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Abstract: The leaf area index (LAI), a valuable variable for assessing vine vigor, reflects nutrient 
concentrations in vineyards and assists in precise management, including fertilization, improving 
yield, quality, and vineyard uniformity. Although some vegetation indices (VIs) have been success-
fully used to assess LAI variations, they are unsuitable for vineyards of different types and struc-
tures. By calibrating the light extinction coefficient of a digital photography algorithm for proximal 
LAI measurements, this study aimed to develop VI-LAI models for pergola-trained vineyards based 
on high-resolution RGB and multispectral images captured by an unmanned aerial vehicle (UAV). 
The models were developed by comparing five machine learning (ML) methods, and a robust en-
semble model was proposed using the five models as base learners. The results showed that the 
ensemble model outperformed the base models. The highest R2 and lowest RMSE values that were 
obtained using the best combination of VIs with multispectral data were 0.899 and 0.434, respec-
tively; those obtained using the RGB data were 0.825 and 0.547, respectively. By improving the re-
sults by feature selection, ML methods performed better with multispectral data than with RGB 
images, and better with higher spatial resolution data than with lower resolution data. LAI varia-
tions can be monitored efficiently and accurately for large areas of pergola-trained vineyards using 
this framework. 

Keywords: leaf area index (LAI); light extinction coefficient; unmanned aerial vehicles (UAV); mul-
tispectral data; RGB data; machine learning; pergola-trained vineyards 
 

1. Introduction 
Adequate and affordable food supplies, which can be fulfilled only by the continuous 

improvement of sustainable agricultural services [1], are an urgent requirement to meet 
the growing demands of an increasing global population. This has become even more 
urgent with the advent of the current COVID-19 pandemic. Improving food quality and 
yield by optimizing the management of farms is a challenge because sophisticated field 
status and growing conditions are difficult to monitor, and this limits our ability to carry 
out targeted management. Therefore, the demand for monitoring crop growth and status 
in different locations and conditions, with various temporal and spatial resolutions and 
for various purposes, is increasing [2]. The leaf area index (LAI), being one of the most 
important variables, is strongly correlated with canopy structure [3]. It is a key factor in 
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many physiological and functional plant models of crop growth [4], including in vine-
yards [5,6] and it could provide decision-making criteria for the delineation of manage-
ment zones. 

LAI is defined as the ratio of one-sided leaf area per unit ground area [7,8], of which 
the measurement is destructive, labor-intensive, and time-consuming [9]. Therefore, indi-
rect methods have been developed using empirical equations, and they have been verified 
by direct measurements. They are widely used to estimate the LAI for various crops 
[10,11]. The optical methods are based on direct or diffuse light penetration through the 
canopy [12–14]. Various hand-held devices have been developed, including the LAI-2000 
(Licor Inc., Lincoln, NE, USA), which measures diffuse radiation at different distinct an-
gles [14]; DEMON (Centre for Environmental Mechanics, Canberra, Australia), which 
uses direct radiation [15]; and SunScan (Delta-T devices Ltd., Cambridge, UK), which is 
based on photosynthetic active radiation measured at wavelengths of 400–700 nm [16]. 
Although they are frequently used because of their high accuracy and ease of handling, 
they are too expensive for general use. Simple methods have been developed based on 
digital cover photography and gap fraction analysis [17], which is simple, accurate, and 
practical, and it can be used on mobile digital devices. Examples include Plant Screen Mo-
bile [18], Easy Leaf Area [19], PocketLAI [20] and VitiCanopy [21], which can be applied 
using smartphones or tablets to carry out in situ LAI measurements easily. Although these 
methods transform destructive sampling measurements into easier and more time-saving 
methods, they are suitable for smaller areas. It takes too much time and labor to apply 
them on a larger scale. In addition, some local calibrations cannot be used for other culti-
vars or cultivars with different canopy structures [22], because some parameters are site- 
and cultivar-specific, such as the light extinction coefficient. 

The light extinction coefficient, which is an important parameter of the digital cover 
photography algorithm in LAI estimation, varies according to vegetation type, structures, 
and canopy styles, as well as the proportions of non-leaf areas in captured pictures 
[17,23,24]. Several papers discuss how to determine the value of k in different species. 
Smith et al. (1991) discovered that the k value was lower at low relative densities because 
of the presence of canopy gaps [25]. Pierce et al. (1988) proposed a constant k value of 0.52 
for coniferous species in western Montana, USA [26], based on the measurements by Jar-
vis et al. (1983) [27]. Vose et al. (1995) estimated that the k value ranged between 0.53–0.67 
in mature hardwood stands in the southern Appalachians [28]. In addition, Hassika et al. 
(1997) proposed a mean k value of 0.33 for a maritime pine forest near Bordeaux, France, 
and found that it changes with varying sun elevations [29]. In their study on k values for 
apple trees, Poblete et al. (2015) reported that the k values showed different correlations 
to foliage cover, both in an exponential and linear style, in different experiments, which 
gave rise to many uncertainties [22]. However, the fixed value of 0.70 was used in Viti-
Canopy as the default k value, which was suitable in vineyards in Australia [21]. There-
fore, optimizing the site-specific k value is a precondition of our study. To the best of our 
knowledge, no study has been conducted to propose a k value for pergola-trained vine-
yards, especially for the vine species in our study area. 

However, rapidly emerging remote-sensing platforms and techniques are capable of 
obtaining field information through analysis of spectral characteristics of crops, comple-
menting the inadequacies of existing ground-based measurement methods [30–32]. These 
methods are non-destructive, simple, and applicable over large areas. The platforms and 
data can be obtained according to the demand of users, such as the MODIS LAI [33] and 
CYCLOPES LAI [34] products that can be used over very large regions with coarser spatial 
and temporal resolutions. For smaller regions, medium-resolution satellite images such 
as Landsat-7, Landsat-8, Sentinel-2, and Gaofen-6, amongst others, are good options with 
spatial resolutions of 30, 10 and 8 m, respectively. Although they can be applied to various 
crops at larger scales, for some plants that are grown in rows, such as vines, it is very 
difficult to extract more specific growing variables. This is because their inter-row spaces 
occur in the same pixels as the vines and have an impact on the overall field observations 
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[35]. In this situation, remote-sensing data with a higher resolution, such as those obtained 
from Gaofen-2 [36] and WorldView-2 [37–39], as well as very high spatial resolution im-
ages obtained by manned or unmanned aerial vehicles (UAVs) [40–43], are becoming in-
creasingly popular in precision agriculture. In particular, UAV platforms capable of car-
rying a variety of sensors, such as visible [44,45], multispectral [40,46], hyperspectral 
[47,48], and LiDAR [49], have more advantages such as high flexibility, time-saving, and 
less of a labor requirement. These kinds of data make management decisions easier, since 
every small variation in the field can be detected and analyzed conveniently. Because it 
remains consistent while the spatial resolution changes, it is possible to estimate the LAI 
in coarser remote-sensing data by combining the gap between different spatial-resolution 
images [35,50], ranging from leaves to landscape and landscape to regional scales.  

Machine learning (ML) methods, such as support vector machines (SVM) [51], partial 
least squared regression (PLSR) [52,53], random forest (RF) [54] and gradient boosting 
regression (GBR) [55] have unprecedented advantages in complex and non-linear data 
fitting and recognition, and are being increasingly applied in interpreting remote-sensing 
data to estimate agricultural information. Improvement of the data mining ability with 
limited sensor bands is an effective way to improve the prediction accuracy of the LAI.  

Pergola-trained vineyards have the advantage of effectively protecting grapes from 
sun damage, especially in extremely arid regions such as Turpan, China. The excellent 
canopy and health of the leaves contribute significantly to high-quality fresh table grapes 
and raisins [56]. However, the LAI can provide effective and quantitative information 
about vineyards and can be used as a guide for various management practices, such as 
pruning [57,58], trellising and canopy development [59,60], fertilization [61] and irrigation 
scheduling [16]. Earlier remote-sensing methods for LAI estimations were focused mostly 
on vertical shoot positioning (VSP) trained vineyards [5,62], and relatively few studies 
have been conducted for pergola-trained vineyards. It is unclear if LAI estimation models 
based on VSP-trained vineyards can be directly used for pergola-trained vineyards, due 
to differences in the trellising structures, resulting in differences in top-of-canopy remote-
sensing data. 

In order to fill this gap, the present study combined airborne UAV multispectral and 
RGB sensors with LAI ground measurements at different growth stages to construct sev-
eral VI-LAI estimation models using five different ML methods, namely the the support 
vector regression (SVR), random forest regression (RFR), partial least square regression 
(PLSR) and gradient boosting regression (GBR) and K-nearest neighbor regression (KNN). 
In addition, an ensemble model using ML models as base learners was proposed. Upward 
looking images taken under the pergola were used to calculate LAI values using digital 
cover photography methods, and then optimized by adjusting the light extinction coeffi-
cient, which was calibrated using true LAI values from destructive sampling.  

Encouraged by recent achievements, using the pergola-trained vineyards in ex-
tremely arid regions such as the study area, this study attempted to: (a) estimate a light 
extinction coefficient for an image-based LAI prediction algorithm suitable to pergola-
trained vineyards; (b) identify the vegetation indices (VIs) for estimating the LAI with the 
best combination; and (c) establish VI-LAI models to accurately estimate the LAI using 
VIs derived from UAV-based RGB and multispectral data with different spatial resolu-
tions. Our study will determine to what extent the UAV based RGB and multispectral data 
can monitor the LAI variations in pergola-trained vineyards. Our results provide a precise 
management basis for the similar vineyards and references for relevant future studies, 
such as yield and quality assessments in precision viticulture.  

2. Materials and Methods 
2.1. Site Description 

The study was carried out in Turpan city, Xinjiang, one of the largest table grape 
growing regions in China, where significant interests are arising in the development of 
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strategies to ensure grape quality and yields [63] in recent years. Turpan has a continental 
warm temperate desert climate with a mean annual precipitation of 16.4 mm and a mean 
annual temperature of 13.9 °C (1950–2011). Extreme temperatures reach 47.8 °C (2008) in 
summer and −28.0 °C (1960) in winter [64,65]. In general, vine plants are buried under the 
soil during winter to protect them from freezing, and then unearthed in spring. The most 
widespread vine type in Turpan is Vitis vinifera L. cv. Thompson seedless, which has a good 
reputation for high sugar content and good quality and, therefore, is a suitable research 
subject for this study. 

The experiment was conducted from May to August 2021 in a small vineyard in 
Pichan County (Figure 1). The vines were 10 years old, planted in five ditches, where two 
of them were attached on one pergola from two sides, and the other three were attached 
on separate pergolas. The planting spaces between vines were approximately 1.50 m, and 
the distances between ditches were approximately 6.00 m with an average pergola height 
of 1.60 m. The vines were unearthed and first irrigated on 16 and 26 March 2021.  

 
Figure 1. Location of study area, birds eye view of a vineyard, and a scene below the pergola. 

2.2. Data 
2.2.1. Unmanned Aerial Vehicle (UAV) Data Acquisition 

Data were collected from May to August 2021, covering the main important growing 
seasons. Drone-based RGB and multispectral images were captured from flight heights of 
17 m and 91–100 m to generate images of 0.007–0.008 m and 0.040–0.045 m with spatial 
resolutions (or ground sample distance (GSD)). Two flight heights were used because the 
lower flight height data can be used for smaller vineyards with higher spatial resolutions, 
and higher flight heights can be used to monitor larger fields. An overlap of 80–90% at the 
front and 60–80% at the side was maintained. This overlap ensured creation of good qual-
ity orthomosaic images. The UAV (DJI Phantom 3 Advanced, SZ DJI Technology Co, Ltd., 
Shenzhen, China) has characteristics of stable flight, and has a flight time of about 15 
min/battery. It is equipped with a remote controller, a global navigation satellite system 
(GNSS) receiver, and autonomous flights were carried out using the Pix4Dcapture app 
(Pix4D SA, Lausanne, Switzerland) on an Android smartphone.  

RGB images were captured using the built-in camera of the UAV. It was attached to 
a three-axis gimbal mount to provide stability, it has a 12.4-megapixel sensor, which al-
lows the acquisition of RGB images with a maximum image dimension of 4000 × 3000 
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pixels. A multispectral camera of Tetracam ADC Micro (Tetracam, Inc., Gainesville, FL, 
USA) was installed on the UAV, with an image dimension of 1280 × 1024 pixels. The ADC 
Micro is a single-sensor digital camera designed and optimized for capturing visible light 
wavelengths longer than 520 nm and near-infrared wavelengths up to 920 nm, with three 
fixed green, red, NIR filters (equivalent to Landsat TM2, TM3, TM4) [66]. The primary 
design of this product is to record vegetation canopy reflectance [67,68], and multi-spec-
tral earth-observing satellites such as Landsat ETM, SPOT, and IKONOS obtain spectral 
information in the same few broad wavebands [69]. The multispectral images were taken 
simultaneously with RGB images in RAW format, then calibrated and converted to TIF 
format using PixelWrench2 software.  

The RGB and multispectral images were then mosaiced using the photogrammetric 
software Pix4DMapper (Pix4D SA, Lausanne, Switzerland). Ground control points 
(GCPs) were distributed evenly in the study area, and coordinates were measured using 
real-time kinematics (iRTK2, Hi-Target Satellite Navigation Technology Co. LTD, Guang-
zhou, China) with an error range of ±10 mm. The schedules of the missions are listed in 
Table 1. The final images were resampled to 0.007 m and 0.045 m spatial resolutions for 
17 m and 91–100 m flight heights, respectively, after preprocessing. For convenience, we 
abbreviated the different spatial resolution and sensor data as follows: the data derived 
from 0.007 m spatial resolution of the multispectral sensor are called the 0.007 m GSD MS 
dataset; the data derived from 0.007 m spatial resolution of the RGB sensor are called the 
0.007 m GSD RGB dataset; the data derived from 0.045 m spatial resolution of the multi-
spectral sensor are called the 0.045 m GSD MS dataset; and the data derived from 0.045 m 
spatial resolution of the RGB sensor are called the 0.007 m GSD RGB dataset. 

Table 1. Sampling date and corresponding growing seasons for true leaf area index (LAI), VitiCan-
opy and unmanned aerial vehicle (UAV) missions. 

Mission Date Growth Period of Vine Data Type Flight Height GSD 
4 May Blooming stage VitiCanopy, UAV data 17 m 0.007 m 

14 May Fruit setting stage VitiCanopy, UAV data 100 m 0.045 m 
29 June Veraison stage VitiCanopy, UAV data 17 m, 100 m 0.007 m, 0.045 m 

7 August Post-harvest stage True LAI, VitiCanopy, UAV data 17 m, 91 m 0.007 m, 0.045 m 
Note: UAV data includes both red, blue and green (RGB) and multispectral data; GSD refers to the 
ground sample distance (spatial resolution). 

2.2.2. Leaf Area Index (LAI) Data Acquisition by Destructive Sampling 
To calibrate the VitiCanopy parameters, the true LAI values were obtained using a 

destructive sampling method (Figure 2). The experiment was carried out from 7–9 August 
2021. Ten samples of the vineyard LAI were measured using a 0.80 m × 0.90 m rectangular 
iron frame to separate the samples of vine leaves measured by VitiCanopy. Sampling 
points were selected after detailed inspection of the field survey on the sampling day to 
cover characteristic LAI values, of which the thickest and sparsest areas were both taken 
into consideration. We added an extra plot that did not include any canopy for represent-
ing the zero value of the LAI. The spatial distribution of the samples is shown in Figure 3. 
The procedure was as follows [5]: (1) carry out the UAV mission and VitiCanopy meas-
urements in the same day; (2) install a rectangular wire frame at each plot with a size of 
0.80 m × 0.90 m which corresponds to VitiCanopy measurements, and collect all leaves 
inside the frame; (3) put the leaves on white A2 paper (0.594 m × 0.420 m) and photograph 
with a digital RGB camera; (4) classify the pictures as leaf and non-leaf areas using 
ENVI5.3 (Harris Geospatial Solutions, Broomfield, CO, USA), and calculate the leaf area 
of each sample. The Greenness Index was used to distinguish leaf area in this study [70]. 
The LAI was then calculated by dividing the accumulated leaf area of the samples at each 
site into the area of the rectangular wire frame. The locations of the destructive samplings 
were confirmed by comparing the orthoimages before and after defoliation. 
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Figure 2. Calculation procedure of true LAI values: (a) collect all leaves inside the rectangular frame; 
(b) put leaves on A2 paper and take photo with RGB camera; (c) distinguish the leaves and calculate 
the area. 

2.2.3. LAI Data Acquisition by Digital Cover Photography Method 
LAI values were measured using a free smartphone and tablet PC application called 

VitiCanopy, which was developed to measure the LAI of vineyards, and proved to be 
effective for vertical shoot positioning (VSP) trained vineyards with a light extinction co-
efficient of 0.70 [21,71]. It was also proved that this application was valid for other tree 
crops such as cherry [72], cocoa [73] and apple trees [22] by adjusting input parameters 
such as the light extinction coefficient.  

The measurements were carried out near the girders for convenience of marking, so 
the positions could be easily located in orthomosaic UAV images for later calculations, as 
shown in Figure 3. The pictures were taken approximately 0.80 m below the pergola, as 
suggested by the software developer [21], and cover about 0.80 m × 0.90 m of the rectan-
gular region. Applying the default light extinction coefficient of 0.70, approximately 40–
60 plots were measured in four different growing stages, including non-leaf area and very 
dense vegetated regions. Low-quality measurements were removed based on the picture 
quality as assessed by VitiCanopy. The number of samples used in different sensor and 
GSD datasets were given in Table 2. The software performs a cloud-filtering process and 
automatic gap analysis of upward-looking digital images [74]. The light extinction coeffi-
cient was then optimized using the true LAI values, which will be discussed in the follow-
ing sections.  

Table 2. Number of samples in each dataset. 

Dataset Number of Samples 
0.007 m GSD MS 148 

0.007 m GSD RGB 145 
0.045 m GSD MS 148 

0.045 m GSD RGB 145 
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Figure 3. Locations of VitiCanopy and destructive sampling measurements. Ortho mosaiced RGB 
and false color images of sampled vineyard with 0.007 m and 0.045 m GSD on different dates. The 
yellow and black rectangles refer to 0.80 m × 0.90 m regions which were measured using VitiCanopy 
and black rectangles refer to the plots of the destructive sampling measurements. 

2.3. Methods 
The overall workflow of this study consists of three key steps: (1) calibration of the 

light extinction coefficient by the digital cover photography method using a destructive 
sampling method; (2) calculation of VIs from UAV-based multispectral and RGB images; 
and (3) calibration and validation of VI-LAI models using LAI values from the first step 
and VIs from the second step (Figure 4). This study adopted the World Geodetic System 
1984 (WGS1984) as the coordinate system for georeferenced images, maps, or any others 
in this paper, if not particularly indicated.  
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Figure 4. An overview of workflow in this study, and datasets used for constructing models. 

2.3.1. Determination of Light Extinction Coefficient 
The digital cover photography method can estimate the LAI values of many vegeta-

tion types [22,72]. The VitiCanopy application was developed on the basis of the digital 
cover photography method [21], which obtains the number of total pixels, big gaps, and 
total gaps of vegetation area from pictures, and then calculates the fractions of foliage 
cover and crown cover by applying the following equations [17]:  

𝑓𝑓𝑓𝑓 = 1 −
𝑔𝑔𝑇𝑇
𝑇𝑇𝑃𝑃

 (1) 

𝑓𝑓𝑐𝑐 = 1 −
𝑔𝑔𝐿𝐿
𝑇𝑇𝑃𝑃

 (2) 

where the 𝑓𝑓𝑓𝑓 is the foliage cover, 𝑓𝑓𝑐𝑐 is the crown cover, 𝑔𝑔𝑇𝑇 is the total number of gap 
pixels, 𝑇𝑇𝑃𝑃 is the total number of pixels, and 𝑔𝑔𝐿𝐿 is the total number of big gap pixels. Us-
ing the calculated 𝑓𝑓𝑓𝑓 and 𝑓𝑓𝑐𝑐 values, the crown porosity, clumping index at the zenith, 
and the effective leaf area index can be calculated from Beer’s Law [74,75]: 

𝛷𝛷 = 1 −
𝑓𝑓𝑓𝑓
𝑓𝑓𝑐𝑐

 (3) 

𝛺𝛺0 =
(1 −𝛷𝛷) ∗ ln �1 − 𝑓𝑓𝑓𝑓�

ln(𝛷𝛷) ∗ 𝑓𝑓𝑓𝑓
 (4) 

LAI𝑀𝑀 =
−𝑓𝑓𝑐𝑐 ∗ 𝛺𝛺0 ∗ ln (𝛷𝛷)

𝑘𝑘
 (5) 

where 𝛷𝛷 is the crown porosity, 𝛺𝛺0 is the clumping index, LAI𝑀𝑀 is the effective leaf area 
index, and k is the light extinction coefficient, which was set at 0.70 as the default. There-
fore, the light extinction coefficient can be calculated by inverting Equation (5) and using 
the measured true LAI values (LAI𝑇𝑇) as follows [22]: 

𝑘𝑘 =
−𝑓𝑓𝑐𝑐 ∗ 𝛺𝛺0 ∗ ln (𝛷𝛷)

LAI𝑇𝑇
 (6) 

We can take the average of k values, as in many other studies [26,29]. We also exper-
imented with a variable k for better estimation of the LAI by investigating the correlations 
with other parameters, such as the fraction of foliage cover (𝑓𝑓𝑓𝑓), as studied by Poblete et 
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al. (2015) [22]. The optimized k values were used to calculate the LAI values of other sam-
pling points, which were used as ground truth data for LAI estimation models, as stated 
in the following steps. 

2.3.2. Spectral Feature Extraction and Reduction 
Modeling using only three band spectral data is a time-saving method, but its accu-

racy is difficult to guarantee. Therefore, based on the Index Database website 
(https://www.indexdatabase.de/, last accessed on 30 September 2021), 32 vegetation indi-
ces (VIs) were calculated using one to three spectral bands from each sensor, where 17 VIs 
are from multispectral data and 19 VIs are from RGB data (Table 3). Among these, R, G, 
GtoR, and RmG can be applied to both sensors. For every rectangular area that VitiCan-
opy could detect (Figure 3), the average VI values were calculated. These VI values were 
used as variables for the LAI estimation models, which will be introduced in the following 
sections. Calculations were performed using the GDAL library in Python.  

Table 3. Vegetation indices used in this study. 

Vegetation Index Name Abbrev. Formula Used Sensor Source 
Near Infrared NIR NIR MS  

Red R R MS, RGB [76] 
Green G G MS, RGB [76] 
Blue B B RGB [76] 

Normalized Differential Vegetation Index NDVI (NIR − R)/(NIR + R) MS [77] 
Chlorophyll Vegetation Index CVI NIR∗R/G2 MS [78] 

Chlorophyll Index Green CIgreen (NIR/G) − 1 MS [79] 
Green Difference Vegetation Index GDVI NIR − G MS [80] 

Enhanced Vegetation Index 1 EVI1 2.4∗(NIR − R)/(NIR + R + 1) MS [81] 
Enhanced Vegetation Index 2 EVI2 2.5∗(NIR − R)/(NIR + 2.4*R + 1) MS [82] 

Green-Red NDVI GRNDVI (NIR − R − G)/(NIR + R + G) MS [83] 
Green NDVI GNDVI (NIR − G)/(NIR + G) MS [84] 

Green Ratio Vegetation Index GRVI NIR/G MS [85] 
Difference Vegetation Index DVI NIR/R MS [86] 

Log Ratio LogR Log(NIR/R) MS  
Soil Adjusted Vegetation Index SAVI (1 + L)(NIR − R)/(NIR + R + L) MS [87] 

Simple Ratio Green to Red GtoR G/R MS, RGB  
Simple Ratio Blue to Green BtoG B/G RGB [88] 
Simple Ratio Blue to Red BtoR B/R RGB [88] 

Simple difference of green and blue GmB G − B RGB [76] 
Simple difference of red and blue RmB R − B RGB [76] 

Simple difference of red and green RmG R − G MS, RGB  
Simple Ratio of Green and Red + Blue tGmRmB 2G − R − B RGB [89] 

Mean RGB  RGBto3 (R + G + B)/3 RGB  
Red Percentage Index RtoRGB R/(R + G + B) RGB [76] 

Green Percentage Index GtoRGB G/(R + G + B) RGB [76] 
Blue Percentage Index BtoRGB B/(R + G + B) RGB [76] 

Normalized Green-Red Index NGR (G − R)/(G + R) RGB [76,85] 
Normalized Red-Blue Index NRB (R − B)/(R + B) RGB [76] 

Normalized Green-Blue Index NGB (G − B)/(G + B) RGB [76] 
Green Leaf Index GLI (2G − R − B)/(2G + R + B) RGB [70] 
Coloration Index CI (Red - Blue)/Red RGB [90] 

Note: MS refers to the multispectral sensor, and RGB refers to the RGB camera of the UAV. 
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In supervised learning, the models based on all variables (VIs) may show better per-
formance than using only three band data but require higher computing capacity. To over-
come the calculation expenses and improve the accuracy, we implemented feature (the VI 
in this study) selection procedures, which maintain useful information with highly corre-
lated VIs and exclude redundant ones from regression analysis [91]. Feature selection 
methods are of great importance in the field of data mining [92] and help to obtain good 
or better accuracies in predictive models while requiring less data. Using fewer attributes 
is desirable because it reduces the complexity of the model, and a simpler model is simpler 
to understand and explain [93]. Therefore, the selection of variables is an important step 
in improving the efficiency of models.  

In this study, we carried out feature selection using the recursive feature elimination 
(RFE) approach, which is a widely applied method and performed well in previous stud-
ies [94–96]. It was performed in two steps: (1) running an estimator to determine the fea-
ture importance, and (2) removing the feature with the lowest importance score and eval-
uating the model performance. The built-in feature selection method of random forest 
(RF) was used in this study to derive the importance of each variable in the tree decision 
[97]. We implemented the process 300 times to obtain the feature importance in step (1), 
and determined the features to participate in the final modeling in step (2).  

2.3.3. Ensemble Model Development 
To enhance the prediction performance, an ensemble model was proposed based on 

the voting strategy, including the following steps: (1) training and applying multiple ma-
chine learning models independently and (2) combining multiple prediction results 
through voting [98]. In this study, the voting regressor was used; it is a composite strategy 
across ML models and performed best on average across subjects. Five ML regression 
methods were employed as the base learners to construct the ensemble learning, namely, 
the SVR, RFR, PLSR, GBR, and KNN. These are widely used in many studies 
[95,96,99,100]. The entire dataset was randomly split into training and testing sets to im-
plement the independent validation. One-third of the whole dataset was used for valida-
tion (three-fold), which was determined by comparing the results 2–10 fold, while two-
thirds were used for training. For the RFR method, the number of trees was 600, the min-
imum sample leaf was set to 3, and the maximum depth was 10. For the SVR method, the 
“linear” was used as the kernel, because it has the best performance among all the tests. 
In the GBR method, the number of boosting stages was set to 30. Six was set for the num-
ber of estimators in the PLSR methods, while three was set for datasets with only three 
variables. Three was chosen as the number of nearest neighbors for the KNN method. All 
parameters were chosen using the tuning and grid search methods.  

The modeling tests were carried out using datasets of 0.007 m and 0.045 m GSD data 
separately. To test the robustness of all the models, 100 repetitions of three-fold cross val-
idation were performed, resulting in a total of 300 experiments. To assess the performance 
of these models, the coefficient of determination (R2), root mean squared error (RMSE), 
and mean absolute error (MAE) were calculated as follows:  

R2 =
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

∑ (𝑦𝑦𝑖𝑖 − 𝑦́𝑦𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

 (7) 

RMSE = �∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛 − 1
 (8) 

MAE =
1
𝑛𝑛
� �𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖�

𝑛𝑛

𝑖𝑖=1
 (9) 

where 𝑦𝑦𝑖𝑖  is the measured value, 𝑦𝑦𝑖𝑖 is the predicted value, 𝑦́𝑦𝑖𝑖 is the average of the meas-
ured values, and n is the number of samples. Modeling and accuracy assessments were 
implemented using the scikit-learn packages in Python.  
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3. Results 
3.1. Calibration Result of Light Extinction Coefficient 

We attempted to find a variable k, which ranged from 0.29 to 0.56, for better estima-
tion of LAI, and we found that they have certain correlations with the fraction of foliage 
cover (𝑓𝑓𝑓𝑓) (Table 4), which is in line with a previous study of Poblete et al. (2015) [22]. 
Although R2 was larger in the exponential model, according to the RMSE, the linear model 
showed higher performance than the exponential model. However, considering that we 
have only 10 samples of leaf area (we did not include the k value for the non-leaf plot, 
since it cannot be calculated because the denominator was zero in Formula (6)), and its 
linearity was not obvious with an R2 of 0.57 only (Figure 5), we chose to use the average k 
value (0.41) and apply it to the LAI calculations as stated in the previous studies.  

Table 4. Models for light extinction coefficient as a function of fractions of foliage cover (𝑓𝑓𝑓𝑓), and 
the goodness of fit (R2) and root mean square errors (RMSE) of those models. 

Model Type Equation R2 RMSE 
Linear km = 0.34 × (𝑓𝑓𝑓𝑓) + 0.17 0.57 0.0591 

Exponential km = 0.49 × (𝑓𝑓𝑓𝑓)0.50 0.65 0.0593 

 
Figure 5. Linear and exponential correlations of light extinction coefficient (km), which were calcu-
lated from true LAI values, and fraction of foliage cover (𝑓𝑓𝑓𝑓). 

The correlations between the true LAI and the values based on VitiCanopy, using the 
default and optimized k values, are shown in Figure 6. As seen, the LAI values from Viti-
Canopy after optimizing k were closer to the true values with a slope of 1.03, indicating 
that a k value of 0.41 would be suitable for pergola-trained vineyards. For decreasing the 
accumulated error between the true LAI and the LAI from VitiCanopy (k = 0.41), 
LAI_k_0.41 were corrected again using the relationship shown in Figure 6. 
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Figure 6. The relationship between true and VitiCanopy calculated LAI (LAI_viti) values before and 
after optimization of k value. The default and optimized k values were 0.70 and 0.41 separately. 

3.2. Vegetation Indices and Selection 
The optimized LAI values, which were based on VitiCanopy measurements, and VIs 

from both UAV RGB and multispectral data were compared. As seen in Figure 7, all 17 
VIs from multispectral data showed strong correlations with the LAI, except for the green 
band. GDVI showed the best correlation with a Pearson’s correlation coefficient of 0.903 
significant at the 0.01 level, while the green band showed the lowest correlation. Among 
the 19 VIs from RGB images, only eight showed better correlations (Figure 8), and 0.007 
m and 0.045 m GSD data showed large discrepancies in the same VIs. 

 
Figure 7. Pearson’s correlation coefficients between LAI_viti and vegetation indices (VIs) derived 
from UAV multispectral images from 0.007 m (n = 148) and 0.045 m (n = 145) GSD data. 
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Figure 8. Pearson’s correlation coefficients between LAI_viti and VIs derived from UAV RGB im-
ages of 0.007 m (n = 148) and 0.045 m (n = 145) GSD data. 

The 17 VIs from the multispectral sensor and 19 VIs from the RGB sensor at different 
spatial resolutions were ranked using the RFE strategy described in Section 2.3.2. Figure 
9 shows the VI rankings for 0.007 m GSD data, and Figure 10 shows the rankings of VIs 
for 0.045 m GSD data. Most of the VIs have stable ranking orders, where the rankings were 
obtained from 300 repeated experiments. For example, GDVI, GtoR, DVI, CVI, and RmG 
are mostly highly ranked in 0.007 m GSD data from multispectral sensors, and almost all 
VIs ranked stably in 0.007 m GSD data from the RGB sensor.  

 

 
Figure 9. Statistics of VI rankings in 300 experiments using 0.007 m GSD data from (a) multispectral 
sensor and (b) RGB sensor. 

 
Figure 10. Statistics of VI rankings in 300 experiments using 0.045 m GSD data from (a) multispectral 
sensor and (b) RGB sensor. 
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3.3. Model Comparison and Performance 
According to the rankings of VIs for four different datasets (0.007 m GSD MS, 0.007 

m GSD RGB, 0.045 m GSD MS, 0.045 m GSD RGB), we iteratively added the top ranked 
VIs one by one into the ML models and updated the model performance until all VIs were 
included. Every experiment was conducted 100 times with three-fold cross validation, and 
the training accuracies obtained by the five base models and ensemble model were calcu-
lated. The results of the 0.007 m GSD MS dataset are shown in Figure 11. As shown, RFR 
and GBR achieved the highest performance when five VIs were included among the five 
base models. The others achieved the best performance when 14 VIs were included. The 
accuracy of the ensemble model reached the highest while including five VIs. The results 
for the other datasets are given in the Appendix A (Figures A1–A3). In the same way, we 
chose 10 VIs for the 0.045 m GSD MS dataset, 18 VIs for the 0.007 m GSD RGB dataset, and 
three VIs for the 0.045 m GSD RGB dataset.  

 
Figure 11. Model training accuracies as a function of the number of VIs derived from 0.007 m GSD 
multispectral data. 

In addition, we trained all base models and ensemble models in full and selected 
features, as well as using only the three-band data on training samples, and evaluated the 
model performance on test samples. The test accuracies of 300 experiments (100 times of 
three-fold cross validation) for the 0.007 m GSD MS dataset are shown in Table 5. Satis-
factory accuracies were achieved by all approaches, demonstrating the effectiveness of 
these models in LAI estimation in pergola-trained vineyards. In particular, the ensemble 
model outperformed all the base models, achieving an R2 of 0.830 using the three-band 
data, 0.887 using all VIs, and 0.889 using the selected five VIs. The test accuracies of other 
datasets with different variables are provided in the Appendix A (Tables A1–A3). 

Table 5. Test accuracies including mean and standard deviation of five base models and an ensem-
ble model trained on the 0.007 m GSD MS dataset in a different number of VIs (n = 148). 

ML 
Methods 

Using All 17 VIs Using Selected 5 VIs Using 3 Bands 
R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE 

SVR 
0.872 

(0.022) 
0.466 

(0.030) 
0.372 

(0.021) 
0.864 

(0.029) 
0.479 

(0.043) 
0.385 

(0.038) 
0.807 

(0.026) 
0.572 

(0.026) 
0.466 

(0.038) 

RFR 
0.864 

(0.009) 
0.481 

(0.013) 
0.399 

(0.019) 
0.879 

(0.015) 
0.455 

(0.022) 
0.373 

(0.028) 
0.742 

(0.045) 
0.661 

(0.051) 
0.556 

(0.054) 

PLSR 
0.880 

(0.020) 
0.451 

(0.028) 
0.366 

(0.027) 
0.869 

(0.026) 
0.469 

(0.039) 
0.384 

(0.036) 
0.822  

(0.041) 
0.547 

(0.050) 
0.451 

(0.052) 
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GBR 
0.860 

(0.011) 
0.489 

(0.018) 
0.398 

(0.033) 
0.879 

(0.016) 
0.454 

(0.025) 
0.368 

(0.034) 
0.759 

(0.059) 
0.636 

(0.073) 
0.524 

(0.084) 

KNN 
0.856 

(0.033) 
0.492 

(0.054) 
0.404 

(0.046) 
0.850 

(0.014) 
0.506 

(0.018) 
0.413 

(0.031) 
0.773 

(0.032) 
0.621 

(0.033) 
0.508 

(0.043) 

Ensemble 
0.887 
(0.013 

0.438 
(0.018) 

0.358 
(0.027) 

0.889 
(0.018) 

0.434 
(0.030) 

0.354 
(0.039) 

0.830 
(0.031) 

0.536 
 (0.042) 

0.449 
(0.053) 

3.4. Model Adaptability for Different Datasets 
Then, we evaluated the model adaptability under different GSD and sensor datasets. 

Table 6 shows the R2, RMSE, and MAE of all the base models and ensemble models using 
the different datasets. Generally, all models achieved good results except for the 0.045 m 
GSD RGB dataset, where SVR showed the lowest performance. Among the base models 
using 0.007 m GSD data, RFR and GBR performed better than others in the MS dataset, 
whereas SVR and PLSR outperformed others in the RGB dataset; for the base models us-
ing 0.045 m GSD data, SVR and PLSR showed better performances than others in the MS 
dataset, and RFR and GBR performed better than others in the RGB dataset. The ensemble 
model outperformed all the base models in most cases.  

The agreement between the true LAI (optimized from the VitiCanopy results) and 
the predicted LAI of each model using the selected features for each dataset is shown in 
Figure 12. Among all models, the best agreement was found in the ensemble model using 
the 0.007 m GSD MS, 0.007 m GSD RGB, and 0.045 m GSD MS datasets (Figure 12(f1–f3)).  

Table 6. Performances of base and ensemble models in LAI prediction under different GSD and 
sensor data. 

Model Metrics 0.007 m GSD MS 0.007 m GSD RGB 0.045 m GSD MS 0.045 m GSD RGB 

SVR 
R2 0.864 0.818 0.790 0.438 

RMSE 0.479 0.556 0.590 0.952 
MAE 0.385 0.407 0.449 0.678 

RFR 
R2 0.879 0.791 0.754 0.676 

RMSE 0.455 0.598 0.635 0.734 
MAE 0.373 0.470 0.499 0.611 

PLSR 
R2 0.869 0.820 0.783 0.490 

RMSE 0.469 0.552 0.598 0.921 
MAE 0.384 0.432 0.459 0.695 

GBR 
R2 0.879 0.788 0.758 0.708 

RMSE 0.454 0.602 0.630 0.697 
MAE 0.368 0.470 0.492 0.568 

KNN 
R2 0.850 0.772 0.772 0.539 

RMSE 0.506 0.623 0.614 0.872 
MAE 0.413 0.492 0.479 0.720 

Ensemble 
R2 0.889 0.825 0.796 0.637 

RMSE 0.434 0.547 0.581 0.775 
MAE 0.354 0.422 0.452 0.626 
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Figure 12. Scatter plots of predicted and true LAI values from (a) SVR, (b) RFR, (c) PLSR, (d) GBR, 
(e) KNN and (f) ensemble model for (1) 0.007 m GSD MS dataset, (2) 0.007 m GSD RGB dataset, (3) 
0.045 m GSD MS dataset and (4) 0.045 m GSD RGB dataset. 

4. Discussion  
4.1. Contributions of Feature Selection for Datasets 

This study explored the potential of UAV data as an alternative method for LAI ex-
traction for pergola-trained vineyards. Many vegetation growth variables can be accu-
rately and remotely retrieved from satellite and UAV-based remote-sensing data for dif-
ferent vegetation types, and they have been used to carry out precise management [101]. 
In their study on the ratio indices of rice (e.g., CIgreen) using UAV data (the same series 
of multispectral sensors as in our study), Yang et al. (2021) showed the lowest correlation 
with LAI, and EVI2 had a relatively higher correlation, while the normalized indices 
(NDVI) had the median [102]. In their study on selection of vegetation indices for mapping 
the sugarcane condition, Susantoro et al. (2018) showed the DVI and GNDVI derived from 
Landsat8 were highly correlated to LAI [103], which is in agreement with our study. ML 
methodologies can be used to effectively analyze and utilize information-rich datasets as 
well as high-dimensional observation data. However, the performance of different ML 
methods varies with different datasets. For the data obtained by hyperspectral sensors, 
machine learning methods can be used to directly choose the best related spectral bands 
to train the models [47,104]. It is possible to obtain better performance by calculating veg-
etation indices and using them as independent variables [96]. Compared to hyperspectral 
sensors, relatively fewer spectral data can be obtained from multispectral sensors. In our 
study, modeling using only three-band spectral data saves time, while also making it pos-
sible to obtain good results. For example, the R2 for the ensemble model, which was based 
on 0.007 m GSD MS data, reached 0.830 (Table 5). However, this is not always the case, 
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especially for sensors such as those on the RGB camera. In this case, none of the three 
bands were highly correlated to LAI (Figure 8), and most of the models had low accura-
cies. Figures 13 and 14 show the performances of different models in different datasets 
with different combinations of variables. The models based on all variables (VIs) showed 
better performance than those using only three band data, for both multispectral and RGB 
data. However, they required more computing capacity. The models based on only three-
band data showed lower stability than those based on all variables. In brief, feature selec-
tion improved model performance compared to that when using all features (VIs) or only 
three band data. This was observed in both multispectral and RGB data. 

 
Figure 13. Performance of different models in 0.007 m GSD MS datasets with (a) all VIs, (b) three 
band data and (c) selected VIs, and RGB datasets with (d) all VIs, (e) three band data and (f) selected 
VIs. 

 
Figure 14. Performance of different models in 0.045 m GSD MS dataset with (a) all VIs, (b) three 
band data and (c) selected VIs, and RGB datasets with (d) all VIs, (e) three band data and (f) selected 
VIs. 
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4.2. Comparing Different Machine Learning Methods in Different Datasets 
In addition to the selection of vegetation indices, the regression algorithm itself is 

another crucial factor that affects LAI estimation accuracy. A suitable model can help im-
prove the accuracy of LAI predictions from remote-sensing data. Figures 13 and 14 also 
show the performances of the different models in different datasets.  

All base models used in this study have been commonly applied in many studies, 
and all models have their advantages in specific situations. SVR and PLSR perform better 
in higher dimensional datasets, as reported in previous studies [51], but they show lower 
accuracy and stability with possibly noisy datasets (Figure 14f). The RFR method, which 
is less likely to overfit [54], showed higher stability in all datasets. SVR outperforms RF in 
most cases in MS data, and this result is in line with a previous study by Grabska et al. 
(2020) when using Sentinel-2 imagery [105]. The GBR method showed a higher stability 
in most cases. All base models showed satisfactory accuracies except for the 0.045 m GSD 
RGB data, where the SVR performed the worst, with an R2 of 0.438.  

However, instead of using a single machine learning model, we developed an en-
semble model that combines five base learners. Our results show that the ensemble model 
outperformed all base models (again, except for the 0.045 m GSD RGB dataset) signifi-
cantly both using all variables or selected ones, as well as using only the three-band data. 
With selected VIs, the ensemble models obtained 0.889 in R2, 0.434 in RMSE, and 0.354 in 
MAE, and achieved an increase of 1.14%, 4.41%, and 5.09%, respectively, compared to the 
best single base model in the 0.007 m GSD MS dataset. For other datasets, the ensemble 
models achieved 0.825, 0.796, and 0.637 in R2 for 0.007 GSD RGB, 0.045 m GSD MS, and 
0.045 m GSD RGB datasets, respectively.  

4.3. Effects of Different Ground Sample Distance (GSD) and Sensor Datasets 
Accurate positions of proximal measurements were difficult to locate in lower spatial 

resolution data, which also contained more mixed pixels. This may be one reason the 
models based on the 0.045 m GSD datasets showed lower performances than those based 
on the 0.007 m GSD datasets. The models based on multispectral data showed better per-
formance compared to those based on RGB data, as vegetation types can be easily differ-
entiated by near-infrared and red regions [32,106] and RGB images only distinguish the 
green canopies according to their surface colors. In addition, all single bands of the RGB 
sensor were weakly correlated to the LAI (Figure 8), which may be another reason the 
datasets from the RGB sensor showed a lower performance than those from the multi-
spectral sensor. The performance of different ML methods varies according to datasets: 
multispectral sensors would be the best choice for LAI estimations, but RGB sensors can 
also be used as a low cost and easily available alternative. 

5. Conclusions 
By integrating remote-sensing data with machine learning techniques, our study 

demonstrated the potential of UAV-based remote-sensing data in the estimation of LAI 
variations in pergola-trained vineyards. It provides a solid ground for further applica-
tions, such as precision viticulture.  

In summary, this study achieved the following results: 
(a) We proposed a light extinction coefficient that is suitable for estimating the LAI in 

pergola-trained vineyards. The LAI values estimated using the proposed light extinc-
tion coefficient of 0.41 were closer to the true LAI, using which in situ LAI values can 
be estimated quickly by the use of portable devices such as mobile phones or tablets. 

(b) We propose a robust VI-LAI estimation ensemble model that outperforms other base 
models. Among these, those using multispectral data-derived VIs showed higher po-
tentiality than RGB data-derived ones. However, RGB data were also found to be a 
promising data source with an R2 reaching 0.825, RMSE 0.546, and MAE 0.421. 
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(c) Feature selection improved the accuracy and efficiency of LAI estimation models by 
using the best combinations of VIs from both multispectral and RGB data.  
This study is the first to apply UAV remote-sensing data to assess the LAI of pergola-

trained vineyards. Compared to manual ground measurements, it has the advantages of 
high efficiency, time saving, and suitability for obtaining LAIs in large vineyards. How-
ever, it also had some limitations because we used different spatial resolution data at dif-
ferent crop stages as the whole dataset and assumed that the VI-LAI relationship does not 
change over the whole season. Therefore, we see our study as an initial step for developing 
a larger-scale and real-time LAI estimation method for pergola-trained vineyards, and we 
recommend using multiple data sources such as hyperspectral, LiDAR, and thermal sen-
sors to obtain more information. We also recommend developing better LAI estimation 
models in different spatio-temporal conditions. More advanced instruments and meth-
ods, such as deep learning, as well as more specific datasets, will improve the accuracy of 
estimation models.  
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Appendix A 

Table A1. Test accuracies including mean and standard deviation of five base models and an en-
semble model trained on the 0.007 m GSD RGB dataset in different number of VIs. 

ML 
Methods 

Using All 19 VIs Using Selected 18 VIs Using 3 Bands 
R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE 

SVR 
0.813 

(0.016) 
0.565 

(0.021) 
0.415 

(0.020) 
0.818 

(0.021) 
0.556 

(0.028) 
0.407 

(0.023) 
0.783 

(0.014) 
0.608 

(0.008) 
0.453 

(0.011) 

RFR 
0.790 

(0.015) 
0.599 

(0.029) 
0.471 

(0.011) 
0.791 

(0.015) 
0.598 

(0.028) 
0.470 

(0.010) 
0.623 

(0.033) 
0.804 

(0.052) 
0.610 

(0.018) 

PLSR 
0.723 

(0.059) 
0.684 

(0.069) 
0.485 

(0.041) 
0.820 

(0.032) 
0.552 

(0.037) 
0.432 

(0.045) 
0.787 

(0.029) 
0.602 

(0.027) 
0.447 

(0.023) 

GBR 
0.787 

(0.007) 
0.604 

(0.015) 
0.471 

(0.014) 
0.790 

(0.005) 
0.600 

(0.015) 
0.467 

(0.007) 
0.645 

(0.034) 
0.779 

(0.055) 
0.600 

(0.023) 

KNN 
0.766 

(0.029) 
0.630 

(0.028) 
0.496 

(0.020) 
0.772 

(0.030) 
0.623 

(0.030) 
0.492 

(0.023) 
0.643 

(0.063) 
0.777 

(0.058) 
0.602 

(0.046) 

Ensemble 
0.817 

(0.011) 
0.560 

(0.006) 
0.432 

(0.016) 
0.825 

(0.012) 
0.546 

(0.007) 
0.421 

(0.019) 
0.762 

(0.008) 
0.638 

(0.012) 
0.489 

(0.020) 
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Table A2. Test accuracies including mean and standard deviation of five base models and an en-
semble model trained on the 0.045 m GSD MS dataset in a different number of VIs. 

ML 
Methods 

Using All 17 VIs Using Selected 10 VIs Using 3 Bands 
R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE 

SVR 
0.787 

(0.019) 
0.594 

(0.018) 
0.451 

(0.027) 
0.790 

(0.018) 
0.590 

(0.017) 
0.449 

(0.024) 
0.768 

(0.017) 
0.620 

(0.030) 
0.475 

(0.003) 

RFR 
0.751 

(0.044) 
0.638 

(0.036) 
0.500 

(0.028) 
0.754 

(0.041) 
0.635 

(0.032) 
0.499 

(0.026) 
0.715 

(0.074) 
0.679 

(0.066) 
0.531 

(0.040) 

PLSR 
0.772 

(0.025) 
0.614 

(0.033) 
0.470 

(0.034) 
0.783 

(0.026) 
0.598 

(0.030) 
0.459 

(0.032) 
0.767 

(0.017) 
0.622 

(0.021) 
0.485 

(0.034) 

GBR 
0.754 

(0.049) 
0.634 

(0.041) 
0.496 

(0.040) 
0.759 

(0.037) 
0.629 

(0.029) 
0.491 

(0.028) 
0.730 

(0.049) 
0.665 

(0.037) 
0.534 

(0.029) 

KNN 
0.754 

(0.025) 
0.638 

(0.012) 
0.496 

(0.017) 
0.772 

(0.024) 
0.614 

(0.010) 
0.479 

(0.015) 
0.732 

(0.055) 
0.662 

(0.045) 
0.522 

(0.029) 

Ensemble 
0.787 

(0.025) 
0.592 

(0.019) 
0.453 

(0.027) 
0.796 

(0.023) 
0.581 

(0.018) 
0.452 

(0.021) 
0.777 

(0.027) 
0.606 

(0.015) 
0.478 

(0.022) 

Table A3. Test accuracies including mean and standard deviation of five base models and an en-
semble model trained on the 0.045 m GSD RGB dataset in a different number of VIs. 

ML 
Methods 

Using All 19 VIs Using Selected 3 VIs Using 3 Bands 
R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE 

SVR 
0.364 

(0.144) 
1.025 

(0.088) 
0.735 

(0.031) 
0.438 

(0.192) 
0.952 

(0.152) 
0.678 

(0.053) 
0.048 

(0.393) 
1.239 

(0.242) 
0.865 

(0.007) 

RFR 
0.653 

(0.045) 
0.765 

(0.075) 
0.626 

(0.067) 
0.676 

(0.058) 
0.734 

(0.040) 
0.611 

(0.029) 
0.495 

(0.051) 
0.925 

(0.081) 
0.757 

(0.040) 

PLSR 
0.442 

(0.134) 
0.958 

(0.090) 
0.713 

(0.028) 
0.490 

(0.096) 
0.921 

(0.060) 
0.695 

(0.024) 
0.214 

(0.105) 
1.148 

(0.069) 
0.897 

(0.067) 

GBR 
0.689 

(0.037) 
0.724 

(0.058) 
0.604 

(0.048) 
0.708 

(0.051) 
0.697 

(0.032) 
0.568 

(0.036) 
0.539 

(0.096) 
0.882 

(0.126) 
0.713 

(0.064) 

KNN 
0.572 

(0.020) 
0.850 

(0.019) 
0.669 

(0.006) 
0.539 

(0.113) 
0.872 

(0.070) 
0.720 

(0.072) 
0.451 

(0.111) 
0.957 

(0.080) 
0.781 

(0.088) 

Ensemble 
0.626 

(0.044) 
0.792 

(0.015) 
0.622 

(0.039) 
0.637 

(0.077) 
0.775 

(0.053) 
0.626 

(0.039) 
0.466 

(0.012) 
0.950 

(0.042) 
0.767 

(0.044) 

 
Figure A1. Model training accuracies as a function of the number of VIs derived from 0.007 m GSD 
RGB data. 
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Figure A2. Model training accuracies as a function of the number of VIs derived from 0.045 m GSD 
multispectral data. 

 
Figure A3. Model training accuracies as a function of the number of VIs derived from 0.045 m GSD 
RGB data. 
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