to solve them. An important pending issue is the evaluation
of IMERG products at multiple time scales, including sub-daily periods, to understand
the errors associated with temporal aggregation. Further analysis in mountainous regions,
over different climatic regimes, geographical conditions and assessing the effect of rainfall
intensity on their accuracy still require the attention of the scientific community.

Based on these research gaps, the objectives of this work are twofold: (1) To eval-
uate the precipitation estimates obtained from the three IMERG runs (Early, Late and
Final) at different time scales (half-hourly, hourly, daily, monthly, seasonal and annual)
simultaneously taking as reference the automatic stations of the Meteorological Service
of Catalonia and (2) To validate the IMERG estimates at the highest temporal resolution
(30 min) according to different orographic features (valley, flat, ridgetop), different climatic
conditions (BSk, Csa, Cf, Df) (see Appendix B) and according to different precipitation
intensity thresholds (light, moderate, heavy, very heavy, torrential). The study considers
the period from 2015 to 2020, so that full calendar years of the GPM core satellite data
are employed. We focus on the region of Catalonia, northeast of the Iberian Peninsula,
being one of the first studies to evaluate the behaviour of IMERG at a sub-daily temporal
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resolution in this region. This complements the previous studies done in IP and other areas
with complex orography.

Sections 2.1 and 2.2 provide a description of the study area and details of the method-
ology, data and assessment metrics employed. Sections 3.1 and 3.2 compare the rain gauge
observations and estimates of the three IMERG products at different time scales simultane-
ously. Sections 3.4 and 3.5 focus on the semi-hourly scale, considering different orographic
and climatic conditions as well as different precipitation intensity thresholds, respectively.
The most significant results are discussed in Section 4, and finally a summary with the most
relevant aspects is given in Section 5.

2. Materials and Methods
2.1. Study Area

Catalonia is a region wherein topographic complexity and high climatic variability
are a challenge for the remote sensing estimation of precipitation from satellite- or ground-
based products, as well as for the estimation of the precipitation field using rain gauge
stations [38,40]. The area of study is in the north-east (NE) of the Iberian Peninsula with
approximately 32,107 km2 and over 580 km of coastline facing northeast to southwest
towards the Mediterranean Sea (Figure 1a). It is bordered to the north by the Pyrenees
(Figure 1a), a mountainous barrier that connects the Iberian Peninsula with the European
mainland and has elevations that can exceed 3000 masl. Another distinctive feature is the
Central Depression (Figure 1a), characterized by flat land with few orographic contrasts
resulting from the erosion of the Ebro and its tributaries.
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Figure 1. (a) Digital elevation model of Catalonia and XEMA stations network distribution. (b) Köp-
pen climate classification in the study area. (c) Number of XEMA stations per IMERG pixel in the
Catalonia domain.

The location of the orographic features and the pronounced topographic gradient
of the region influence atmospheric low-level circulations and, particularly, the rainfall
distribution over the entire territory [41,42]. On a large scale, it is an area of contact between
air masses of different characteristics: cold or polar, coming from mid and high latitudes,
and warm or tropical, typical of subtropical and tropical latitudes. The northwestern side
of the Pyrenees (Köppen types Dfb, Dfc), which is exposed to the influence of humid air
masses from the Atlantic, is where the highest annual accumulations are observed, with
average values exceeding 1200 mm. The coastal and pre-coastal mountain chains (Csa)
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enhance the pluviometric effects of the Mediterranean cyclogenesis along the coast and
form a pluviometric screen on the rest of the territory [43].

In inland areas, the climatic regime is highly conditioned by the precipitation deficit,
which barely exceeds 400 mm per year. In the Central Depression (BSk), the winter is
relatively cold, with frequent fog favoured by thermal inversions [44], and the summer is
hot and dry. This impact of the general circulation patterns of the atmosphere modulated
by the complex topography of the region promotes heavy rainfall, frequent flash floods
and complex mesoscale meteorological events [42,45,46].

2.2. Datasets
2.2.1. IMERG V06B Data

This study validates data obtained from 2015 to 2020 obtained by the Integrated
Multisatellite Retrievals for GPM (IMERG) version 06B at different time scales. GPM
(2014–present) under the IMERG algorithm calibrates, fuses and interpolates precipitation
estimates from various passive microwave sensors, infrared sensors and monthly rain
gauge records [47] every 30 min, at a spatial resolution of 0.1◦ × 0.1◦ and with a global
coverage from −90◦S to 90◦N latitude.

The IMERG system provides three products: Early (latency of ~4 h after observation
and forward propagation only), Late (latency of ~14 h after observation and includes
forward and backward propagation) and Final run (~3.5 months after observation, using
both forward and backward propagation and including monthly gauge analysis). The Final
run also uses a month-to-month adjustment, which combines the multisatellite data for
the month with the Global Precipitation Climatology Centre (GPCC) gauge (1◦ × 1◦ grid),
derived from approximately 6700 stations worldwide [38]. Its influence in each half-hour
slot is a ratio multiplier that is fixed for the month, but spatially varying [9].

IMERG data were obtained in UTC time and were downloaded through the NASA
Goddard Earth Sciences Data and Information Services Center (GES DISC) [48]. Precipitation
estimation data (combined microwave–infrared in the Early and Late products and precipita-
tion estimates with post-processing gauge calibration in the Final product (“PrecipitationCal”
variable, in all cases)) were analysed. Initially, the data had a resolution of 30 min and was
aggregated at different time intervals: hourly, daily, monthly, seasonal and annual.

2.2.2. XEMA Data

The validation of the different IMERG products was conducted taking as a reference
rainfall data from the automatic stations network (XEMA) managed by the Meteorological
Service of Catalonia [49]. Semi-hourly rainfall records with a resolution of 0.1 mm were ob-
tained in UTC time, between 1 January 2015 and 31 December 2020. Quality control applied
to rain gauge data includes comparisons with close stations and correlation analysis [50,51].
From these initial data, hourly accumulation was generated, in which we verified that the
data from the two 30-minute intervals corresponding to the hour did exist. Two criteria
were applied to perform the comparison between the XEMA and IMERG data. The first
criterion (Criterion 1) consists of requiring that there are at least 80% of records for each
tested time scale. The second criterion (Criterion 2) restricts the comparison to couples of
IMERG and XEMA data equal to or greater than 0.1 mm (this threshold is explained in
Section 2.3.1). The results of applying these criteria are shown in Appendix A (Table A1).
This distribution means that of the 417 IMERG pixels covering the region, 40% contain at
least one rain gauge and 5% contain two rain gauges for validation (Figure 1c). The GPCC
rain gauges used to calibrate the IMERG Final come from first order stations of the AEMET
network [38], so all our data are independent from those used for calibration.

2.3. Methodology
2.3.1. Overview

Figure 2 shows a diagram summarizing the validation process of the three IMERG
products based on the comparison with ground-based observations from XEMA rain
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gauges. To overcome the spatial mismatch between the two datasets, a pixel-to-point
method [20,28] was applied to obtain the satellite information at each coordinate of the
meteorological stations. This method allowed for a direct pairwise comparison between the
rainfall data and the IMERG pixel value where the station is located. In case there was over
one rain gauge in an IMERG pixel, the independence of the precipitation records in each
one was maintained for the comparison. This method offers us the advantage of avoiding
additional uncertainties derived from interpolation, considering the complexity of the
topography in the region. Finally, the information from 164 IMERG pixels was associated
with the 186 rain gauges, which corresponds to an overall density of 1.13 rain gauges per
100 km2. This value represents more than six times the threshold recommended by the
World Meteorological Organisation (WMO) for the interior flat and undulating areas [52].
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Figure 2. Schematic methodology applied in the data preparation, classification, and validation.

The first part of the study focused on evaluating and comparing the performance in
the three IMERG products (Early, Late and Final) at multiple time scales: half-hourly, hourly,
daily, monthly, seasonal, annual and annual mean over the period of 2015–2020. The different
datasets were obtained from the aggregation of the semi-hourly precipitation accumulations
(mm), considering only those records with at least 0.1 mm in both the IMERG and XEMA
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products (Criterion 2 described in Section 2.2.2). Note that 0.1 mm is the minimum rainfall
detected by XEMA rain gauge. In this way, only precipitation periods are considered, and no
further biases are introduced due to the different minimum precipitation amounts provided by
each dataset, as discussed by Trapero et al. [42] in their Appendix A.

The second part of the research focuses only on the evaluation of the IMERG products
on a half-hourly time scale and under various classifications. In order to achieve the classi-
fications, the IMERG pixels were grouped and classified according to common orographic
features and Köppen climatic conditions (Table A2).

The stratification of the results according to orography was based on a 5 m DEM [53]
of the region of Catalonia. For each pixel, the topographic position index (TPI) was
calculated [54] and with the tool “Corridor Designer” [55,56] a raster file was obtained
in which each grid was classified as valley (TPI ≤ −12 m), flat (−12 m < TPI < 12 m,
slope < 6◦) and ridgetop (TPI ≥ 12 m).

Similarly, the process to divide the domain according to different climatic conditions
started from a vector file with the Köppen classification in Catalonia [57], which was
rasterised at a high spatial resolution (0.01◦) to better preserve the vector characteristics.
Four climatic categories were thus determined: BSk, Cf (fusion of Cfa and Cfb), Csa and Df
(fusion of Dfb and Dfc).

Finally, the raster files were resampled to IMERG resolution using the so-called major-
ity interpolation method [58] and the corresponding labels were extracted at the station
level at both resolutions (initial high resolution and IMERG resolution). The station points
where the orographic and climatic labels at different spatial resolutions coincided were
taken for the IMERG evaluation process. Figure 3 shows the distribution of the pixels and
weather stations used for validation, according to the category they represent.
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Half-hourly XEMA data were classified into five categories of precipitation intensity:
light, moderate, heavy, very heavy and torrential (Figure 2). These categories were obtained
by scaling the thresholds in mm/h established by AEMET [59].

2.3.2. Categorical and Continuous Verification Scores

To validate IMERG’s ability to detect rainfall events correctly, categorical verification
scores calculated from a 2 × 2 contingency table classifying events exceeding thresholds
are used (Table 1). The recognition of the different possible situations (hits, false alarms,
true positives, and misses) was done for various intensity thresholds. The categorical
verification scores used were the probability of detection (POD) and the false alarm rate
(FAR) (Table 2). The POD represents the proportion of events correctly detected by IMERG
out of the total observed rainfall events, while the FAR represents the fraction of false
detected rainfall events.
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Table 1. Contingency table for comparing rainfall observed by XEMA and estimated by IMERG for a
given threshold.

Estimated Rainfall Observed Rainfall

Gauge Rain ≥ Threshold Gauge Rain < Threshold

IMERG rain ≥ threshold Hits (H) False alarms (F)
IMERG rain < threshold Misses (M) Correct Negatives

Table 2. List of categorical verification metrics used to evaluate IMERG products.

Name Formula Perfect Score

Probability of detection (POD) POD =
Hits

Hits + Misses
1

False alarm ratio (FAR) FAR =
False alarms

False alarms + Hits
0

Additional continuous statistical metrics were used (Table 3). The Spearman correla-
tion coefficient, used in cases such as this wherein there is no normality or homoscedasticity
in the data, ranges from −1 to 1 and measures of the monotonicity of the relationship [60]
between the IMERG and XEMA estimates. We also calculated the confidence interval for
this statistic and tested for statistical significance at 95% of confidence. The other five
metrics are used to quantify the associated error. Bias is a measure of the average error
between IMERG and XEMA, while Rbias describes the systematic error. Positive (negative)
values of Bias and Rbias, as well as those greater than unity (less than unity) of Mbias,
denote the overestimation (underestimation) by the satellite products. The MAE shows the
average magnitude of the absolute errors and, finally, the RMSE measures the magnitude
of the average error, giving more weight to large errors without indicating the direction of
deviation between IMERG and XEMA.

Table 3. List of the continuous verification metrics used to evaluate IMERG products.

Name Formula Unit Perfect Score

Spearman’s correlation coefficient r =
cov(R(Si), R(Oi))

σR(Si) σR(Oi)

- 1

Mean error (Bias) Bias =
1
n

n

∑
i=1

(Si −Oi)
mm 0

Relative bias (Rbias) Rbias =
∑n

i=1(Si −Oi)

∑n
i=1 Oi

× 100 % 0

Multiplicative bias (Mbias) Mbias =
∑n

i=1 Si

∑n
i=1 Oi

- 1

Mean absolute error (MAE) MAE =
∑n

i=1|Si −Oi|
n

mm 0

Root mean square error (RMSE) RMSE =

√√√√ 1
n

n

∑
i=1

(Si −Oi)
2 mm 0

Si is the value of satellite/model precipitation estimates for the ith event, Oi is the value of rain gauge observation
for the ith event, n is the number of observed records, cov(R(Si), R(Oi)) is the covariance of the rank variables,
σR(Si)

and σR(Oi)
are the standard deviations of the rank variables.

3. Results
3.1. Mean Annual Precipitation 2015–2020

A comparison of mean annual precipitation amounts was made between IMERG prod-
ucts and XEMA data. Figure 4 shows the spatial distribution of the mean annual precipitation
of IMERG products compared with rain gauge recorded from 2015 to 2020. In addition, the
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probability of occurrence of annual precipitation and the kernel density estimation (KDE) curve
associated with the distribution of each dataset are plotted (lower panel).
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According to rain gauge data, the average annual rainfall in Catalonia during this
period varies between 300 mm and 1600 mm/year. The lowest records are observed in
the Central Depression, where they do not exceed 450 mm/year, followed by the coastal
areas with values around 600 mm/year. In contrast, stations close to the Pyrenees have
accumulations usually exceeding 900 mm/year and those located above 2000 masl typically
are over 1600 mm/year, which represents the maximum values for the region under study,
and also some of the highest of the Iberian Peninsula. This high spatial variability is
consistent with previous precipitation climatologies [61–63] in the studied region, which
guarantees the representativeness of the selected sample.

The comparative analysis between the products shows a very similar performance
between IMERG_E and IMERG_L, while in IMERG_F there is evidence of the unbiased
effect thanks to the calibration with GPCC rainfall. It is also worth noting that the three
IMERG products broadly reproduce the spatial rainfall pattern in the region, characterized
by a marked latitudinal gradient that decreases from north to south. However, there are
discrepancies in magnitude that are substantial. IMERG_E and IMERG_L overestimate
precipitation by over 20% in almost all the territory with biases of 160 and 140 mm/year,
respectively. This overestimation is notable in the areas of the Central Depression, charac-
terized by a dry continental climate with low pluviometric values. Similar results were de-
tected by Kazamias et al. [34], wherein the IMERG_unCal show the largest discrepancies in
the areas of Greece with low annual accumulations. Similarly, Navarro et al. [38] also found
a general overestimation of precipitation over the Ebro Delta river, and Tapiador et al. [37]
reported an underestimation in the Pyrenees mountain massif.

Although the tendency of IMERG_E and IMERG_L to overestimate is shown in the
same way at the pre-coastal, coastal and Ebro basin areas, the correction carried out in
IMERG_F is effective and generally reflects annual mean values very similar to the rain
gauge records (Figure 4, bottom panel). However, IMERG_F generally reduces and smooths
the precipitation field over the Pyrenees and some high-altitude stations show an increased
bias exceeding 600 mm/year.
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3.2. Continuous Verification Scores for Different Time Scales

Table 4 shows a summary of various statistics calculated at half-hourly, hourly, daily,
monthly and annual scales considering all valid records between 2015 and 2020. The Bias,
MAE and RMSE are standardized to the mean of the observations at the different time
scales, which allows for comparisons to be made between them.

Table 4. Continuous statistics calculated at different scales for the three IMERG products.

N Bias (mm) Mbias Rbias (%) MAE (mm) MAE (%) RMSE (mm) RMSE (%) CC

30 min

IMERG_F 277616 −0.07 0.95 −4.85 1.19 87.36 2.37 173.30 0.33
IMERG_L 277616 0.20 1.15 14.59 1.39 101.76 2.70 197.15 0.29
IMERG_E 277616 0.26 1.19 18.86 1.49 109.18 2.89 211.11 0.23

Hourly

IMERG_F 199255 −0.05 0.98 −2.16 1.88 87.27 3.51 162.81 0.37
IMERG_L 199255 0.39 1.18 18.25 2.23 103.26 4.21 195.35 0.33
IMERG_E 199255 0.42 1.20 19.60 2.35 109.01 4.46 206.85 0.26

Daily

IMERG_F 70399 −0.12 0.99 −1.44 6.22 72.62 10.68 124.66 0.58
IMERG_L 70399 1.71 1.20 19.94 7.93 92.56 14.68 171.42 0.53
IMERG_E 70399 1.57 1.18 18.35 8.01 93.56 14.72 171.91 0.49

Monthly

IMERG_F 12802 0.81 1.02 1.53 20.32 38.50 30.60 57.97 0.85
IMERG_L 12802 11.75 1.22 22.27 33.17 62.84 51.13 96.87 0.67
IMERG_E 12802 13.44 1.25 25.46 33.79 64.01 51.49 97.55 0.66

Spring

IMERG_F 996 −3.65 0.98 −1.97 48.25 26.03 70.15 37.85 0.83
IMERG_L 996 8.02 1.04 4.33 75.46 40.71 101.30 54.65 0.54
IMERG_E 996 6.61 1.04 3.57 73.81 39.82 100.31 54.12 0.56

Summer

IMERG_F 1020 11.39 1.10 9.64 43.41 36.74 59.73 50.55 0.85
IMERG_L 1020 97.23 1.82 82.28 105.47 89.26 143.32 121.29 0.65
IMERG_E 1020 97.84 1.83 82.80 106.46 90.10 142.63 120.70 0.62

Autumn

IMERG_F 1032 2.34 1.01 1.15 52.09 25.55 70.80 34.73 0.80
IMERG_L 1032 33.69 1.17 16.53 84.27 41.33 109.55 53.73 0.61
IMERG_E 1032 46.89 1.23 23.00 89.53 43.91 114.42 56.12 0.61

Winter

IMERG_F 820 −2.42 0.98 −1.91 37.79 29.83 60.58 47.82 0.91
IMERG_L 820 7.77 1.06 6.14 56.20 44.36 93.27 73.62 0.83
IMERG_E 820 14.11 1.11 11.14 54.51 43.03 88.75 70.06 0.84

Yearly

IMERG_F 6204 9.65 1.02 1.55 139.36 22.35 194.17 31.14 0.86
IMERG_L 6204 139.76 1.22 22.41 226.11 36.26 280.06 44.92 0.60
IMERG_E 6204 159.22 1.26 25.54 230.12 36.91 285.82 45.84 0.63

In terms of Rbias, IMERG_E and IMERG_L present an overestimation of precipitation
close to 20% at all time scales, except at the seasonal and yearly levels. In contrast, this
behaviour only occurs in IMERG_F at monthly and annual scales, although it does not
exceed 2%. At daily and sub-daily scales, IMERG_F slightly underestimates precipitation
relative to observations, with values ranging between −0.05 mm/h and −0.12 mm/day,
which is relatively small compared to the mean of the observations at these scales (2.16 mm
and 8.56 mm, respectively).

The analysis of the average error (Bias) reflects a significant improvement in the
IMERG_F at all scales, although much more appreciable at the monthly and annual scales.
At the latter, the Bias decreases to 9.65 mm compared to the 159.22 mm recorded by
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IMERG_E, which means a reduction of the error close to 90%. At the monthly scale, the
error value decreases by about 16 times compared to the Early and Late products. While
this significant error reduction could represent a good indicator of the improvement in
precipitation estimation with IMERG_F, we must consider the limitations of this statistic
and its relationship with the possible cancellation of positive and negative errors [64]
between IMERG_F and ground-based observations.

As expected, as the temporal resolution decreases, there is a decrease in the MAE
and the normalised RMSE regarding the mean for all products, with few differences at
sub-daily scales. This behaviour is most evident in IMERG_F, in which the MAE decreases
from 0.87 mm at 30 min to 0.22 mm at the annual scale, and the RMSE decreases from
1.73 mm to 0.31 mm. This improvement with a lower scale can be seen in the Taylor plot
shown in Figure 5a, which displays the STD, CC and centred RMSE statistics normalised
to the standard deviation of the three products for all temporal resolutions. A clear
improvement in IMERG_F is observed at the monthly and annual scales, with values
close to the benchmark (correlation and standard deviation equal to 1). The worst results
are shown at the sub-daily scales with low correlation values and in the Early and Late
products, with standard deviations higher than the benchmark unit. These differences
between IMERG_F and the rest of the products, which grow with the increasing scale,
highlight a gradual improvement as more information is integrated into the algorithm.
Finally, while this product is expected to provide the most reliable estimates for research [47],
the other two products can also be used for related to low latency applications [65].
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In the seasonal analysis (Figure 5b), IMERG_E and IMERG_L overestimate the precipi-
tation values substantially. These errors are more noticeable during the summer period with
a systematic error of over 97 mm and MAE and RMSE values around 105 mm and 143 mm,
respectively. Interestingly, in this period, IMERG_F introduces significant improvements
that reduce the overestimation to less than 10%, but it is still the season of the year wherein
the worst results are obtained. Precipitation in the summer months is low throughout the
Iberian Peninsula and Catalonia, but local storms with convective development usually
occur, wherein the amount of precipitation fallen is not adequately captured by IMERG.

The values of the errors in autumn, although lower than in summer, also show overes-
timates of precipitation in all products and MAE and RMSE values, which, even with the
unbiasing of the Final product, remain relatively high (MAE equal to 52.09 mm and RMSE
equal to 70.80 mm). A similar behaviour is observed in the rest of the seasons of the year,
although the RMSE values practically double the MAE values, which may be caused by
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the occurrence of extreme phenomena and bring into play the sensitivity of this statistic in
such records.

IMERG_F reproduces the annual cycle of precipitation relatively accurately, identify-
ing the spring and autumn months as those that make the overall greatest contribution
to the annual cycle amount, while the winter and summer months show the lowest accu-
mulations with very few differences between them. On the other hand, IMERG_E and
IMERG_L represent the summer period as the second highest contribution with an average
of approximately 215 mm, higher than that recorded in the observations (118 mm), which
is consistent with the overestimation made by these products during this period.

The correlation coefficient calculated at the different time scales showed statistical
significance at 95% of confidence in all cases. In Figure 5a, at sub-daily scales, similar
correlation values are shown among all products, and although a slight improvement
appears in IMERG_F, it does not exceed 0.37. IMERG_E and IMERG_L at scales higher
than daily show moderate linear correlations close to 0.6, and it is IMERG_F that represents
high correlations, higher than 0.8. Similarly, there is a decrease in the standard deviation,
closer to the reference point (STD = 1), as a result of the unbiasing to which it is subjected.
The performance shown demonstrates that this product would be the most suitable for the
analysis of precipitation at seasonal and annual scales.

3.3. Categorical Verification Scores for Different Time Scales

Figure 6 shows a summary of the contingency table verification score at the different
time scales. For each dataset shown, a threshold greater than or equal to the mean of the
observations recorded at each time step is applied.
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Figure 6. Fraction of events detected as hits, false alarms, misses and correct negatives for the three
IMERG products at different time scales. The thresholds selected for each time scale coincide with the
mean of the observations at that scale: Half-hourly (1.4 mm), Daily (8.6 mm), Monthly (52.8 mm), Spring
(185.8 mm), Summer (118.8 mm), Autumn (203.9 mm), Winter (126.7 mm) and Annual (623.5 mm).

As shown in Figure 6, IMERG_F has a higher ability to detect correct negatives with
values close to 50% at all scales, although IMERG_L and IMERG_E are also very similar at
sub-daily and daily scales. The percentage of hits tends to increase at scales higher than
daily, while the percentage of misses decreases. According to the selected thresholds, the
ability of IMERG to estimate precipitation is affected by the detected false alarms. These
represent the highest percentage during the summer period in IMERG_E and IMERG_L.

Figure 7 provides the performance of the POD, and the FAR values at different time
scales for different precipitation thresholds. The error associated with the calculation of the
statistic at each point, as outlined by Jolliffe and Stephenson [64], is also shown. The figure
shows a clear improvement of IMERG estimates as time scale increases. At a half-hourly
scale, the ability of IMERG to estimate events at different thresholds is remarkably poor.
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If we consider the cut-off point between the POD and FAR line as a limit from which
the satellite shows some decay in its event detection ability, we observe that it increases
considerably with decreasing temporal resolution. At daily scales, this cut-off point occurs
at around 20 mm/day, a value well above the 75th percentile of the sample, which indicates
a much better performance compared to the estimation of events at the half-hourly scale,
where a value slightly lower than the mean of the recorded observations at this scale is
observed (1.4 mm/30 min).

Similarly, for the analysis at monthly and annual scales with cut-off points above
100 mm and 1000 mm, respectively, it ensures the correct identification of rainfall events up
to this threshold. As higher thresholds of rainfall in the domain are assessed, the ability of
the satellite decreases, highlighting the difficulty of IMERG to detect rainfall extremes at
any scale.

Although the three products behave similarly, IMERG_F gives worse results, especially
on scales above the monthly scale, wherein the POD values decrease faster than in the rest
of the products, which is associated with the unbiasing effect induced by the calibration
of GPCC stations. These results are consistent with Shawky et al. [66], which found no
significant improvement of IMERG_F over IMERG_E in the arid environment of Oman.
This result is in line with Sharifi et al. [16], Behrangi et al. [67] and Gosset et al. [68]
when positing that the gauge adjustment product (IMERG_F) can change the precipitation
amounts, but it cannot modify the occurrence of precipitation.

3.4. Half-Hourly IMERG Products for Different Terrain and Climate Conditions

This section will test the abilities and shortcomings of the three IMERG products at a
high temporal resolution (30 min). In addition, differences in the estimation of precipitation
by satellite products will be analysed when considering the terrain over which they are
estimated and under different climatic conditions.

Figure 8 shows the differences over each station between IMERG and the rainfall
records of the XEMA network. In valley areas, the analysis of the systematic error
shows a marked underestimation of precipitation in IMERG_F, with mean values of
−0.15 mm/30 min, which represents an underestimation of 10% regarding the rain gauges.
IMERG_L and IMERG_E show a tendency to overestimate the accumulated values and
show MAE and RMSE values even higher than 100% relative to the mean.

There is a more marked tendency in the behaviour of IMERG in areas representing
ridgetops. While IMERG_E and IMERG_L overestimate precipitation, and this could be
verified in all time scales, the effect of the calibration incorporated in IMERG_F causes a sig-
nificant smoothing, such that the Rbias reaches critical values lower than −30% sometimes,
as in the Bonaigua station (Z1) (Figure 2) at 2266 masl This marked underestimation and
change in behaviour from one product to another is probably related to the low density of
GPCC reference stations in high altitude areas for calibration. The CC shows a pattern in
all three products with poor values, barely exceeding 0.3.

The largest errors occur in the stations in flat areas (Flat) with an average bias higher
than 0.4 mm/30 min and Rbias values higher than 30% in IMERG_E and IMERG_L (Figure 8).
Although IMERG_F significantly decreases the error, the tendency to overestimate the values
is still maintained, and under this terrain classification the highest MAE and RMSE values
regarding the mean are obtained (higher than 100% and 200%, respectively). In these areas,
43% of the automatic stations are located and analysed, which corresponds to the entire
central inland part of the region of Catalonia, the coastal strip, the Ebro basin and the north-
western part of the territory. This plays a significant role in the global results regardless of
terrain classification.

Figure 9 evaluates the Rbias of the three IMERG products under different climatic
classifications. For example, IMERG_E presents a large overestimation over the BSk stations
and IMERG_F shows a high underestimation over the Df stations. Overall, a clear improve-
ment in bias reduction is found for BSk and Csa stations when IMERG_F is compared to
IMERG_E. The improvement is not so evident for the Cf stations, and in contrast, there is a
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clear bias increase for the Df stations. These results obtained for 30 min records coincide
with previous studies by Navarro et al. [38] in the Ebro basin for seasonal and annual scales.
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3.5. Intensity

Table 5 shows a summary of the statistics obtained in the validation process of three
IMERG products, considering five categories of rainfall intensity recorded in 30 min. The
categories of light, moderate, intense, very intense and torrential rain were scaled from a
previous classification of rainfall intensity in 1 h, according to sources from the Spanish
Meteorological Agency (AEMET) [59].

Table 5. Summary of statistics calculated according to the intensity of rainfall recorded by rain gauges
in 30 min.

N BIAS (mm) Mbias Rbias (%) MAE (mm) RMSE (mm)

light (0.1 ≤ Pr < 1)

IMERG_F 177039 0.56 2.35 134.83 0.70 1.25
IMERG_L 177039 0.76 2.81 181.30 0.90 1.81
IMERG_E 177039 0.85 3.04 203.89 1.00 2.06

moderate (1 ≤ Pr < 7.5)

IMERG_F 94589 −0.62 0.74 −25.68 1.55 2.15
IMERG_L 94589 −0.28 0.88 −11.54 1.81 2.70
IMERG_E 94589 −0.27 0.89 −11.31 1.91 2.89

heavy (7.5 ≤ Pr < 15)

IMERG_F 4553 −7.37 0.28 −71.98 7.55 8.12
IMERG_L 4553 −6.36 0.38 −62.12 7.07 7.79
IMERG_E 4553 −6.56 0.36 −64.04 7.34 8.05

very heavy (15 ≤ Pr < 30)

IMERG_F 1296 −16.54 0.16 −83.65 16.63 17.32
IMERG_L 1296 −14.89 0.25 −75.32 15.18 16.16
IMERG_E 1296 −15.07 0.24 −76.23 15.41 16.40

torrential (Pr ≥ 30)

IMERG_F 139 −32.57 0.11 −89.47 32.57 33.19
IMERG_L 139 −29.63 0.19 −81.40 29.63 30.70
IMERG_E 139 −28.98 0.20 −79.60 28.98 30.53

The results obtained show substantial overestimation discrepancies for all rainfall
intensity categories and in all IMERG products. Light rainfall, represented by the highest
number of records, is overestimated by twice as much Mbias by IMERG_F and nearly three
times as much by the rest of the products. This implies a relative error rate (Rbias) higher
than 100% in all cases and a systematic error significantly higher than the mean of the
observations. The best performance based on the MAE and RMSE is obtained by IMERG_F,
although they are still quite high compared to the average of the studied records. Such
indicators of overestimation in this category have been reported in previous studies [23,27].

On the contrary, at precipitation thresholds above 1 mm/30 min (moderate, heavy,
very heavy and torrential), IMERG shows a tendency to underestimate precipitation, which
becomes more significant as the intensity of precipitation increases (Figure 10). For the
classes heavy, very heavy and torrential, the satellite shows errors ranging between −60%
and −90% of the deficit in relation to the rain gauges. The systematic errors in these groups
are similar in magnitude to the mean absolute errors and to the mean of the values recorded
by the stations in each of the corresponding thresholds, which register a more realistic,
significant underestimation.

Among the three products, IMERG_F provides the worst results, while IMERG_L
presents the best values, although these differences are not marked. These results are
in agreement with studies by Mazzoglio et al. [69] and show the challenge of detecting
precipitation extremes at this resolution. Many of these extremes occur in the form of
short and local intense rainfall, so they cannot be correctly captured due to the spatial and
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temporal resolution of satellite sensors. Precipitation at the daily and sub-daily scales is
much more variable than monthly precipitation, and regional effects such as topography
and local circulation play an important role in rainfall occurrence and distribution [16].
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4. Discussion

In line with previous work, IMERG roughly reproduces the spatial pattern and tempo-
ral variability of rainfall in the region of study [17,24,70]. However, there are differences in
the magnitude estimation for the different run types: Early, Late and Final. While there is a
tendency to overestimate the accumulations in the Early and Late products across the whole
territory, IMERG_F reduces the errors and shows a better ability to estimate the amount
of precipitation at all time scales, with higher accuracy at monthly, seasonal and annual
scales. However, for this product, there is again a tendency to underestimate in areas
with complex topography, i.e., high mountain areas such as the Pyrenees. This result is
reasonable and has been reported in other high mountain areas [17]. Navarro et al. [38] and
Tapiador et al. [37] suggested that this may be due to the lack of rain gauges contributing to
the GPCC in high altitude areas, as well as to the low resolution of the GPCC grid (1◦ × 1◦),
which makes detection difficult in areas wherein precipitation is highly variable at small
scales. Finally, Navarro et al. [38] also mentioned the reduced detection capacity of IMERG
in the identification of convective orographic rainfall, mainly related to mesoscale factors.

At the seasonal scale, a similar underestimation is observed in the Final product at all
temporal scales. However, in the Early and Late products, significant errors appear during
the summer with a tendency to overestimate the cumulates producing high MAE and RMSE
errors. This differs from the studies of Moazam and Najafi, [13] and Navarro et al. [71],
wherein the worst results were obtained mainly during winter, when the ground surface is
covered with snow and ice [24]. However, our results are in line with Retalis et al. [15], in
which the best results were obtained in the rainy seasons (winter and autumn). In semi-arid
areas, the summer period is represented by low precipitation values, which makes detection
by satellite sensors difficult [17]. Another important issue to consider is that precipitation
can be affected by a high rate of evaporation, where some of the liquid water evaporates
during the fall process and is no longer part of the effective precipitation [26,31,72], a virga
being the extreme case wherein no precipitation reaches the ground. This phenomenon,
coupled with the fact that satellite retrievals of precipitation are based on the structure of
cloud systems [73] and may not adequately account for the level of evaporation, may lead
to the overestimation of precipitation in arid regions.

The effect of not accounting for evaporation in semi-arid areas further explains that,
in terms of precipitation event detection, the error in IMERG is dominated by the occur-
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rence of false alarms, especially in summer. In the occurrence of typical deep convective
clouds with relatively cold cloud tops (anvils) and, with the absence of PMW measure-
ments, the IR algorithm may falsely assign precipitation to pixels with cold brightness
temperature values [74]. Furthermore, in terms of IMERG’s ability to detect events given a
continuous threshold of cumulates, no significant improvement of one product over the
other is observed. In fact, IMERG_E and IMERG_L offer better performance as the thresh-
olds grow with more stable POD and FAR values and lower uncertainty in the statistics.
This is related to the inability of IMERG_F to detect extremes, similarly associated to the
calibration of GPCC.

Few studies include the validation of IMERG at the highest temporal resolution
(30 min). Even so, the authors of [26,75] agree on the decreased estimation capability of the
three products with increasing temporal resolution. The repetition time of the GPM and
the downscaling and interpolation procedures to 30 min [76] are some of the main causes
of the errors obtained. At this scale, the largest errors occur in flat areas, which coincides
with the BSk climate, with a tendency to overestimate. The authors of [38] found that in
these areas, IMERG tended to overestimate precipitation equally. These regions, mainly
represented in our study by inland depressions (Ebro valley) and coastal areas, are affected
by extreme precipitation events occurring at local scales. Orographic factors and mesoscale
conditions generate an uneven distribution of precipitation over the territory, resulting in a
very spatially uncorrelated precipitation field [37] and therefore an added challenge for
satellite estimates.

Finally, the overestimation of lightprecipitation associated with the detection of false
alarms and the underestimation of precipitation extremes reflects a similar behaviour to
that found in the Tibetan Plateau [27]. Along these lines, it is important to be aware of the
limitations of the assessment procedure, which may influence the accuracy of the results.
Firstly, it is worth mentioning that the rain gauge data used were not corrected for the effect
of wind, so the measurements may suffer from systematic biases caused by wind-induced
evaporation loss and the underestimation of trace values [24]. On the other hand, in terms
of the pixel-to-point method, although it has advantages over other methods [70], it is
very difficult for a (point-scale) rain gauge to represent the actual precipitation situation in
an IMERG pixel-scale range. These inherent differences between the rain gauge estimate
and the precipitation in the satellite area can directly influence the high values of false
alarms, as well as the detection of extreme precipitation events occurring at the local
scale. Especially in a region like Catalonia, characterised by its orographic complexity and
climatic variability, more rain gauges per IMERG cell may provide better results.

5. Conclusions

The main purpose of the current study focused on a comprehensive evaluation of
IMERG precipitation estimates in its three Early, Late and Final runs based on information
from 186 automatic weather stations, managed by the Meteorological Service of Catalonia
(NE Spain). The evaluation was carried out at different time scales (semi-hourly, hourly,
daily, monthly, seasonal and annual) over a period of 6 years (2015–2020), based on the
analysis of several metrics that quantify the error in precipitation accumulations. Similarly,
the behaviour of IMERG was evaluated at a high resolution (30 min) under different
topographic conditions (valley, flat, ridgetop), climatic conditions (BSk, Csa, Csb, Dfb)
and under different precipitation intensity thresholds (light, moderate, heavy, very heavy,
torrential). The main findings of the study are:

1. IMERG generally captures the spatial–temporal pattern and variability of annual
mean precipitation. However, discrepancies appear in the estimation of the magni-
tude. While IMERG_E and IMERG_L overestimate precipitation by 20% in practically
the whole territory, IMERG_F reduces the error significantly, yielding only 2%. The cal-
ibration performance in this run may even cause an underestimation of precipitation
in areas of complex orography such as the Pyrenees.
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2. The calculated statistics showed a significant improvement with decreasing temporal
resolutions, with the monthly, seasonal and annual scales showing the best results
in the estimation of precipitation accumulations. In contrast, the sub-daily scales
showed high Bias values and very low correlation values, indicating the remaining
challenge for satellite sensors to estimate precipitation at very high temporal reso-
lutions. IMERG_F showed much better error statistics compared to IMERG_E and
IMERG_L, wherein a generalised overestimation was evident and especially marked
during the summer period.

3. Similarly, the analysis of the POD and FAR showed a greater ability of IMERG to
identify precipitation events at scales greater than daily, wherein a stable behaviour
of the statistics is observed well above the mean values, although with deficiencies
in the identification of extreme events at all scales. The proportion of false alarms
is a problem for IMERG especially during the summer, which is mainly associated
with the detection of false precipitation in the form of lightrainfall (which is likely
influenced by evaporation processes not assimilated by the algorithm), as well as the
underestimation of locally occurring heavy precipitation.

4. The worst results were obtained on a semi-hourly scale represented by flat areas and
under a BSk climate, wherein IMERG shows a tendency to overestimate rainfall.

5. IMERG tends to overestimate light precipitation, while it tends to underestimate
accumulated precipitation in the rest of the intensity thresholds studied, especially
those marked by high intensity precipitation. Associated with these errors is the
fundamental role of taking rainfall gauges on a point scale that may not represent
the spatial and temporal variability of rainfall in a region where this variable is
spatially uncorrelated.

The evaluation of IMERG products presented here, although not the first one in
Spain, is the first to address in detail the orographic and climatic factors at high temporal
resolutions. Furthermore, we attempted to cover some of the most common weaknesses
of this type of research by extending the analysis simultaneously to different temporal
resolutions and by emphasising the analysis at high temporal resolutions. This study can
be used by other researchers and developers involved in the IMERG algorithm to introduce
improvements in future versions. Additionally, although with the limitation of latency,
time observation and monitoring could be considered in operational work. For more
applications based on the results presented here, and to try to answer some of the questions
raised, in future work we intend to study in greater depth the capacity of IMERG to detect
extreme events and to identify the specific behaviour of IMERG contributing sensors such
as MW and IR.
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Appendix A

Table A1 provides an overview of the data available for each temporal resolution
considered in the study. The first column lists the maximum number of possible data
records for each temporal resolution, calculated considering the number of existing stations
for each year, which varies from 183 to 188 stations depending on the year. The second
and third columns show the number and percentage of records verifying Criterion 1 (80%
minimum availability of records needed for a given temporal period). The fourth and fifth
column show the number and percentage of records verifying Criterion 2 (amounts equal
to or higher than 0.1 mm for both rain gauge and IMERG products).

Table A1. Data availability for each temporal resolution considered in the study.

Temporal
Resolution

Maximum
Number of

Records
Criterion 1 Criterion 2

Number of
Records

Percentage
(%)

Number of
Records

Percentage
(%)

half-hourly 19,482,432 18,804,667 97 277,616 1
daily 405,884 391,446 96 70,399 17

monthly 13,332 12,864 96 12,802 96
spring 1111 996 90 996 90

summer 1111 1020 92 1020 92
autumn 1111 1032 93 1032 93
winter 923 820 89 820 89
annual 1111 1034 93 1034 93

Appendix B

Table A2. Different climate areas of the Köppen climate classification [77–79] considered in this study.

Code Description Group

BSk Cold semi-arid (steppe) climate Arid
Csa Hot-summer Mediterranean climate Temperate
Cf Temperate without dry season Temperate
Df Continental without dry season Cold (continental)
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