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Abstract: Early warning of severe weather caused by intense convective weather systems is challeng-
ing. To help such activities, meteorological satellites with high temporal and spatial resolution have
been utilized for the monitoring of instability trends along with water vapor variation. The current
study proposes a retrieval algorithm based on an artificial neural network (ANN) model to quickly
and efficiently derive total precipitable water (TPW) and convective available potential energy (CAPE)
from Korea’s second geostationary satellite imagery measurements (GEO-KOMPSAT-2A/Advanced
Meteorological Imager (AMI)). To overcome the limitations of the traditional static (ST) learning
method such as exhaustive learning, impractical, and not matching in a sequence data, we applied
an ANN model with incremental (INC) learning. The INC ANN uses a dynamic dataset that begins
with the existing weight information transferred from a previously learned model when new samples
emerge. To prevent sudden changes in the distribution of learning data, this method uses a sliding
window that moves along the data with a window of a fixed size. Through an empirical test, the
update cycle and the window size of the model are set to be one day and ten days, respectively.
For the preparation of learning datasets, nine infrared brightness temperatures of AMI, six dual
channel differences, temporal and geographic information, and a satellite zenith angle are used as
input variables, and the TPW and CAPE from ECMWF model reanalysis (ERA5) data are used as
the corresponding target values over the clear-sky conditions in the Northeast Asia region for about
one year. Through the accuracy tests with radiosonde observation for one year, the INC NN results
demonstrate improved performance (the accuracy of TPW and CAPE decreased by approximately
26% and 26% for bias and about 13% and 12% for RMSE, respectively) when compared to the ST
learning. Evaluation results using ERA5 data also reveal more stable error statistics over time and
overall reduced error distribution compared with ST ANN.

Keywords: incremental learning; remote sensing; severe weather; total precipitable water; convective
available potential energy

1. Introduction

Severe weather events caused by convection—thunderstorm, lightning, heavy rainfall,
hail, and convective gust—are serious threats and hazards to life and property, and building
an early warning system to predict thermodynamically unstable weather systems is quite an
important task to reduce the damage and risk. Since local-scale convective systems rapidly
evolve, forecasting severe convective weather is still a challenging issue in operational
meteorology today. The best way to detect the pre-convective state is to monitor instability
trends with moistening tendency. Total precipitable water (TPW), which is vertically
integrated moisture in the atmosphere and represents the distribution of water content in
the atmosphere, and convective available potential energy (CAPE), indicating the degree
of atmospheric instability, are used to understand the current weather conditions and
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evaluate the potential for thunderstorm development [1–6]. For example, a more recent
study identified the thermodynamic conditions for severe convective occurrences over the
Khulna region during monsoon season using statistically estimated parameters (values
of TPW > 50 mm and CAPE > 2500 J/kg [1]) and extreme rainfall events with more than
30 mm/h over the Canary Islands using a case study (the value of TPW > 30 mm and
CAPE > 1000 J/kg). Moreover, various research associated with severe convective weather
in the Korean peninsula suggest TPW with more than 45 mm and strong CAPE ranging
from 1000 to 2500 J/kg are applied to forecast the localized heavy rainfall events [3–5].
Therefore, the analysis of short-term gradient information of TPW (moisture index) and
CAPE (dynamic index) can play a key role in the prediction of the occurrence of severe
convective weather systems.

Traditionally, TPW and CAPE have been calculated using vertical profiles of temper-
ature and humidity derived from radiosonde [7]. This information provides important
historical data for the predicting emergence or outbreak of convective weather systems [8].
Radio-sounding provides vertical temperature and humidity information with high accu-
racy regardless of weather conditions but with the limited spatiotemporal resolution for
short-range forecasts [9]. In an operational setting, the numerical weather prediction (NWP)
model data have been utilized to forecast the severe convective weather environments. Still,
it is challenging for the NWP model to accurately predict the occurrence, development,
and movement of isolated local convective storm systems with short lifetimes [10] since
the model forecasts depend on the initial condition [11].

Meanwhile, the potential benefits of using geostationary (GEO) meteorological satel-
lites with high spatiotemporal resolutions in such areas have been investigated. Previous
studies [9,12] have emphasized that the vertical temperature and humidity profiles derived
from GEO orbit weather satellite observations can be utilized to predict the initial stages
of convective systems and therefore can be applied to nowcasting using continuously
provided data with high spatiotemporal resolutions, although the accuracy of the derived
index can be degraded when the vertical resolutions of satellite observations are low in
the atmospheric boundary layer [7]. Korea Meteorological Administration (KMA) success-
fully launched on 4 December 2018 its own second-generation GEO weather satellite—the
Geostationary Korea Multipurpose Satellite (GEO-KOMPSAT-2A; GK-2A). It carries a
much-improved 16-channel imager—Advanced Meteorological Imager (AMI)—covering
visible (VIS) to infrared (IR) with a spatial resolution of 0.5 to 1 km for VIS, 2.0 km for IR,
temporal resolution of a 10-min time interval for a full-disk coverage, and a 2-min time
interval for the regional extended local area (ELA) [13]. Such improved measurements will
help to further understand the occurrence and growth of severe convective weather [14].

Normally, for the retrieval of atmospheric vertical profiles of temperature and humidity
from GEO satellite observations, physical approaches based on an inverse method (i.e.,
one-dimensional variational method) have been used [15,16]. The methods yield results of
relatively high and stable accuracy, but relatively low spatiotemporal resolution caused by
combining multiple pixels to increase the signal-to-noise ratio and to decrease computation
time. On the other hand, the artificial neural network (ANN) approach is available to
utilize the much-improved spatiotemporal resolution of GEO data since this method excels
in rapid-handling of complex and non-linear relationships and is independent of the NWP
models [17–19]. A conventional ANN approach based on static (ST) learning uses a fixed
learning dataset [20]. In the case that the characteristics of the target values change over
time and a comprehensive and overall training set is not available before the learning
process, the performance of the ST NN model will degrade over time [21]. One solution is
to maintain the ST ANN model by fully re-training when new samples arrive, together with
the previous data. Although this periodical update NN model based on the ST learning
provides improved accuracy, the learning phase using the whole training set might be
time-consuming, impractical, and exhaustive [22].

In this study, we introduce an ANN model based on the incremental (INC) learning
approach which is a continuous learning approach that adapts to changes whenever
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new examples emerge. This is the modification of learned knowledge without having to
discard the already obtained or repeat the learning process [21]. INC learning is also called
adaptive learning, online learning, and transfer learning due to its characteristics such as
more adaptive, responsive, and modified learning. More recently, INC methodologies have
been implemented in various neural network models such as ANN [22], convolutional
neural network (CNN) [23,24], radial basis function neural network [25], and generative
adversarial networks [26,27] to mainly deal with classification tasks, but it is rarely applied
in the regression problems.

The ANN model based on the INC learning is proposed to derive the atmospheric
products for the monitoring of pre-convective environments in this study. Its objectives
are to: (1) develop an efficient and effective algorithm to estimate the TPW and CAPE
from GK2A/AMI data over Northeast Asia with high spatiotemporal resolutions, (2) apply
the INC approach through continuous learning to adapt changes depending on time, and
(3) compare and analyze the test results from INC ANN and ST ANN. The next section
provides an explanation of the dataset used to develop and assess the retrieval algorithm.
Section 3 describes the ANN algorithm based on multi-layer perceptron (MLP), our INC
learning strategies to adapt and optimize the concept drift, preparation of learning dataset,
and evaluation metrics. In Section 4, the results including the learning and evaluation
are described and discussion is then shown in Section 5. The conclusions are represented
in Section 6. Additionally, a comparison with state-of-the-art models is represented in
Appendix A.

2. Data
2.1. Study Area

The study area is a part of the Northeast Asia region (22–47◦N and 110–145◦E, see
Figure 1) which corresponds to ELA centered on the Korean Peninsula as one of the GK2A
observation regions. The selected region includes the Western Pacific Ocean as well as
the Korean Peninsula, Japan, China, and Southeast Russia. Overall, the distributions of
averaged values within the ELA region during the year 2020 for TPW and summer 2020
for CAPE display characteristic high values around the Equator and low values toward
mid and high latitudes, as shown in Figure 1a,b. This pattern is particularly shown over
the ocean, whereas the impact of altitude (Figure 1c) is found in the land [28]. In the
summertime, a great deal of severe convective systems occur in Southeast Asia since the
warm and damp air current from the tropical oceans provides sufficient water and seasonal
precipitation [10].

Figure 1. Cont.
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Figure 1. The study area (extended local area; ELA) with (a) averaged TPW using ECMWF model
reanalysis (ERA5) for one year in 2020, and (b) averaged CAPE using ERA5 during summer in 2020,
and (c) altitude plotted with radiosonde observation stations (orange dots).

2.2. GK2A Satellite Data

The operational service of GK2A, stationed above the equator at 128.2◦E, started on
25 July 2019, after about seven months of in-orbit-test and is expected to serve for at least
ten years. The AMI, an imaging radiometer of GK2A, has significantly enhanced temporal,
spatial, and spectral resolution compared to the imager of Korea’s first geostationary
meteorological satellite, which is Meteorological Imager loaded on Communication, Ocean
and Meteorological Satellite. The AMI has 16 channels from 0.47 to 13.3 µm including
four VIS channels, two near-infrared (NIR) channels, and ten IR channels with the spatial
resolution at a sub-satellite point of 0.5 to 2 km, as shown in Table 1. AMI can scan one
full-disk area, five ELA, and five local areas (LA) within 10 min [13].

Table 1. GEO-KOMPSAT-2A Advanced Meteorological Imager specifications.

Channel Central
Wavelength (µm)

Spatial Resolution at
Sub-Satellite Point (km)

1

VIS

0.470 1
2 0.510 1
3 0.640 0.5
4 0.860 1

5
NIR

1.38 2
6 1.61 2

7 SW038 3.83 2

8 WV063 6.24 2

9 WV069 6.95 2

10 WV073 7.34 2

11 IR087 8.59 2

12 IR096 9.63 2

13 IR105 10.4 2

14 IR112 11.2 2

15 IR123 12.4 2

16 IR133 13.3 2

GK2A Level-1B (L1B) products contain image pixel values in the form of the geolocated
and calibrated band averaged radiance. The band averaged radiances are converted to
brightness temperature (BT) using the inverse Planck function. The IR channels (channel
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8 to 16) of GK2A L1B data with a high spatial resolution (2 km) were used as the input
variables in the ANN model. GK2A Level-2 (L2) product, cloud-mask (CLD) with the
same type of GK2A L1B grid system, was applied to exclude cloudy areas in the retrieval
algorithm at 2 km spatial resolution. The AMI pixels within 9 × 9 AMI field of views
(FOVs) centered on ECMWF model reanalysis (ERA5) were collocated and averaged using
clear pixels only.

In addition to GK2A/AMI L1B and L2 data, we used information such as the ob-
servation time, geo-locational information (latitude, longitude, and satellite zenith an-
gle), and land/sea mask to distinguish between an ocean and a continent. All data
based on the GK2A were downloaded from the National Meteorological Satellite Cen-
ter (NMSC)/KMA at the following link http://datasvc.nmsc.kma.go.kr/datasvc/html/
data/listData.do(accessed on 5 December 2021). To develop the retrieval algorithm for TPW
and CAPE, one year (25 July 2019 to 24 July 2020) of GK2A/AMI data were used for ST
learning dataset and the next one year (25 July 2020 to 24 July 2021) data were used for INC
learning as input data. In addition, rapid scan data within the LA region centered on Korea
with a two-minute interval were used for the feasibility test to predict the pre-convective
environments.

2.3. Radiosonde Observations

Radiosonde observations (RAOB) have been launched around the world twice or four
times daily at each station since the 1940s. RAOB mainly contain air temperature, relative
humidity, and pressure from the surface to the stratosphere. The profiles are provided at
least mandatory pressure levels including 1000, 925, 850, 700, 500, 400, 300, 250, 200, 150, 100,
70, 50, 30, 20, and 10 hPa specified by the World Meteorological Organization in 1996 [29].
For the accuracy test of the developed ANN algorithm within the ELA area, the vertical
profiles of temperature and humidity provided by the University of Wyoming were used.
One year (25 July 2020 to 24 July 2021) data with 61 stations as represented by the orange
dots in Figure 1a are used for testing. These data can be downloaded on the website of the
University of Wyoming (http://weather.uwyo.edu/upperair/bufrraob.shtml (accessed
on 5 December 2021) for China and http://weather.uwyo.edu/upperair/sounding.html
(accessed on 5 December 2021) for other regions excluding China).

The accuracy of calculated TPW and CAPE from RAOB is limited since RAOB records
have inhomogeneous spatiotemporal and systematic errors [30]. For the quality control
(QC) of RAOB, the vertical profiles of temperature and humidity demand that at least five
standard atmospheric pressure levels exist and the top-level reaches at least 300 hPa, and a
gap of more than 200 hPa between consecutive levels is rejected [31].

2.4. Numerical Weather Prediction Data

The NWP is to forecast the weather by calculating the state and movement of the atmo-
sphere using the laws of physics combing thermodynamics and dynamics [32]. The NWP
model produces a future state by assimilating the observation data from the initial state of
the current atmosphere at each grid. Reanalysis data produce coherent, spatially complete
data by combining all available observation data around the globe without time restriction
in the NWP model. This has benefits, such as that more time to collect observations ensures
the quality of the reanalysis product [33]. ERA5 is the fifth generation ECMWF reanalysis
which replaces previous versions of reanalysis (ERA-Interim reanalysis) and is uploaded
with a delay of 5 days. ERA5 model-level data cover all regions of the ELA and has high-
resolution data with approximately 0.25◦ × 0.25◦ spatial resolution, 137 vertical levels,
and one-hour temporal resolution [33]. It is provided by the Meteorological Archival and
Retrieval System catalog which is a web interface that allows authorized users to explore
the entire archive content.

In the study, temperature and specific humidity profiles and surface pressure of ERA5
were used to calculate the TPW and CAPE. The calculated TPW and CAPE are used as
target values of the ANN model and the reference data for evaluation. To check the accuracy

http://datasvc.nmsc.kma.go.kr/datasvc/html/data/listData.do(accessed
http://datasvc.nmsc.kma.go.kr/datasvc/html/data/listData.do(accessed
http://weather.uwyo.edu/upperair/bufrraob.shtml
http://weather.uwyo.edu/upperair/sounding.html


Remote Sens. 2022, 14, 387 6 of 22

of ERA5 data, the calculated TPW and CAPE are compared with them from all stations of
RAOB within the ELA region for one year (25 July 2020 to 24 July 2021). ERA5 TPW showed
a bias of −0.38 mm with RMSE 3.55 mm and CAPE showed bias with 150.08 J/kg and
RMSE with 532.21 J/kg (Figure 2a) compared to the RAOB. Figure 2b,c displays the error
maps of TPW and CAPE. As for bias, most stations have negative TPW values and almost
all stations have positive CAPE values except for Japan, which has negative CAPE bias.
In the case of RMSE, the stations in East China exhibit high values, whereas most stations
in Japan have low values in both TPW and CAPE. This is because the lower latitudes have
relatively higher TPW and CAPE as the humidity increases.

Figure 2. Comparisons between radiosonde observation (RAOB) TPW and ERA5 TPW in Northeast
Asia for about one year (25 July 2020 to 24 July 2021). A total of 65 RAOB stations are used to
produce the collocation dataset between RAOB TPW and ERA5 TPW over clear-sky conditions. The
comparison results between RAOB TPW and ERA5 TPW are represented as (a) scatter plots (the
color depicts the density and the red line represents a regression line) and error map of (b) TPW and
(c) CAPE (the color represents the magnitude of the errors).



Remote Sens. 2022, 14, 387 7 of 22

2.5. Digital Elevation Model Data

Digital Elevation Model (DEM) from Shuttle Radar Topography Mission is extracted
from C-band radar [34]. These data have a spatial resolution of about 30 m globally
covering from 60◦ N to 56◦ S and accuracy of 20 m horizontally and 16 m vertically [35].
Lee et al. (2019) suggested that altitude is an important factor to consider in the study
of TPW retrieval using various machine learning methods [18]. The spatial mean error
distribution of the retrieved TPW implicates the TPW is overestimated especially in regions
with relatively high elevations [18]. Therefore, to ensure the accuracy of TPW in the study,
the DEM data were applied as an input variable only for the land pixels and resampled to
2 km × 2 km and clipped (Figure 1c) to match the GK2A/AMI data ranges.

3. Methods
3.1. Retrieval Algorithm Descriptions

The retrieval algorithm of clear-sky TPW and CAPE was developed using IR channels
of AMI data. This algorithm was developed based on the machine learning model. We
determined to use the ANN model considering the performance and complexity trade-off
through a comparison with state-of-the-art models as shown in Appendix A. First of all,
as shown in Figure 3, the algorithm starts from the cloud screening using cloud mask
products from AMI to extract the clear-sky pixels. In the pre-processing procedure, all
input variables from AMI are read and the TPW and CAPE values are calculated from
the ERA5 data. For the collocated data, all AMI data are assembled and averaged within
the spatial resolution target data. Detailed descriptions of the preparation of the learning
dataset are given in Section 3.4. Once all the data are prepared, the neural network model
for TPW trains the nonlinear relationship between the input variables and target value
through iterative adjustment of the weights in the direction to minimize the errors (see
Section 3.2). The retrieved TPW is used in the retrieval algorithm for CAPE as one of the
input variables. The neural network model for CAPE is also trained.

Figure 3. Flowchart of the retrieval algorithm of TPW and CAPE.

3.2. Conventional ANN Approach (Static Learning)

As one of the most generally used nonlinear machine learning models, ANN based
on the multilayer perceptron (MLP) feedforward backpropagation has been successfully
applied to the algorithms for estimating meteorological variables using satellite observation
data [18,36–38]. ANN is inspired by the biological brain composed of networks of neurons
to learn higher-order knowledge and solve more complex problems by designing an
appropriate architecture [39]. To deal with non-linearity to the network, an activation
function transforms the outputs of each layer. In this study, we designed our ANN model
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with the framework Keras [40] using TensorFlow [41] backend. The ANN hyper-parameters
include an activation function, optimizer, and the number of hidden layers, the number of
neurons in each hidden layer, the number of iterative training (epoch), and the learning rate.

Through extensive performance tests, the hyper-parameters were empirically deter-
mined to work best through a variety of specific set-ups. The architecture of the developed
ANN models (Figure 4) consists of the following: one input layer composed of twenty
input neurons and one hidden layer composed of forty neurons. The activation function in
the hidden layer and output layer is the hyperbolic tangent function and the linear function,
respectively. The equation of the final output from the input variables in the ANN model
with one hidden layer can be described as:

ŷ = g

(
m

∑
j=1

υj f

(
n

∑
i=1

wijxi + bj

)
+ c

)
(1)

where ŷ is the estimated prediction of the output layer, xi is the input vector, wij is the
weight between the input node and the hidden node, vj is the weight between the hidden
node and the output node, bj is the bias in the hidden layer, c is the bias in the output layer,
and f and g are the activation function in the hidden layer and the output layer, respectively.

Figure 4. The structure of the artificial neural network (ANN) based on multi-layer perceptron.

In the learning process, the objective of the ANN is to minimize the generalization
error between the prediction ŷ and the target value y. An optimizer is to adjust the model
parameters such as weights and bias through an iterative method [42]. For numerically fast
and accurate optimization, Adam optimizer [43] is used in this study. The mean squared
error is chosen as our loss function for regression problems. The number of iteration
and batch sizes are set to 3000 and 256, respectively. Additionally, to reduce unnecessary
computation tasks and converge the network quickly, the Min-Max normalization technique
scale all input data to values ranging from −1 to 1 [44].

3.3. Incremental Learning Strategies

‘Concept drift’, a term used in the field of machine learning, means that the statistical
characteristics of a target variable change over time [45,46]. If the concept drift occurs in
the ST ANN, re-training using the entire learning data may not reflect the concept drift.
This is because most of the new information is provided by the most recent examples.
For the detection of the drift, the error metric is measured and tracked during the test
period, where a rise in the error is regarded as an indication of drift [45]. In case of the
target concept changing stably or gradually, a new example helps to improve and refine
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the existing learned model. Adaptation is done by gradually training a new model with
current data [47]. In this study, for concept drift adaptation and optimization to preserve
the accuracy over time, the ANN model is incrementally and continuously updated based
on a sliding window and transferred weights.

In INC learning, a window-based approach that produces compact and representative
data, is used [48,49] to handle a huge amount of data constantly coming. This approach
incrementally adjusts the previous model using the most recent window. The window
represents each block of data which divides the historical data into a period [50]. A sliding
window with equal width is utilized in the study to achieve time and space efficiency,
although its histogram produces a high variance. Unfortunately, this method may cause
any catastrophic forgetting to completely forget any previously learned knowledge [47]
when the target concept abruptly changes while the previous window moves to the next
window. Therefore, to gradually forget the outdated data and to update the newly arrived
data, a sliding temporal window with time steps where the drift does not occur and the
error is stable is utilized. The “step size” of the sliding window is the size of the “sliding”
action, which is the length of sequence move between each window. Figure 5 shows an
example of the process of updating from t − 1 to t.

Figure 5. The sliding window procedure during incremental learning from t − 1 to t.

To find the proper length of the window is challenging. For example, a short length
of the sliding window can lead to a big difference and high variance in the next sequence
whereas a long one leads to heavy computational load and decreased reactivity of the
system [46,51]. To determine an optimal window size in between the two extremes, an
empirical experiment that tests error statistics depending on the update cycle from the 1st
to the 14th with a one-day interval has been conducted [51,52]. The mean biases of multiple
sets corresponding window length during the test period between the retrieved results and
target values are calculated and averaged. Figure 6 illustrates mean error values from the
test results depending on the different window lengths. As can be seen in Figure 6, for both
TPW and CAPE, the mean error decreases as the window length increases up to 10 days.
The optimal window length is set to be ten days in consideration of the error statistics (with
the nearest value to zero). In addition, considering the similarity between consecutive time
steps, the update cycle of this algorithm is set to be one day.
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Figure 6. Mean errors from test results depending on the window length in (a) TPW and (b) CAPE.

The frequently repeated learning within the sliding window requires high computing
resources and tends to fit the local information. To overcome these issues, we propose
transfer learning to mitigate these impacts from two aspects. Transfer learning techniques
allow models to predict a new task (target network) using learned knowledge from the
existing model (source network) [22]. For example, when new samples emerge, the INC
learning begins with the transferred weights from a previously learned model as initial
weights, to expand the knowledge of the existing model to adapt to new data (Figure 7).
Transfer learning techniques should be considered when the source and target domains
have similarities.

Figure 7. The schematic diagram of the incremental (INC) learning based on multi-layer perceptron.
The weights trained before of source network (wih(t − 1) and who(t − 1)) are transferred to the
target network.

3.4. Preparation of Learning Dataset

To construct the dataset of the ANN model for the retrieval of TPW and CAPE,
GK2A/AMI and ERA5 data were collected in the ELA region. Table 2 describes the input
variables of the learning dataset and its physical characteristics. In this study, time and
geographic information, satellite zenith angle, and nine IR brightness temperatures (BT)
of GK2A/AMI are used as the input variables. The BT at each channel measures different
characteristics in the atmosphere. For instance, the atmospheric window channels (BT 11,
13, 14, and 15) indicate the surface properties related to the temperature of land and sea,
whereas the water vapor channels (BT8, 9, and 10) show the water vapor in each different
mid-level atmosphere. O3 and CO2 channels are cooler in the clear sky than the window
channels due to the absorption of O3 and CO2, respectively [53,54]. In addition, the six
dual channel differences (DCD) which represent the amount of water vapor at each level
are used. The elevation from DEM data is used only for the retrieval of TPW, and the TPW
calculated from ERA5 is used for the retrieval of CAPE.
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Table 2. Input variables used to retrieve TPW and CAPE. An abbreviation for each brightness
temperature (BT) in channel 8 to 16 is BT8 to BT16, respectively. Dual channel difference is named
DCD. The physical property of each input variable is described.

Variable Physical Property

BT8 (6.2 µm ) Water vapor in upper tropospheric
BT9 (6.9 µm ) Water vapor in mid and upper tropospheric

BT10 (7.3 µm ) Water vapor in mid tropospheric
BT11 (8.6 µm ) SO2, low level moisture, cloud phase

BT12 (9.63 µm ) Total ozone, upper air flow
BT13 (10.4 µm ) Land/sea surface temperature, cloud information, fog, Asian dust,

amount of water vapor in lower level, atmospheric motion vectorBT14 (11.2 µm )
BT15 (12.4 µm )
BT16 (13.3 µm ) Air temperature

DCD1 (BT14–BT8) Moisture in upper tropospheric
DCD2 (BT14–BT9) Moisture in mid and upper tropospheric

DCD3 (BT14–BT10) Moisture in mid tropospheric
DCD4 (BT14–BT11) Amount of water vapor
DCD5 (BT14–BT15) Split-window channels (amount of water vapor)
DCD6 (BT10–BT8) Difference between water vapor channels

Cyclic day Time information
Latitude/Longitude Geographic information
Satellite zenith angle Optical depth

Altitude Topographic information (only use for TPW)

Total precipitable water Amount of water vapor in the air
(only use for CAPE)

For the temporal collocation of learning data, AMI data observed at the same time
were collected based on the ERA5 data (00, 06, 12, and 18 UTC), and all AMI data are
assembled considering the spatial resolution ERA5 data. For example, the clear-sky AMI
pixels within 9 × 9 AMI FOVs centered on the ERA5 grid are selected. Only if more than
100% of the pixels within the 9 × 9 AMI pixels are clear, they are assembled. Finally, for the
collocation and resampling with input and target variables, all collocated clear pixels of
AMI data are averaged.

Table 3 describes the period and use of the learning dataset for the ST and INC learning
and testing dataset. The ST algorithm requires the training dataset with comprehensive and
representative characteristics before the learning [42]. To construct the ST learning dataset,
one-year data covering all seasons were selected from the same number of samples every
1 mm for TPW and 50 J/kg for CAPE [55]. Each of about 600,000 independent learning
samples are carefully prepared for TPW and CAPE, respectively. The final learning dataset
is randomly split into 80% for the training and 20% for the validation. In addition, the
test dataset from 25 July 2020 to 24 July 2021 is used. For INC learning, all new clear pixel
data every sliding window (ten days) from 18 July 2020 to 24 July 2021 are utilized for
learning and all untrained clear pixel data within the update cycle (one day after the period
corresponding to the sliding window) 25 July 2020 to 24 July 2021 are used for testing. Like
the ST learning, a randomly divided 80% and 20% of INC learning samples were used to
learn the ANN model and optimize the hyper-parameters in the ANN model, respectively.
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Table 3. Description of period and usage of training and testing dataset.

Method Period and Usage

Training
Static learning 25 July 2019 to 24 July

2020 (00/06/12/18 UTC)

TPW: 80% (487,135)
for training and

20% (121,784)
for validation

CAPE: 80% (492,478)
for training and

20% (123,120) for validation

Incremental
learning

18 July 2020 to 24 July
2021 (00/06/12/18 UTC) 8:2 for training and validation

Testing 25 July 2020 to 24 July 2021 (00/06/12/18 UTC)

3.5. Accuracy Assessment

For the performances assessment of the proposed retrieval models for TPW and CAPE,
three statistical accuracy metrics such as correlation coefficient (R), bias, and root-mean-
square-error (RMSE) are used and defined as follows:

R =
∑n

a=1
(
ŷa − ŷ

)
(ya − y)√

∑n
a=1 (ŷa − ŷ)2

∑n
a=1 (ya − y)2

(2)

bias =
1
n

n

∑
a=1

(ŷa − ya) (3)

RMSE =

√
∑n

a=1 (ŷa − ya)
2

n
(4)

where y is the target value or reference, ŷ is the retrieved value, and n is the number of
examples. The Pearson correlation coefficient with values between −1.0 and 1.0 describes
the direction and strength of the linear relationship between two variables and is used
in this study (Equation (2)). Bias is the averaged deviation between the target and the
estimated values between the target value and retrieved value (Equation (3)). RMSE, a
formal way to measure the error, is defined as the square root of the average squared error
(Equation (4)).

TPW and CAPE estimated from the two different models are compared with the
reference data, ERA5 and RAOB, and statistical error metrics are calculated to evaluate the
performance based on the collocation criteria. To calculate the statistical validation metrics
with ERA5, the clear-sky AMI pixels within 9 × 9 AMI FOVs centered on the ERA5 grid
or RAOB station are selected for the collocation. Only if more than 80% the pixels within
the 9 × 9 AMI pixels are clear, they are averaged and compared. In the case of RAOB, as
described in Section 2.3, only quality-controlled data are used. The spatial collocation with
RAOB is conducted using all clear-sky GK2A pixels gathered within a 150 km horizontal
radius from each RAOB point. The assembled pixels are averaged and compared only
when more than 80% of pixels in the domain are clear.

To investigate the characteristics of the models, the accuracy metrics are further
analyzed on the temporal and spatial domains. The error statistics (bias and RMSE) over
time are monitored and compared for about one year of the test period to check the model
stability over time and to examine the seasonal variability. The collocated data are averaged
over a week to reduce frequent fluctuations and to clearly show the trends. Additionally,
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autocorrelation (AC) is utilized to quantify and compare the temporal variability as shown
in the following equation:

AC =
∑N−L−1

t=0 (xt − x)(xt+L − x)

∑N−1
t=0 (xt − x)2 (5)

where N is the number of data, t is the index of the date, L is time lag, x and x is the bias
and globally averaged bias, respectively. Mathematically, AC means the degree of similarity
between observations as a function of the time lag between the time series data. The AC
values can be analyzed to measure how much past values influence the current values with
values ranging from −1.0 and 1.0. The spatial distribution of errors in the ST and INC
ANN models are compared using ERA5 data in the ELA region during the testing period.

Additionally, to clarify the relative contribution of input variables to the final esti-
mation, permutation feature importance is used [56]. This is a method to determine the
variable importance through how much a feature affects performance loss when it is not
used. In order not to use the specific feature, instead of excluding the variable, the feature
is randomly mixed (permutation) and the feature is recognized as noise. Since it is applied
in the test stage after learning, it has the advantage of not requiring re-training. The values
of the difference between test results using the data that the certain feature is permuted
and the original test result is calculated and compared.

4. Results
4.1. Model Performance

Figure 8 depicts the training performance of the ST and INC learning models for TPW
and CAPE during the periods from 25 July 2019 to 24 July 2020 for the ST learning and
from 25 July 2020 to 24 July 2021 for INC learning. The bias, RMSE, and R of the ST ANN
are –0.12 mm, 3.43 mm, and 0.98 for TPW and −12.81 J/kg, 362.63 J/kg, and 0.88 for CAPE,
respectively (Figure 8a,b). The training results of the INC ANN model are shown as time
series graphs since the INC learning is continuously trained over time in Figure 8c,d. INC
algorithm has the biases fluctuating with a small width based on the zero value for both
variables and RMSE ranging from 1 mm to 3 mm and 0 J/kg to 300 J/kg in TPW and CAPE,
respectively. According to the training results, it is clear that the INC algorithm for TPW
and CAPE outperforms the ST ANN model in terms of model performance.

Figure 8. Cont.
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Figure 8. Training performance of the two different ANN models. Scatter plots colored by the
density for (a) TPW and (b) CAPE from the ST learning. The time series of error statistics for
(c) TPW and (d) CAPE from the INC learning results. The green and blue dots represent bias and
RMSE, respectively.

4.2. Feature Contributions

To identify how much each input variable contributes to the ANN model, the calcu-
lated differences of RMSE by permutation feature importance are compared. In Figure 9,
the length of the bar indicates the RMSE difference. In both TPW and CAPE, BT16 is diag-
nosed as a main contributing variable. The BT16, the carbon dioxide absorption channel,
apparently shows the surface features in clear air [54]. DCD4, DCD5, and cyc_day are con-
sidered the next significant input variables having a strong contribution to the estimation of
both TPW and CAPE. The window channel differences—DCD4 and DCD5—represent the
amount of water vapor. Cyc_day means the date which impacts temperature and humidity
in the atmosphere. Altitude and TPW are also identified as explanatory predictors for the
TPW and CAPE, respectively. As analyzed in [18], altitude is one of the important input
variables for the estimation of TPW, which is the sum of water vapor in the air column.
In addition, variables related to water vapor amounts such as the difference between the
clean window channel and water vapor channel (e.g., DCD1, DCD2, and DCD3) exhibit rel-
atively high magnitudes. Thus, it is clear that the window channel giving clear information
of the surface temperature and DCDs representing the amount of moisture in each layer of
the atmosphere have high variable importance.
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Figure 9. Analysis of final (a) TPW and (b) CAPE weights from static (ST) ANN model results for
each input variable.

4.3. Evaluation Results and Comparison

To quantitatively validate each learning model and compare results from the models,
the observed AMI data from the period not used in the learning process were utilized.
Table 4 summarizes the overall error statistics (averaged bias, RMSE, and R) between the
target values and estimated values from models at the ELA region during the testing period.
For the comparison with ERA5, about five and one million collocated data are used for TPW
and CAPE, respectively. The ST and INC algorithm gives 0.11 and 0.04 mm of bias and 3.43
and 3.17 mm of RMSE for TPW, and 3.65 and −9.69 J/kg of bias, 516.62 and 461.50 J/kg of
RMSE for CAPE, respectively.

Table 4. Accuracy assessment based on ERA5 and RAOB for the ST and INC NN model in the ELA
region during the test period. Evaluation metrics (i.e., bias, RMSE, and R) are calculated.

Static NN Incremental NN

Bias RMSE R Bias RMSE R

ERA5_TPW 0.11 3.43 0.97 0.04 3.17 0.98
ERA5_CAPE 3.65 516.62 0.74 −9.69 461.50 0.80
RAOB_TPW 0.23 5.05 0.95 −0.17 4.39 0.96
RAOB_CAPE 338.10 700.81 0.56 251.70 619.28 0.65

Untrained datasets from RAOB were also utilized to verify the accuracy of the de-
veloped algorithms. As described in Section 2.3, only quality-controlled data were used,
which remains are a relatively small number of collocated data (one million for TPW and
one thousand for CAPE collocation data over the clear-sky conditions) compared with the
number of ERA5. As shown in Table 4, in the comparison with RAOB, the INC model gives
improved error statistics compared to the ST learning, having 26% decreased bias for TPW
and 26% for CAPE. RMSE is also reduced by about 13% and 12% in TPW and CAPE with
the INC model. These test results demonstrate that the INC algorithm outperforms when
compared to the ST ANN model.

4.4. Error Analysis

In addition to the evaluation of accuracy, the model stability and the error statistics
(bias and RMSE) over time are monitored for about one year of the test period. The bias
displayed large variability in the ST algorithm, whereas INC learning has a bias closer to
zero for both TPW and CAPE. As shown in Figure 10, RMSE shows almost similar values in
both models but showed slightly lower values in the INC model compared to the ST model.
RMSE also tended to be high in hot and humid summer and low in cold and dry winter
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regardless of the variables. Table 5 reveals the AC values of the biases calculated by setting
the time lag to one day. AC values from the INC algorithm are lower than those from the
ST ANN model for both TPW and CAPE, which implies that the test results from the INC
model are less temporally related and stationary over time. According to the results, it is
clear that the gradual learning results, which are immediately reflected in the latest training
data, are more stable and less sensitive to time error statistics compared to the conventional
ST learning results.

Figure 10. Model stability of (a) TPW and (b) CAPE depending on the learning method (ST and INC
method) during the test period. The red is ST learning and the blue is INC learning. The solid and
dotted lines are the bias and RMSE, respectively.

Table 5. Autocorrelation values of the bias for the static and incremental ANN model in ELA region
during test period. The time lag is set to one day.

Static ANN Incremental ANN

TPW 0.76 0.52
CAPE 0.79 0.32

Figure 11 displays the spatial distribution map of the test errors for TPW and CAPE of
ST and INC learning, compared to ERA5 in the ELA region during the testing period. First
of all, the INC ANN model (Figure 11c,d) reveals a remarkably lower bias when compared
to the ST ANN model for both TPW and CAPE. The ST ANN model reveals relatively high
bias values overall.
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Meanwhile, in the case of the TPW bias map, a striping with blue-shaded negative
bias was identified in both ANN models as shown in Figure 11a,c. In the case of CAPE, the
striping features are not prominently observed. The striping issue is due to the calibration
problems in GK2A/AMI CO2 channel [57] and the striping feature also appears in the
retrieved results of the developed models which utilize the original high-resolution GK2A
data. Additionally, the tendency to overestimate TPW over the regions that have relatively
lower surface pressure (relatively higher terrain elevation) is reduced compared to the
previous result [18] by adding altitude as an input variable in the INC model result, but it
is still prominent in the ST model result.

5. Discussion

This is the first study conducted to estimate TPW and CAPE at the same time from
GK2A/AMI data in Northeast Asia using the INC ANN model. This study proposed a
novel method that continuously learns and immediately reflects new trend data by using
the sliding window and adjusting the transferred weights from previous learning. The
evaluation results demonstrate that the INC algorithm significantly improves the accuracy
for TPW and CAPE compared with the conventional approach (the ST learning). The
error statistics from the INC learning results are analyzed to have lower spatiotemporal
variability. It should also be noted that the INC algorithm is applicable without a sufficient
training set that contains all necessary knowledge before learning. With this advantage, it
can be utilized where the training sets which are representative and comprehensive are
too big, the target concepts change over time, and the learning samples can be assembled
over time such as time-series data. Therefore, it might be feasible in real-time operations
considering time, storage, or other costs.

When used with the rapid scan data with high spatial (2 km) and temporal (2 min
for the full-scan) resolution, the INC ANN-derived instability and moisture would pro-
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vide useful information prior to the outbreak of a severe convective storm. Furthermore,
these high-resolution products can provide promising information even among the cloudy
images despite the clear-sky output for severe convective weather forecasting through near-
real-time monitoring. To evaluate the possible application of the proposed algorithm for a
localized short-term prediction of severe weather caused by intense convective weather sys-
tems, we plan to develop a pixel-based machine learning model to detect severe convective
rainfall using atmospheric parameters from the developed model. GK2A data with high
spatiotemporal resolution will be used for the early warning of intense convective systems
that develop and disappear rapidly. To define the severe weather associated with heavy
rainfall, radar reflectivity with more than 35 dBZ values which identify the threshold of the
occurrence of the convective severe weather [58] during a long-term period will be utilized.
Finally, the retrieved clear TPW and CAPE from the developed model using GK2A data
and the radar reflectivity value are used as predictors and a predictive and target value of
the detection algorithm-based machine learning model, respectively.

In this study, the INC ANN model is developed with the fixed model complexity deter-
mined from learning using the first data. When new samples emerge, each learned weight
is transferred from the previous network to the next network which has an identical model
structure. However, since the model complexity can grow and shrink to optimally integrate
new knowledge, there is a possibility for improvement of the model performance. Another
important consideration regarding the architecture of INC learning is the appropriate
setting of the sliding window approach. In this study, the length of the window and update
cycle are empirically examined. Future work can consider a more objective methodology
for optimal settings to improve accuracy. For example, the current INC algorithm has not
yet fully considered all possible cases including data absence or quality abnormality of
input/output data, which can cause sudden model performance degradation and thus
needs to be considered. Although for a short time, the transferred previous weights can be
used, in the long term, the improvement of the algorithm should be considered to maintain
the stability of the model.

6. Conclusions

In this study, the retrieval algorithm of TPW and CAPE based on the ANN model was
developed using AMI, a pseudo-sounding imager onboard the geostationary GK2A satellite,
over Northeast Asia to monitor the pre-convective environments. The implementation
of INC learning in the ANN model can adapt to changes in the target property before
having a comprehensive and sufficient learning dataset. To extend the existing model’s
knowledge by gradually forgetting the outdated data when new data arrives to update,
the INC approach using the transfer learning based on a sliding window with ten days
for the window length and one day for time step is presented. Time and geographic
information, satellite zenith angle, nine AMI IR BTs (covering 6.2 to 13.3 µm wavelength
range), six dual channel differences, altitude (only for TPW retrieval), and TPW (only for
CAPE retrieval) were used as the input variables whereas the corresponding TPW and
CAPE calculated from the atmospheric sounding of ERA5 data were used as an output
value. Each hyper-parameter of the ANN model was optimized using the validation
datasets (20% of whole learning). BT16 and DCDs between the window channels, which
measure temperature and amount of moisture near the surface, are diagnosed as mainly
contributing variables to the retrieval of TPW and CAPE in the ANN model. The RAOB
data are used for the model evaluation and comparison with the ST ANN model. When
compared to RAOB, the INC ANN model shows better performance in evaluation metrics
(the accuracy of TPW and CAPE decreased by approximately 26% and 26% for bias and
about 13% and 12% for RMSE, respectively). According to the error analysis, it is clear that
the INC algorithm produces temporally more stable and spatially lower errors than the
ST algorithm. Considering the much finer spatiotemporal resolution of AMI on the GK2A
(every 2 min with a spatial resolution of approximately 2 km), the estimated TPW and
CAPE are anticipated to provide quite helpful information for near-real-time monitoring to
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diagnose the genesis, evolution, and fine structure of rapid evolving meteorological events.
In addition, the weather forecasting application of the retrieved TPW and CAPE together
with wind components will be conducted in pre-convective atmospheric conditions.
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Appendix A. Comparison with State-of-the-Are Methods

The ANN model is compared with state-of-the-art methods such as CNN and Re-
current NN (RNN). CNN, which has a convolutional layer to extract features, has been
applied to deal with the image data [59]. We used a simple 1-D CNN consisting of two
convolutional layers with 1 × 1 kernel and one fully-connected layer with forty hidden
neurons. RNN has been used to model sequence data such as language and time-series
data [60]. We used a many-to-one RNN model consisting of two RNN layers with 30 units
and one fully-connected layer with forty hidden neurons. The CNN and RNN models
were trained using the same training data for one year, and the performance accuracy
was evaluated using untrained ERA5 data for one year. In the comparison results of the
models, as shown in Table A1, both TPW and CAPE showed similar error characteristics
regardless of the applied model (bias of ANN model was the lowest, and the difference
was within 5% in terms of RMSE). In addition, the complexity of each model is represented
by total hyper-parameters, as shown in Table A1. The RNN model has about five times
more hyper-parameters than the ANN model. We determined to use the ANN model
considering the performance and complexity trade-off [61].

Table A1. Accuracy assessment with ERA5 for ANN, CNN, and RNN model in the ELA region
during the test period. Evaluation metrics (i.e., bias, RMSE, and R) are calculated.

Hyper-
Parameter

TPW (mm) CAPE (J/kg)

Bias RMSE R Bias RMSE R

ANN 881 0.01 3.43 0.98 −29.28 415.12 0.84
CNN 1685 −0.22 3.36 0.98 −69.59 407.89 0.85
RNN 4071 −0.20 3.32 0.98 −38.34 411.21 0.85
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