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Abstract: This paper is on the optimization of computing resources to process geospatial image data
in a cloud computing infrastructure. Parallelization was tested by combining two different strategies:
image tiling and multi-threading. The objective here was to get insight on the optimal use of available
processing resources in order to minimize the processing time. Maximum speedup was obtained
when combining tiling and multi-threading techniques. Both techniques are complementary, but a
trade-off also exists. Speedup is improved with tiling, as parts of the image can run in parallel. But
reading part of the image introduces an overhead and increases the relative part of the program that
can only run in serial. This limits speedup that can be achieved via multi-threading. The optimal
strategy of tiling and multi-threading that maximizes speedup depends on the scale of the application
(global or local processing area), the implementation of the algorithm (processing libraries), and on
the available computing resources (amount of memory and cores). A medium-sized virtual server
that has been obtained from a cloud service provider has rather limited computing resources. Tiling
will not only improve speedup but can be necessary to reduce the memory footprint. However,
a tiling scheme with many small tiles increases overhead and can introduce extra latency due to
queued tiles that are waiting to be processed. In a high-throughput computing cluster with hundreds
of physical processing cores, more tiles can be processed in parallel, and the optimal strategy will
be different. A quantitative assessment of the speedup was performed in this study, based on a
number of experiments for different computing environments. The potential and limitations of
parallel processing by tiling and multi-threading were hereby assessed. Experiments were based
on an implementation that relies on an application programming interface (API) abstracting any
platform-specific details, such as those related to data access.

Keywords: high-throughput computing; cloud computing; satellite image processing; openEO

1. Introduction

The paradigm shift from bringing the data to the user to bringing the user to the
data has paved the way to cloud computing, where resources can be shared and scaled
depending on the user’s needs. Computing intensive tasks can be sped up by assigning
more computing resources. This is important for workflows that need to be processed in
near real-time or when dealing with large-scale processing. For instance, remote sensing
applications deal with images that are being processed at continental or global scales at an
ever increased spatial resolution. An overview of cloud platforms for big Earth Observation
data management is provided in [1]. Adding more resources increases the cost, and the
available computing resources should be used in an optimal way. However, this is not a
trivial task and depends on the application at hand.

Previous work focused on the optimal task allocation when processing a high volume
of geospatial data [2]. The objective of this work was to test different strategies for parallel
processing of geospatial images to optimize computing resources in a cloud computing
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environment with respect to speedup. A very effective way to speedup the processing
workflow is to tile an image and process the image tiles in parallel. The MapReduce model
applied in the Google Earth Engine cloud computing platform [3] is based on image tiling.
Specific for disaster monitoring, the potential of MapReduce in a cloud computing envi-
ronment was studied in [4]. The authors assessed the increase in speedup by adding more
processing resources to the cloud computing environment. In another study [5], vegetation
dryness was monitored with remote sensing in a multi-grid architecture. The authors
subdivided raster images into several independent blocks, which were then distributed in
different data nodes. By further tiling the image blocks, the blocks could then be processed
in parallel.

As an alternative to image tiling, the speedup of workflows can also be achieved by
processing different iterative parts of a program in parallel. Parallelism can occur between
nodes or within a (multi-core) node, also referred to as multi-threading. Between node
parallelism is typically implemented with the Message Passing Interface (MPI) standard and
is used in High-Performance (HPC) computing. An overview of HPC for remote sensing is
provided in [6]. In this study, multi-threading was used and has been implemented with
the openMP [7] application programming interface (API). In particular, the multi-threading
was assessed in combination with different image tiling strategies.

As a workflow, the spatial aggregation of a temporal profile of remotely sensed images
was selected. This is a common processing task for many remote sensing applications. More
specifically, the temporal profile of the normalized difference vegetation index (NDVI) was
spatially aggregated over polygons representing parcels. The resulting temporal profile
can be used to characterize crop phenology at the parcel level.

The real (actual elapsed) processing time of a workflow depends on many factors,
which makes a comparison of results challenging. The first issue is the hardware on which
the workflow is executed. A processing cluster often consists of a variety of processing
nodes with different specifications. To compare results, subsequent runs must be executed
on similar hardware. Extra care should also be taken in a multi-user environment, where
computing resources are shared. Another hardware component that impacts real processing
time is data access. This is much faster for a local solid-state drive (SSD) than via a
distributed file system with hard disk drives that are accessed through a network. The level
of parallelization was therefore estimated by performing the experiments on a dedicated
virtual machine with 40 cores (single user). The experiments were then repeated in a real
cluster environment to check the consistency of the results. Rather than focusing on the
absolute values for the real processing time, the strategies for parallel processing were
assessed with respect to the speedup. Speedup is a relative measure, defined as the ratio
of the real processing time for the sequential program to the real processing time for the
program running in parallel.

Aside from the optimal combination of parallel processing strategies, the deployment
of any workflow on a given platform might require adaptation of the code and, therefore,
limit portability from one platform to another. This can be addressed by making sure that
the implementation relies on an application programming interface (API) abstracting any
platform-specific details, such as those related to data access.

Another issue is linked to the implementation details of the workflow. Results highly
depend on the specific software and libraries used. In this study, the open-source Python
library pyjeo [8,9] was used. A Dockerfile is also available to enable the software to be
deployed and run in a variety of virtual environments [9].

This paper is organized as follows. In Section 2, the different strategies for parallel
processing are presented. The workflow on which the current study is based is introduced in
Section 3. In Section 4, we show that the openEO API [10] can be used to effectively abstract
any platform dependency. We also describe the platform on which openEO was deployed
for conducting the experiments. Results are presented in Section 5, and conclusions are
drawn in Section 6.
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2. Parallel Strategies and Optimization

Different strategies for parallel processing were applied. The first strategy was to
spatially divide the region of interest into smaller tiles. Tiling is a typical example of
an embarrassingly parallel problem with a high level of parallelization. The level of
parallelization (P) is defined as the part of a program that can be run in parallel as a
percentage of the total. In a problem with no serial part (P = 100%), each tile would be
processed as many times faster as the number of tiles (N). The speedup would thus be
equal to N. In practice, the level of parallelization is limited by, e.g., the overhead involved
with reading part of the image (e.g., opening and closing the file).

According to Amdahl’s law [11], the theoretical speedup by tiling using N tiles can be
calculated as:

Stiling(N) =
100

100− P + P
N

. (1)

Although Amdahl’s law has been under debate [12], it is still commonly used to
estimate the level of parallelization of implementation and as a theoretical measure to
which experimental results can be compared [13].

Tiling the image has the additional benefit of reducing the memory footprint. Some
image processing libraries, such as XArray [14], combined with Dask [15], which implement
lazy data loading, are based on the same principle. These libraries load data into memory
only when actually needed for a computation. For the selected workflow of this study, tiles
for which no parcels are found are skipped in the process. However, reducing the memory
footprint lowers the required resources. In the case of a cluster environment, this provides
a competitive advantage when multiple jobs compete for the same resources. The job
manager typically starts serving those jobs for which fewer resources are needed in order to
avoid idle processing units that have insufficient resources for other jobs. Likewise, in the
case of a virtual server in the cloud, processing can be performed on a virtual machine with
fewer memory resources. This reduces the cost because cloud service providers typically
ask a higher price for virtual machines with more memory requirements. Nevertheless, if
all tiles are processed in parallel, the total memory footprint accumulated over all cores is
not reduced and must still be available.

Even though tiling is an excellent approach for parallel processing, it cannot be applied
to all workflows. Image segmentation is one example. Moreover, in the workflow selected
for this study, spatial tiling has some limitations. The aggregated values for polygons that
have been cut in the tiling process do not represent the entire parcel. This issue can be
avoided by introducing an overlap between the tiles. The overlap must correspond to
the maximum parcel size (in x and y). Depending on the overlap introduced, the actual
speedup will, therefore, be lower in practice. In addition, the memory footprint increases
with the degree of overlap.

A different approach to parallel processing is multi-threading. Many numerical and
image processing libraries support multi-threading [8,16]. The library used for this study
(pyjeo) supports multi-threading based on the OpenMP [7] application programming
interface (API). To assess parallel processing by multi-threading, the workflow was run
by varying the number of cores, where the number of threads is set with the environment
variable OMP_NUM_THREADS. The number of threads was set to the number of physical cores.
Setting the CPU affinity allowed the execution of the process on the designated cores only.
Running all threads on different physical cores results in true simultaneous execution and
improves parallelism.

Replacing the number of tiles (N) with the number of threads (T) in Equation (1), the
theoretical speedup Sthreading using T threads is obtained as follows:

Sthreading(T) =
100

100− P + P
T

. (2)
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If tiling and multi-threading are combined, the effect between both must first be
assessed before multiplying the respective speedup values. Indeed, the speedup with
multi-threading is expected to reduce when tile size decreases. This is due to a relative
increase of the processing time for tasks that can only be run in serial (e.g., to open and
close a file, reading metadata). The level of parallelization P in Equation (2) must, therefore,
be calculated for the respective tiling scheme applied.

By estimating the theoretical speedup, different cloud computing environments with
a variety of computing resources can be simulated. This was performed for two typical
cloud computing environments. The first environment studied was a high throughput
computing cluster. The task of the job scheduler is to create a batch of jobs for the selected
tiling scheme. Each job represents a single tile on one of the available working nodes.
Depending on the available resources in the cluster, a certain amount of jobs can be run in
parallel, single, or multi-threaded. Medium to large-sized clusters consist of hundreds to
thousands of cores. However, not all cores will be available for a single user in practice. The
simulations were performed for a cluster with 512 cores available. Although this number is
rather arbitrary, more general conclusions can be drawn from the simulations performed.
Another limitation in a cluster environment in practice is the number of available cores for
a single working node. A computing cluster typically consists of working nodes with a
certain number of physical cores. Multi-threading should be restricted to the number of
physical cores in the respective working nodes. Threads competing for the same processing
resources will negatively impact the speedup. Two types of working nodes in the cluster
were considered here: a high-performance working node of 30 cores and a working node
with only 8 cores.

When processing tiles in the cloud on a single virtual machine, the situation is different
than when processing in a cluster. The cost of a virtual machine in the cloud increases
rapidly with the amount of (virtual) cores and memory. The speedup by tiling assumes that
all tiles of the selected tiling scheme are processed in parallel. However, if, due to a lack of
cores or memory resources, only a subset n of the total number of tiles N can be processed
in parallel, the remaining N − n tiles will have to be queued for subsequent processing.
This results in extra latency that was accounted for in the optimization of the speedup. A
second experiment was conducted, where the number of cores was reduced from 512 to 32
(high-end virtual machine) and 8 (lower-end virtual machine).

With the total number of cores available in the virtual machine (C) fixed, the number
of threads T available to process each tile can then be calculated as a floor division between
C and n:

T =

⌊
C
n

⌋
. (3)

The speedup S to be optimized can then be expressed as:

S = Stiling(N) · Sthreading(
C
n
) · n

N
. (4)

The speedup values for tiling and threading must be based on the corresponding
conditions (number of tiles and threads) to take into account the effect of tiling on multi-
threading as discussed above. The factor n

N corrects for the latency that is introduced by the
fraction of tiles that can be processed in parallel. The expression still holds for a computing
cluster environment with sufficient cores and memory available (n = N).

3. Workflow: Spatial Aggregation

With the new Common Agriculture Policy (CAP) implementation for 2023–2027 [17],
there is an important shift from a controlling approach based on sampling to monitoring
each agricultural parcel. Satellite images from the Copernicus program are available with
a spatial resolution of up to 10 m (Sentinel-2), which allows the extraction of sufficiently
detailed information at the average parcel level. Meanwhile, with the two-satellite con-
stellations (A and B), revisit times of 2–3 days can be obtained thanks to large overlaps
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between the swaths originating from adjacent orbits of the satellites. Even for the cloudy
conditions in most parts of central and western Europe, this allows time series to be ob-
tained to characterize the phenology of different crop types along the agronomic year for
each agricultural parcel.

An index that is often used for vegetation applications is the normalized difference
vegetation index (NDVI). It expresses the greenness of vegetation and is based on the
reflectance values in the red and near-infrared (NIR) parts of the electromagnetic spectrum.
The surface reflectance can be derived from the Sentinel-2 satellite acquisitions and are
available for download as level 2A products (bottom of atmosphere surface reflectance) [18].
The Sentinel-2 surface reflectance value for a pixel at position (x, y), acquisition time t, and
for the spectral band b can be represented as a data cube in four dimensions:

cube(x, y, t, b). (5)

The NDVI for a pixel at position (x, y) and at acquisition time t can then be calculated
as a function from of the data cube as follows:

NDVI(x, y, t) =
cube(x, y, t, NIR)− cube(x, y, t, red)
cube(x, y, t, NIR) + cube(x, y, t, red)

. (6)

The time series of NDVI derived from Sentinel-2 can be used for phenology retrieval [19],
crop monitoring, crop identification, and investigating crop rotations or other agricultural
practices [20]. However, the amount of data to be processed can be an obstacle for European
Union (EU) member states that will implement the new CAP monitoring system. With an
efficient extraction tool that aggregates the pixel information at the parcel level as a cloud
service, this task can be greatly simplified. Instead of dealing with massive amounts of pixel
data of varying quality (e.g., due to cloud cover), member states obtain spatially aggregated
and filtered time series N(t, p) at the parcel level (p) that can be analyzed locally. When the
pixel values within the parcels are spatially aggregated by calculating the mean of the NDVI
values for each of the 71 images for all the Sentinel-2 acquisitions in 2020, a time series NDVI
at the parcel level p is obtained, as shown in Figure 1.

Figure 1. Mean value from the normalized difference vegetation index (NDVI) pixel values that
cover a single parcel. The NDVI values are extracted from a data cube that represents 71 Sentinel-2
acquisitions in 2020.

An implementation of the spatial aggregation is presented in pseudocode in
Algorithm 1. The algorithm starts by initializing a data cube from a Sentinel-2 collection,
processed to level 2A. The collection is filtered to the spatial region of interest and acquisi-
tions within 2020 (71 acquisitions). The nested “for” loops corresponding to the iteration
over parcels, acquisition times, and pixels within the parcels indicate the computation-
intensive character of the algorithm but also the potential for parallelization.



Remote Sens. 2022, 14, 398 6 of 14

Algorithm 1 Pseudocode to obtain spatially aggregated normalized difference vegetation
index (NDVI) time series at the parcel level.

Input: Sentinel-2 Level 2A collection, parcels (as polygon features)
Output: NDVI (time series at parcel level)
cube← Sentinel-2 Level 2A collection
for each p ∈ parcels do

for each t ∈ acquisition times of 2020 do
npixels← 0
NDVI(t, p)← 0
for each pixel (x, y) ∈ p do

if cube(x, y, t, SCL) is not masked then
NDVI(t, p)← NDVI(t, p) + NDVI(x, y, t)
npixels← npixels + 1

end if
end for
if npixels > 0 then

NDVI(t, p)← NDVI(t, p)/npixels
else

NDVI(t, p)← invalid
end if

end for
end for

Optimizing the presented workflow for speedup is most relevant when a large amount
of reference data needs to be extracted, for instance, to produce crop type maps at the
continental scale ([21]), and in particular when dealing with deep learning techniques [22].
In this study, parcel information was obtained from publicly available data for the Nether-
lands (Basisregistratie Percelen van de Rijksdienst voor Ondernemend Nederland) and
were downloaded [23]. The NDVI values were calculated and spatially aggregated for
36,644 parcels in total (Figure 2). For each parcel, a time series of 71 acquisitions was
obtained that covered the year 2020. At a spatial resolution of 10 m, the spatial dimension
of the data cube was 4133 rows by 3619 columns. In addition to the red and near-infrared
(NIR) spectral bands, the data cube was composed of a third band corresponding to the
scene classification (SCL). This band was needed to mask pixels that were either cloudy or
not vegetated.

Figure 2. Polygon features (36,644 in total) representing the parcels for a region in the Netherlands
(51.50◦N, 5.75◦E) used for spatial aggregation.
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4. Abstracting Platform-Specific Dependencies with openEO

With the free, full, and open data policy of the Copernicus program and parcel data
that are publicly available, the experiments in this study can be performed on a variety
of cloud platforms with access to Sentinel-2 data. Nevertheless, reproducing the results
with an exact copy of the code remains difficult. Each provider has its own application
programming interface (API) to access the data on its platform. For instance, some store
EO data as regular files in their original format as received from the satellite data provider,
while others pre-process them to be stored in an array database [24]. In an attempt to
standardize access to Earth Observation (EO) data and processing capabilities across a
variety of cloud service providers that have distinct architectures, the openEO [10] project
was created. The openEO project has defined an open-source API through which users
can address any openEO compatible backend to deploy their EO data analysis workflows
without knowing the infrastructure details of the backend. In this work, the workflow
was implemented on the Big Data Analytics Platform (BDAP), following the specification
of openEO . The BDAP, formerly known as the JRC Earth Observation Data Processing
Platform (JEODPP) [25], is primarily developed for internal use within the European
Commission (EC) and can be accessed as a cloud service over the internet. However, the
exact workflow presented here can be run on any openEO compliant backends. Although
not the objective of this study, the performance of the respective implementations could,
therefore, be compared.

The first component of openEO, the client API, makes abstraction of the data represen-
tation at the backend providers by presenting the user a virtual data cube as a multiband
(e.g., spectral or polarization) and multidimensional array in the space (x and y) and time
domain. It is up to the openEO compliant backend how this data cube is implemented.
Backends with a file-based data storage typically produce such a data cube on the fly at the
requested spatial resolution and in a user-defined spatial reference system. The job of the
client API is to translate the EO data analysis workflow from the programming language of
the client to a process graph, which is written in JavaScript Object Notation (JSON) format.
The specifications for the process graph are defined by the second component of openEO,
the core API [26]. The double-layered API allows the client API, which is exposed to the
user, to be written in a different language than the backend that executes the process graph.
Currently, the openAPI client is available for three programming languages: R, JavaScript,
and Python. The openEO core API has identified a total of 120 pre-defined processes that
users can combine to describe their workflows. In addition, new functions can be added as
user-defined functions (UDF). They offer more flexibility to the user, with the restriction
that the code and the libraries used must be supported by the backend infrastructure.

A typical image processing workflow in batch mode is handled in nine steps via a
representational state transfer (REST) web service (Figure 3). The web service runs on
NGINX and has been implemented with the FastAPI web framework. In the first step, a
user posts a job to the BDAP backend. The job is described as a process graph in JSON
format, following the openEO core API specifications [26]. The process graph is then put
in a PostgreSQL database (step 2). Only when the user requests to start the job, the job
execution process will initiate (step 3). The subsequent steps 4–9 are then executed without
further user interaction. The user can request to stop or delete a job and query its status
(queued, running, error, finished). The job is put in a queue to be run as a containerized
application that is orchestrated by Kubernetes (step 4). At this point, the job status in the
database is set to queued (step 5). Once processing resources are available in the Kubernetes
cluster, the job is started (step 6), and its status is set in the database accordingly (step 7).
The workflow can be balanced through a tiling mechanism, where parts of the image (tiles)
are distributed to different pods (single instances of a running process in the Kubernetes
cluster). When all pods have ended their tasks (step 8), the job status in the database is
marked as finished. Results are stored and can be downloaded or visualized (e.g., via a
web mapping service) by the user.
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openEO 
web service

job
orchestration

2) create  job

5) set job status ‘queued’

3) POST /jobs/{jobid}/results

7) set job status ‘running’

6) start job

8) job ended

9) set job status ‘finished’

4) queue  job

pods

1) POST /jobs

Figure 3. Implementation of openEO in the Big Data Analytics Platform.

The workflow in Listing 1, written in Python, follows the specifications of the openEO
Python client API [27]. After importing the openEO module (import openeo), a connection is
set up to the BDAP backend. A data cube is then loaded (load_collection) by specifying the
Sentinel-2 collection at level 2A (bottom of atmosphere reflectance) as an argument. Before
a data cube is actually created and loaded into the memory, it is first filtered spatially to
select the region of interest. It is then filtered temporally (filter_temporal: all acquisitions
of the year 2020). Finally, the spectral bands are filtered (filter_bands with B4: red band,
B8: near-infrared band, and SCL: scene classification). The NDVI is calculated as the
normalized difference between the red and near-infrared bands (ndvi). Vegetated pixels are
coded with a value of 4 in the SCL band. All pixels with a different code are masked (mask).
The remaining pixels are then spatially aggregated by calculating the mean NDVI value at
the parcel level (polygonal_mean_timeseries). The parcels are represented by the polygons in a
vector file in GeoJSON format. The aggregated NDVI values are then saved to a vector file
(save_result). The client API converts this Python code to a process graph JSON according
to the openEO core API. The process graph is sent to the backend (send_job), where the job
is executed in batch mode (start_job).

Listing 1. Spatial aggregation workflow compliant with openEO API.

1 import openeo

2 openeoURL="http://openeo−dev.cidsn.jrc.it:46204"
3 connection = openeo.connect(openeoURL)

4 datacube = connection.load_collection("EO.Copernicus.S2.L2A")

5 datacube = datacube.filter_bbox(west = 5.5, south = 51.34, east = 6.0, north =

51.7)

6 datacube = datacube.filter_temporal(start_date="2020−01−01", end_date="2021−01−01"
)

7 datacube = datacube.filter_bands(["B4","B8","SCL"])

8 ndvi = datacube.ndvi(nir = ’B8’, red = ’B4’)

9 classification = datacube.band("SCL")

10 vegetation_mask = (classification !=4)

11 ndvi = ndvi.mask(vegetation_mask)

12 ndvi = ndvi.polygonal_mean_timeseries(’parcels.json’)

13 ndvi = ndvi.save_result()

14 job = ndvi.send_job()

15 job.start_job()
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5. Results

Experiments were conducted first for tiling and multi-threading individually. Single-
threaded processing without tiling was used as a reference (S = 1) to calculate the speedup.
The processing time was 30 min, though times will vary depending on the specifications
of the virtual machine and the disk access time to read the imagery from the file system.
In this study, the processing time was achieved on a server Intel(R) Xeon(R) CPU E7-8870
v4. Data were accessed from EOS [28], an open-source distributed file system developed at
the European Organization for Nuclear Research (CERN). It runs on commodity hardware,
and it is mainly focused on low latency, high availability, ease of operation, and low total
cost of ownership [28,29]. The Sentinel-2 image data are stored as regular files in JPEG 2000,
a discrete wavelet transform-based compression standard. The cluster can directly access
the data storage on the EOS distributed file system via a 10 Gb network. Uncompressing
the image data and reading them into memory was performed with the Geospatial Data
Abstraction Library (GDAL [30]). The respective processing times for multi-threaded
and tiled processing can be obtained by dividing this time with the respective speedup
values reported.

The two most time-consuming processes of the workflow were: creating the data cube
and spatially aggregating the pixels within the polygons. They accounted for 97% of the
total elapsed processing time. Other processes included: querying the Sentinel-2 data catalog,
masking cloudy pixels, reading the parcel data, calculating the NDVI, and writing the results.
To create the data cube, all 71 images that cover the region of interest had to be read from the
disk. For a single-core and no tiling applied, the processing time to create the data cube was
986 s (55% of the total time). The time for the spatial aggregation was 755 s (42%).

Speedup by tiling was assessed first (see Figure 4). Comparing the experimental
speedup with the theoretical speedup using Amdahl’s law, the parallelization was estimated
as P = 95% (dashed curve in Figure 4).

Figure 4. Experimental speedup via tiling (solid line) with theoretical speedup corresponding to
Amdahl’s law (parallelization P = 95%, dashed line).

The speedup by multi-threading was then measured by comparing the actual elapsed
processing time as a function of the number of cores. Speedup values were calculated for the
two most time-consuming processes individually and for the overall process. As shown in
Figure 5, the speedup obtained via multi-threading varied with the tiling scheme. Whereas
more and smaller tiles provide better parallelization through tiling, multi-threading per-
forms better for fewer and larger tiles. This can be explained by the relative increase in the
processing time of the serial tasks when dealing with smaller tiles. The effect is much more
pronounced for the process to create the data cube (Figure 5a) due to the relative importance
of the overhead involved with reading only small parts of the image, such as: opening and
closing a file, extracting the compressed image in JP2 format, and reading the metadata.
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The process to create the data cube has a relatively low level of parallelization. Similar to
the spatial tiling, the parallelization level was estimated by comparing the experimental
speedup obtained with multi-threading with the theoretical speedup based on Amdahl’s
law [11].

(a) Creating a data cube.

(b) Spatial aggregation.

(c) All processes.

Figure 5. Experimental (solid) and (theoretical) speedup via multi-threading for different processes
and tiling schemes: creating data cube (a), spatial aggregation (b), and all processes combined (c).
Speedup increases for larger and fewer tiles.
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In the case of creating the data cube, the level of parallelization was estimated between
P = 77% (no tiling) and P = 40% (81 tiles). The process involved with spatial aggregation
achieved the highest level (Figure 5b): between P = 95% (no tiling) and P = 73% (81 tiles).
For all processes in the workflow using multi-threading, P ranged from 83% (no tiling) to
42% (81 tiles).

Tiling and multi-threading were then combined. The objective here was to select the
tiling scheme and number of threads that optimized the total speedup in a typical cloud
processing environment. The number of processing cores and the amount of memory
available to a specific user and workflow must hereby be taken into account. In practice,
this depends on the number of cores available per working node, the applied policy with
respect to concurrent users and workflows, and the costs involved with cloud services.

Speedup was first tested by processing multiple tiles single-threaded in parallel. With
a tiling scheme of 81 tiles, a speedup of 21.3 was obtained (lower curve in gray in Figure 6).
Speedup was further increased by combining tiling with multi-threading. The results are
shown in Figure 6 in blue (4 threads) and red (30 threads).

Figure 6. Speedup in a high-throughput cluster environment.

The maximum speedup was reached for 36 tiles. This corresponded to tile sizes of
600× 600 pixels. Further tiling and adding more threads did not improve speedup. This
can be explained by the following effects. As shown in Figure 5, the speedup with multi-
threading is reduced when the tile size decreases. In addition, the gain in speedup obtained
with additional tiling becomes marginal for 36 tiles and above. Hence, the gain in speedup
by additional tiling is canceled by the loss in speedup with multi-threading that is related
to smaller tiles.

The results for the speedup obtained for a single virtual machine, the second processing
environment under study, are shown in Figure 7. It is illustrated that speedup is drastically
reduced when compared to a cluster environment (see Figure 6). With a virtual machine
configured with 32 virtual cores, the maximum speedup was obtained for a tiling scheme
of 25 tiles (S = 17.3). In a cluster environment with 512 cores, the speedup was S = 35. As
a reference, the speedup for single-threaded processing on a virtual machine with 32 cores
is also shown (in gray). With only 8 virtual cores available, speedup was reduced to 6.25.
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Figure 7. Speedup obtained with processing on a single virtual machine with 8 (blue) and 32 (red)
cores. Speedup obtained via tiling without multi-threading is shown in gray (32 cores).

6. Conclusions

Different strategies to process a typical Earth Observation data analysis workflow in
parallel have been presented. This work fits in the development of a cloud computing
infrastructure (backend), following the specifications of the openEO API for abstracting
platform-specific dependencies. As a case study, spatial aggregation of raster data in the
context of monitoring agricultural crops over time was selected.

Both spatial tiling and multi-threading were assessed for parallel processing. The
time to process the region of interest single-threaded was used as a reference. Speedup
was calculated as the relative gain in performance when (1) individual tiles of the region
were processed in parallel, and (2) multi-threading was applied. Both techniques were
shown to be successful and can be combined. The level of parallelization was estimated by
comparing the experimental speedup with Amdahl’s law. Spatial tiling resulted in a high
level of parallelization. However, not all workflows can be processed with a tiled approach
(e.g., segmentation). Speedup by tiling is also decreased when tiles need to overlap to avoid
potential edge effects. On the other hand, the success of multi-threading depends much
on the algorithm applied in the workflow and is implementation-specific. Parallelization
by multi-threading ranged from P = 95% (spatial aggregation) to 77% (creating the data
cube) but decreased with finer grid tiling schemes. For instance, for the entire workflow it
was estimated as 83% if no tiling was applied and decreased to 42% for a tiling scheme of
81 tiles.

Maximum speedup was obtained by combining tiling and multi-threading. However,
it remains difficult to predict how the available number of cores should be used. Ideally, the
levels of parallelization should be estimated as was done in this study. In general, a high
level of parallelization can be expected from spatial tiling. When processing on a single
virtual machine with a low number of cores and a reduced amount of memory, parallel
processing via tiling is preferred. The number of tiles should hereby not exceed the number
of cores to avoid extra latency of tiles that need to be queued. If, instead, many cores are
available as in a processing cluster environment, multi-threading can be combined with
tiling to introduce extra speedup. In this study, the best results were obtained with a tile
size of 600× 600 pixels. If more cores than the number of tiles with a given tiling scheme
are available, multi-threading can reduce processing time. In this study, multi-threading
improved performance by 50% with respect to parallelization merely by tiling.

With all data used being publicly available, results obtained in this work should be
able to be reproduced in other openEO-compliant backends using the same code for the
client API. However, different levels of parallelization by multi-threading can be expected
for the respective implementations. Comparing different backend implementations is
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an interesting study for future work. The automatic allocation of the optimal memory
and computing resources for the specific workflow at hand and adding stress tests with
many users competing for the same computing resources are other potential directions for
further research.
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