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Abstract: High-throughput platforms for plant phenotyping usually demand expensive high-density
LiDAR devices with computational intense methods for characterizing several morphological vari-
ables. In fact, most platforms require offline processing to achieve a comprehensive plant architecture
model. In this paper, we propose a low-cost plant phenotyping system based on the sensory fusion
of low-density LiDAR data with multispectral imagery. Our contribution is twofold: (i) an inte-
grated phenotyping platform with embedded processing methods capable of providing real-time
morphological data, and (ii) a multi-sensor fusion algorithm that precisely match the 3D LiDAR
point-cloud data with the corresponding multispectral information, aiming for the consolidation of
four-dimensional plant models. We conducted extensive experimental tests over two plants with
different morphological structures, demonstrating the potential of the proposed solution for enabling
real-time plant architecture modeling in the field, based on low-density LiDARs.
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1. Introduction

Global agriculture faces major challenges to ensure the world’s food security, specially
because the annual increase in crops yield achieved by traditional breeding methods around
the world are no longer sufficient to meet the projected demand. In that context, one particular
challenge is the need to produce high-yielding crops adapted to future climate changes and
resilient to several biotic factors and abiotic stresses (Furbank et al. [1]).

Crop phenotyping offers a set of new technologies to understand the traits resulting
from the interaction of genes and the environmental conditions that surround crops, thus
allowing actions to improve crop performance (Furbank et al. [2], Reynolds et al. [3] and
Tester et al. [4]). In plants, phenotyping specifically refers to a quantitative description of the
morphological, physiological and biochemical parameters of plants. In order to obtain these
parameters, traditional methods involve manual and direct manipulation of the plants,
leading to a destructive process (Paulus et al. [5], Furbank et al. [1] and McCouch. [6]).
However, with the recent advances in the field and the use of new technological tools,
such as 3-dimensional (3D) reconstruction and analysis of conventional and multispectral
images, these parameters can be estimated without affecting the integrity of the plants
(Mokarram et al. [7]).

As the physiological and biochemical parameters of plants (vegetative indices) are
three-dimensionally distributed, the multispectral images that can be acquired should also
be mapped to the morphological parameters of the plant, which is commonly referred to
as four-dimensional (4D) phenotyping models (Apelt et al. [8]). Plant model phenotyping
approaches have recently gained significant traction to characterize functional-structural
plant traits, in order to associate the phenotypic data with genomic information. Most
of the body of work relies on optical techniques such as photoluminescence and photoa-
coustics for both inorganic and organic compounds detection. However, imaging-based
plant phenotyping has demonstrated to be more portable, with the advantage of producing
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4D models of plants that would significantly aid phenotyping practice and increase accu-
racy and repeatability of the measurements of interest (Donald et al. [9]). Nonetheless, a
single optical sensor is not capable of producing a comprehensive 4D plant model, since
the morphological information of the plant must be also fused with multispectral data
and the time evolution of the interested variables of the plant, such as leaf nitrogen and
chlorophyll, vegetation indices, among others. In this regard, 4D plant architecture refers
to computational models that combine: (i) 3D plant geometrical information (point cloud
data), (ii) several wavelengths of light reflectances (multi-spectral imagery), and (iii) the
temporal evolution of the phenotyping variables. Based on that, multisensor platforms
are necessary to achieve an effective combination of the spatial, geometric, and temporal
components of the multiple streams of information coming from different sensors, for
instance, multispectral cameras and LiDARs. which is commonly referred as sensory fusion
(Luo et al. [10])

Sensory fusion between 3D and 2D time-of-flight (ToF) sensors has already been used
in plant phenotyping, using different methods to accomplish this task. For instance, in
(Hosoi et al. [11]) perspective projections with multispectral images acquired with the
Micasense camera and dense point clouds (with an error range of up to 2 mm) from the
Focus 3D X330 LiDAR were used to find the chlorophyll distribution in Yoshino cherry and
bamboo-leaved oak trees.

In [12], Sun et al. used RGB-D (RGB and depth) images from a Kinect camera and
images from the SOC710 hyperspectral camera to perform sensory fusion between these
two sensors and obtain distributed biochemical parameters of plants. For the fusion of
information between these two sensors, the authors first performed a registration between
the RGB-D images and the hyperspectral images, according to the principles of the Fourier
transform, calculating the translation, the rotation matrix and the scale coefficients of
the images to be registered. Once the registration between the images was done, they
generated a 3D point cloud from the RGB-D image with the multispectral information,
and by measuring the plant in steps of 90◦ (4 takes in total) and registering these four
point clouds, they obtained a distributed reconstruction of the biochemical parameters of
the plants.

In [13], Itakura et al. took 50 sample images (utilizing a Canon EOS M2 camera) of an
eggplant plant and using the structure-from-motion (SfM) methodology (Haming et al. [14])
they obtained a 3D representation of the plant. Then, taking the normalized red channel
of the 3D object, they estimated the chlorophyll levels of the plant. In a related work,
in [15] Zhang et al. used a SLR camera with near-infrared filters on the lens to estimate
vegetative indices and chlorophyll level of rice plants. Then, using the multiview passive
3D reconstruction method (El Hazzat et al. [16]), they created 3D reconstructions of the
plant with its vegetative indices and chlorophyll-level information.

Phenotyping platforms offer a powerful alternative to traditional methods for under-
standing plant behavior. These platforms provide non-destructive and unbiased methods
to quantify complex and previously unattainable plant traits (Perez-Ruiz et al. [17]). At
plant scale, there are studies on 4D phenotyping platforms, however, these studies use
2D sensors or structured light methods to reconstruct the plant in 3D, but do not use 3D
sensors such as LiDAR radars or 3D scanners. In fact, although there are studies that
integrate the use of LiDAR radars for the extraction of plant morphological parameters
(Jimenez-Berni et al. [18], Hosoi et al. [11] and Thapa et al. [19]), these studies do not con-
sider a sensory fusion to extend the plant’s physiological and biochemical parameters into
a 3D space, which in most of the cases, are paramount for predicting and estimating plant
and crop yields (Reynolds et al. [3]). Most of these approaches require bulky equipment
that would not allow the on-site extraction of these parameters.

Considering this, we proposed the development of a flexible and portable phenotyping
platform, fusing low-density LiDAR data and multispectral imagery to generate four-
dimensional plant models. With that purpose, we utilize the Velodyne’s VLP-16 LiDAR
and the Parrot’s Sequoia multispectral camera, and by integrating a novel set of mechanisms
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that also involves the calibration of the intrinsic and extrinsic parameters of these sensors,
we are capable of implementing a sensory fusion that allows us to generate 4D phenotyping
models where morphological and biochemical parameters of plants can be estimated.

2. Materials and Methods

This section will present the materials and equipment utilized, as well as the algorithms
and methods proposed and implemented for this work.

2.1. Materials

As it was mentioned before, one of the goals of the project is to have a flexible
and portable platform, which requires the utilization of an embedded device to perform
the control of the sensors and the corresponding processing and generation of the 4D
phenotyping model. The embedded system that we used for this project was NVIDIA’s
Jetson TX2 (see Figure 1a) that integrates NVIDIA’s Denver2 dual-core, an ARM Cortex-A57
quad-core, 8 GB 128 bit LPDDR4 RAM and a 256-core Pascal GPU which becomes very
useful for implementing machine vision and deep learning algorithms. The Jetson TX2
runs Linux and provides more than 1TFLOPS of FP16 compute performance in less than
7.5 W of power.

As presented before, we integrated Velodyne’s VLP-16 LiDAR (see Figure 1b) which
has a range of 100 m, low power consumption (aprox. 8 W), a weight of 830 g and
a compact form factor (∅103 mm × 72 mm). This LiDAR also supports 16 channels
(approx. 300,000 points/s), a horizontal field of view of 360◦ and a vertical field of view
of 30◦. Since this specific LiDAR has no external rotating parts, it is highly resistant in
challenging environments (IP67 rating). For each sensed point, this sensor generates:
(i) position (x, y, z), (ii) intensity of the received signal, (iii) azimuth angle with which the
point was sensed, and (iv) ID of the laser beam that acquired the point.

In order to control and capture the information that the LiDAR sensor, we developed
a Python library that allows the connection to the sensor through an Ethernet interface, its
setup (e.g., selecting the number of samples to be sensed) and performs the preprocessing
necessary to store the corresponding point clouds.

In addition to the LiDAR, we included the Parrot’s Sequoia multispectral camera (see
Figure 1c), which in addition to images in the visible spectrum (RGB), it also captures
the calibrated wavelength green (GRE), red (RED), red-edge (REG), and near-infrared
(NIR), providing rich data to properly monitor the health and vigor of crops and plants.
The Sequoia camera generates a WiFi access point, through which it is possible to control
and access the information of the camera. With this purpose, another Python library was
developed which allows us to connect to the Sequoia camera and, through HTTP requests,
to access and control the multispectral imaging.
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Figure 1. The selected embedded system and sensors.

In order to properly acquired a 360◦ model of the plan, a mechanical structure132

was designed and constructed entirely of modular aluminum to ensure that it can be133

disassembled and easily transported. In addition, the structure has a rail system that134

allows the sensors (multispectral camera and LiDAR) to move vertically on a 1.8m135

aluminum profile and to move the rotating base closer or farther from the sensors on136
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Figure 1. The selected embedded system and sensors (a) Jetson TX2 (b) VLP-16 LiDAR
(c) Sequoia camera.

In order to properly acquired a 360◦ model of the plan, a mechanical structure was
designed and constructed entirely of modular aluminum to ensure that it can be disassem-
bled and easily transported. In addition, the structure has a rail system that allows the
sensors (multispectral camera and LiDAR) to move vertically on a 1.8 m aluminum profile
and to move the rotating base closer or farther from the sensors on a 2 m aluminum profile.
Additionally, it has leveling screws on the four legs of the platform, in order to adjust
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the inclination of the mechanical structure. In comparison with the structures in other
investigations (Thapa et al. [19], Sun et al. [12,20], Zhang et al. [15]), the proposed structure
(shown in Figure 2) is able to freely move both the sensors and the rotating base over the
rails system allowing the phenotyping of plants with a height up to 2.5 m, regardless of
their structure.
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Figure 2. Mechanical structure for the 4D phenotyping platform.

The implemented rotating base is controlled by the Jetson TX2 embedded platform
and it uses a Nema 700 motor and a crown/gear system. To control the positioning of the
rotating base, the Ky-040 rotary encoder was used, achieving steps down to 6◦.

Due to the difficulty to properly maintain a rice plant into a laboratory environment,
we selected one plant with a structure similar. The plant chosen was Limonaria (Cymbopogon
citratus), which belongs to the grass family, Poaceae. Its leaves are simple, green, with
entire margins and linear shape. The leaves are usually 20–90 cm long and, like other
grasses, the leaves also have parallel venation. The particular Limonaria used during the
experimentation stages had a height of 97 cm from the base of the stem to the tip of its
highest leaf (see Figure 3A).

Since we wanted to properly characterize the resulting systems, another plant with a
completely different structure was also utilized. The Guaiacum bonsai (cuaiacum offici-
nale) has a bush-like structure that allowed us to qualitative measure the accuracy of the
generated model. The Guaiacum used in the experimentation stages had a height of 67 cm
from the base to the tip of its canopy (see Figure 3B).
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Figure 3. Plants used for the experimenation stages of this work.

With the homography matrices of each multispectral image and using Equations 1,173

2, 3, 4, 5 and 6, the vegetative indices are estimated. The process of estimating vegetative174

indices with multispectral images is presented in Algorithm 1.175

DVI = NIR− RED (1)

NDVI =
NIR− RED
NIR + RED

(2)

GNDVI =
NIR− GREEN
NIR + GREEN

(3)

NDRE =
NIR− RED_EDGE
NIR + RED_EDGE

(4)

SAVI =
(1 + L)(NIR− RED)

(NIR + RED + L)
(5)

MSAVI =
1
2

(
2NIR + 1−

√
(2NIR+1)2− 8(NIR− RED)

)
(6)

Algorithm 1: Algorithm for estimating vegetative indices with multispectral
imagery.

imgList← Set of images of the multispectral bands NIR, REG, RED, GREEN;
HList← Set of homography matrices for each image of imgList;
Result: VI ← Image of vegetative index
for each image of imgList and each homography matrix of HList do

imgRegisList← perform perspective transformation for each imgList image
with its corresponding HList homography matrix;

end
VI ← Estimate vegetative index using the images from imgRegisList and the
equations 1, 2, 3, 4, 5, 6;

return VI;

(A) (B)

Figure 3. Plants used for the experimentation stages of this work: (A) The Limonaria (Cymbopogon
citratus), (B) The Guaiacum bonsai (Cuaiacum officinale).

2.2. Methods

A general architecture of the proposed system is shown in Figure 4. Our approach to
obtaining 4D phenotyping models is based on four main components: (i) the estimation
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of vegetative indices, (ii) the generation of a filtered point cloud, (iii) the sensory fusion
process based on the calibration of the intrinsic and extrinsic parameters of the sensors, and
(vi) a point cloud registration process.
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2.3. Extraction of Vegetative Indices

To obtain correct vegetative indexes, it is necessary to register the bands coming
from the multispectral camera, otherwise, when performing the operations between the
multispectral bands, the resulting image of the vegetative index will be misaligned. The
process of registering the images consists of taking different images and finding key points
in common between them. Then, selecting a reference image and using the key points
found to obtain a homography matrix for each remaining image, which allows to apply
geometric transformations to the images and thus register them to the reference image.

With the homography matrices of each multispectral image and using
Equations (1)–(6), the vegetative indices are estimated. The process of estimating veg-
etative indices with multispectral images is presented in Algorithm 1.

DVI = NIR− RED (1)

NDVI =
NIR− RED
NIR + RED

(2)

GNDVI =
NIR− GREEN
NIR + GREEN

(3)
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NDRE =
NIR− RED_EDGE
NIR + RED_EDGE

(4)

SAVI =
(1 + L)(NIR− RED)

(NIR + RED + L)
(5)

MSAVI =
1
2

(
2NIR + 1−

√
(2NIR+1)2− 8(NIR− RED)

)
(6)

Algorithm 1: Algorithm for estimating vegetative indices with multispectral
imagery.

imgList← Set of images of the multispectral bands NIR, REG, RED, GREEN;
HList← Set of homography matrices for each image of imgList;
Result: VI ← Image of vegetative index
for each image of imgList and each homography matrix of HList do

imgRegisList← perform perspective transformation for each imgList image
with its corresponding HList homography matrix;

end
VI ← Estimate vegetative index using the images from imgRegisList and the
Equations (1)–(6);

return VI;

2.4. Point Cloud Processing

As it can be seen in Figure 5, because of the particular characteristics of the VLP-
16 LiDAR, when an object is sensed and behind it there is another object at a distance
of approximately 40 cm or less, unwanted points are generated in the space between
both objects,
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Figure 5. Unwanted points returned by the VLP-16 LiDAR. (a) Object sensed by the LiDAR. (b) Point
cloud (side view) returned by the LiDAR. (c) Unwanted points in red. (d) Expected filtered result.

These unwanted points appear near the edges of the sensed object which is closest to
the LiDAR. This effect occurs when a laser beam hits the edge of the closest object as well
as the object behind it, as represented in Figure 6. Therefore, the LiDAR receives the two
measurements and delivers an average of these, which becomes the unwanted point.
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Figure 6. Behavior of the LiDAR’s lasers when they hit the edges of an object and another object is
behind it.

In order to solve this issue and considering that the VLP-16 LiDAR has an accuracy of
±3 cm and a low vertical resolution, a process of oversampling, averaging, and filtering
is performed on the point clouds to improve the accuracy of the acquired data and for
removing outliers. This oversampling, averaging, and filtering process is described in
Figure 7 and in Algorithm 2.

For the oversampling and averaging process, different samples of the plant were
acquired, and in order to obtain a single point cloud an averaging process is performed.
The points with the same laser_ID were combined by averaging the (x, y, z) values, as well
as their azimuth values.

For the outlier removal filtering process, a number of neighboring points and a search
radius are defined. We expect that each point in the cloud has a typical number of neigh-
boring points, based on the LiDAR resolution. Points in the cloud that do not meet this
typical number are considered outliers and hence are removed from the point cloud.

Algorithm 2: Algorithm for averaging and outlier removal filtering VLP-16
LiDAR point clouds.

n−samples← Number of point clouds to be generated by the LiDAR to be used
for the averaging process;

pcd−list← Empty list for storing the point clouds generated for the averaging
process;

x−num← Number of neighboring points for outlier removal filtering;
radius−s← Radius of search of neighboring points for outlier removal filtering;
Result: f iltered−pcd← Averaged and filtered point cloud
// Oversampling point clouds
for each new point cloud sample in the total number of samples n−samples do

i−pcd← generate a new point cloud sample;
pcd−list← Store the point cloud i−pcd;

end
// Averaging point clouds
pcd−mean← point cloud resulting from averaging the (x, y, z) values in the
points of the point clouds stored in pcd−list that have the same value of laser− ID
and the same value of azimuth;

// outlier removal filtering
for each point P of the point cloud pcd−mean do

if the point P has x−num number of surrounding points within the radius radius−s
then

f iltered−pcd← Store the point P;
end

end
return f iltered−pcd;
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2.5. Sensory Fusion: 3D and 2D Calibration

In order to generate 3D models that includes color information, different algorithms
have been proposed that seek sensory fusion between LiDAR point clouds and imagery.

Park et al. [21], Debattisti et al. [22], Hurtado et al. [23], Li et al. [24] and Zhou,
Deng. [25]) have utilized sensorial fusion of LiDAR radars and conventional cameras, in
order to generate point clouds with color information that represent 3D objects. To carry
out this fusion, different calibration methods were considered, including linear regressions,
random sample consensus algorithms (RANSAC), among others.

For instance, Park et al. [21] and Debattisti et al. [22] used a unicolor diamond-shaped
and triangle-shaped boards to find the corresponding points (vertices of the boards) between
the LiDAR point clouds and RGB images. With a simple linear regression, it was possible to
find the calibration matrix that allowed the fusion between the sensors.

De Silva et al. [26] proposed a calibration board with a circular shape, where the center
of the circle was used as the point of correspondence between the point clouds and the RGB
images. In a similar approach, Rodriguez et al. [27] found the calibration matrix to align and
fuse the information between the sensors, by applying absolute orientation photogrammetry.

In our approach to implement a fusion between the LiDAR data (3D) and the multi-
spectral images (2D), an intrinsic and extrinsic parameter calibration method is required,
which is composed of three main stages: (i) the detection of key points in the images (2D)
by using a half colored diamond-shaped calibration board; (ii) the detection of key points in
the point cloud (3D) by using a diamond-shaped calibration board; and (iii) the application
of the random sample consensus (RANSAC) algorithm to find the projection matrix that
allows the alignment of the sensor data.

2.5.1. Calibration Board

In order to automate the calibration process, we proposed a diamond-shaped calibra-
tion board with one half painted black and the other half painted white, as seen in Figure 8.
The calibration board has this shape because its vertices can be easily located using the
data acquired by the LiDAR, even if it has a low vertical resolution. In addition, in the
case of 2D images, there is already a large number of algorithms oriented to find vertices
within images.
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Figure 8. Proposed board for calibration between 2D and 3D data.

Since the signal intensity measured by the LiDAR in each 3D point varies according to
the material and color of the surface where the LiDAR’s lasers bounce, the selected colors
for the calibration board are white and black. When the lasers bounce off on a white colored
surface, the LiDAR receives signals with a higher intensity, when compared to the case of a
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black surface. This difference in intensity levels at the 3D points can later be used to verify
the calibration between the LiDAR and the multispectral camera.

2.5.2. Key Points Extraction

To find the key points in the 2D images, a background subtraction in order to isolate
the calibration board and, then, a morphological opening transformation is applied to filter
the pixels that do not belong to the calibration board. Afterwards, the resulting image
is converted to grayscale and a Harris corner detector is applied to find the key points
(Ardeshir et al. [28]). This process is described in detail in Algorithm 3.

Algorithm 3: Algorithm to obtain the key points of a 2D image.

backg−img← Background image (without calibration board);
img← Image with calibration board;
corners← Empty list for storing the key points of the image;
Result: corners← key points of the image (corners of the calibration board)
img−sub← Image resulting from a background subtraction between the images

backg−img and img;
img f ilter ← Image resulting from applying the opening transformation to the
image img−sub;

img−gray← img−sub in grayscale;
corners← Key points found by a corner detector on the image img−gray ;
return corners;

In order to identify the key points in the 3D point cloud, we must first estimate a
plane P that satisfies as many 3D points (belonging to the calibration board) as possible, as
presented in Figure 9. This plane P is built using the depth information of each 3D point
with respect to its (x, z) coordinate. With this goal in mind, the RANSAC algorithm is
applied on the acquired 3D points that belong to the calibration board.
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Figure 9. Acquired 3D points belonging to the calibration board and their projection on an estimated
plane P.

With the plane P and using only the (x, z) coordinates of the 3D points, we can now
detect the edges of the calibration board and, hence, the lines describing these edges. In
order to do so, the RANSAC algorithm is used again to estimate the lines describing the
edges. By equating these lines, the (x, z) coordinates of the key points of the calibration
board are estimated, as presented in Figure 10. By utilizing the plane P, we can obtain the
3D coordinate of the detected key points.
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2.5.3. Sensory Fusion between Point Clouds and Images

Considering the widely known pinhole camera model (Ardeshir et al. [28]), it is
possible to build matrices that relate the intrinsic and extrinsic parameters of a camera and
a LiDAR, as presented in Equation (7). Through this relationship between the parameters
of the sensors, it is possible to create a projection of the 3D points to the 2D space in order
to estimate the fusion of the information.
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where (u, v) are the pixel coordinates of the projection of point A; (x, y, z) are the spatial
coordinates of point A; fu and fv are the effective focal distances; (u0, v0) is the center point
of the image plane; and R and t are the rotation and translation matrices of the image.
These matrices can be represented as a projection matrix C that transforms the coordinates
from 3D space to 2D space.

As shown in Equation (8), to solve the projection matrix C at least 12 corresponding
points must be found between the 3D (x, y, z) and 2D (u, v) spaces, and using the RANSAC
algorithm to find the values that represent the variables of the projection matrix.
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Once the projection matrix C is obtained, each 3D point can be projected onto a 2D
image and the corresponding color for that point in 3D space can be obtained. Algorithm 4
presents the steps to perform the sensory fusion between point clouds and images.

For the verification of the calibration method, we propose an algorithm that first
applies a thresholding stage to the laser intensity for each point in space in order to classify
them as black or white 3D points, and also a thresholding stage to the fused color values in
order to classify them as black or white color points. With this information, we compare
each 3D point with its corresponding fused color point, in order to verify if they are both
classify as black or white. Then, by calculating the ratio between the erroneous points and
the total number of points in the point cloud, an error measurement of the sensory fusion
is estimated.
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Algorithm 4: Algorithm to perform sensory fusion between point clouds
and images.

3D−keypoints← List of lists with the key points in 3D, each sublist has four key
points extracted from the calibration board.;

2D−keypoints← List of lists with the key points in 2D, each sublist has four key
points extracted from the calibration board.;

pcd← 3D point cloud;
img← 2D image;
3d−color−pcd← Empty list for storing 3D points with their color information;
Result: 3d−color−pcd← 3D point cloud with color information
m−calib← Calibration matrix obtained by using the RANSAC algorithm on
points 3D−keypoints and 2D−keypoints;

for each point 3D−p of the point cloud pcd do
u, v←Multiply the calibration matrix m−calib by the point 3D−p to obtain its
coordinate in pixels.;

u, v← Limit the values between 0 and image size img;
color−p← Color obtained from the image img at the coordinate (u, v);
3d−color−pcd← Store the point 3D−p with color information color−p;

end
return 3D−key−points;

2.6. Point Cloud Registration for a 360◦ Model

To obtain the 360◦ model of the plant, it is necessary to perform a calibration of the
point clouds to adjust them to the XY reference plane of the sensors. Subsequently, because
the plant is rotating and the sensors are fixed while it is being sensed, a rotation and
translation of the point clouds must be performed with reference to the angle at which the
rotating base was located when the plant was sensed.

Since the rotating base may have an inclination and it could not be completely parallel
to the ground or to the XY reference plane of the sensors, it is necessary to perform a
calibration that allows to correct such inclination. In this way, we are able to make a correct
registration of the sensed point clouds at different angles of the rotating base. To perform
such plane calibration, it is necessary to find a transformation matrix U that aligns the
XY rotating base plane described in Equation (9), to the XY reference plane of the sensors
described in Equation (11).

ax + by + cz + d = 0 (9)

With Equation (9), we can find the unit vector A that is normal to the plane, as
presented in Equation (10).

A = |(a, b, c)| (10)

The XY reference plane of the sensors can be considered without inclinations and
represented by Equation (11).

x + y = 0 (11)

With Equation (11) of the XY plane of reference of the sensors, the unit vector B that is
normal to the plane can also be found, as presented in Equation (12).

B = |(1, 1)| (12)

With the two unit column vectors, A and B (‖A‖ = 1 and ‖B‖ = 1). It is worth
noticing that the rotation from A to B is only a 2D rotation on a plane with the normal
A× B. This 2D rotation by an angle θ is given by Equation (13).

R =




cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1


 (13)
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However, since A and B are unit vectors, it is not necessary to compute the trigono-
metric functions since cos(θ) = A · B and sin(θ) = ||A× B||, and then the rotation matrix
can be described by Equation (14).

R =




A · B −||A× B|| 0
||A× B|| A · B 0

0 0 1


 (14)

This matrix represents the rotation of A towards B in the base consisting of the column
vectors in Equations (15) (normalized vector projection of A onto B), (16) (normalized
vector projection of B on A) and (17) (cross product between B and A). All these vectors
are orthogonal and form an orthogonal basis.

u =
(A · B)A
||(A · B)A|| = A (15)

v =
B− (A · B)A
||B− (A · B)A|| (16)

w = B× A (17)

The corresponding basis change matrix is represented by Equation (18).

F = (uvw)−1 =
(

A B−(A·B)A
||B−(A·B)A|| B× A

)−1
(18)

Therefore, in the original basis, the rotation from A to B can be expressed as the right
multiplication of a vector by the matrix in Equation (19), arriving at Equation (20).

U = F− 1RF (19)

UA = B (20)

Therefore, to calibrate the reference plane of the measurements, it is necessary to
multiply each point in the point cloud by matrix U. Algorithm 5 presents the general steps
to calibrate the sensed XY reference plane.

Algorithm 5: Algorithm for calibrating the reference plane XY of point clouds.

pcd← 3D point cloud;
U ← Reference plane calibration matrix XY;
calib−pcd← Empty list for storing calibrated 3D points;
Result: calib−pcd← Point cloud with the reference plane calibration
for each point 3D−p of the point cloud pcd do

calib−point←Multiply the point 3D−p by the calibration matrix U;
calib−pcd← Store the point calib−point;

end
return calib−pcd;

2.6.1. Calibration of the Rotating Base’s Center

The LiDAR delivers the distance information of a point in the x, y, z axes regarding
to its own center, as it can be seen in Figure 11. Hence, in order to rotate the point clouds
relative to the angle of the rotating base, it is necessary to find the (x, y) coordinates of the
center of the rotating base.
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Algorithm 5: Algorithm for calibrating the reference plane XY of point clouds.

pcd← 3D point cloud;
U ← Reference plane calibration matrix XY;
calib−pcd← Empty list for storing calibrated 3D points;
Result: calib−pcd← Point cloud with the reference plane calibration
for each point 3D−p of the point cloud pcd do

calib−point←Multiply the point 3D−p by the calibration matrix U;
calib−pcd← Store the point calib−point;

end
return calib−pcd;
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presented in Algorithm 7.334

Figure 11. Origin point of the LiDAR coordinate system and the axis of rotation of the rotating base.

In order to find the axis of rotation of the rotating base, a guide object is placed in
the center of the rotating base. Then, using the rails of the structure shown in Figure 12,
the sensors are moved until one of the LiDAR’s lasers detects the guide object. Once
this happens, the position of the center axis of the rotating base is estimated, following
Algorithm 6.
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Algorithm 6: Estimation of the coordinates of the axis of rotation of the
rotating base.

pcd← point cloud with the calibration of the reference plane belonging to the
rotating base and to the guiding object;

Result: baseCenter ← rotating axis’ coordinates (x, y) of the rotating base
id−laser← laser ID to which the points with the highest values belong to the axis

Z;
pcd← points coming from the laser(id−laser);
maxY← coordinate (x, y) of the maximum value on the Y-axis of the points of the

pcd;
pcd← points with (x, y) coordinates located within a radius of 1cm around the
coordinate maxY;

baseCenter ← average coordinates’ (x, y) value of the points of pcd;
return baseCenter;
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2.6.2. Point Cloud Rotation

To register the point clouds, first, a translation from the acquired point clouds to
the origin point of the LiDAR’s coordinate system must be performed. To perform this
translation, it is necessary to subtract each point from the point cloud with the center of
rotation’s coordinates of the rotating base. Once the point clouds have been translated,
each one must be rotated by a rotation angle that is given by the angle at which the rotating
base was at the time of capturing the point cloud.

After the XY plane calibration, the point clouds’ rotation could be expressed by the
rotation matrix described in Equation (13). This translation and rotation process is presented
in Algorithm 7.

Algorithm 7: Rotation of point clouds for the 360◦ registration

baseCenter← Coordinates (x, y) from the rotating base center;
pcd−list← List of point clouds with calibrated reference XY plane;
angle−list← List of angles at which the point clouds were captured from pcd−list;
register−pcd← Empty list for storing the rotated 3D points;
Result: register−pcd← Point cloud registered in 360◦

for each pcd y angle of pcd−list and angle−list do
rot−matrix ← Rotation matrix, Equation (13), with the angle angle;
for each 3D−point of the point cloud pcd do

r−point← (3D−point− baseCenter) · rot−matrix;
register−pcd← Store points r−point;

end
end
return register−pcd;

3. Results
3.1. Extraction of Vegetative Indexes

Multispectral photographs were taken to the Limonaria and Guaiacum plants in order
to estimate their vegetative indices. Subsequently, using the images from the NIR, REG,
RED, and GREEN multispectral bands already registered to the NIR band, the vegetative
indices, DVI, NDVI, GNDVI, NDRE, SAVI, and MSAVI, of the plants were calculated.
Figures 12 and 13 present the results obtained for each of the vegetative indexes.
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Vegetation indices are widely used to quantify plant variables by associating certain
spectral reflectances that are highly related to variations in leaf chemical components such
as nitrogen, chlorophyll, and other nutrients. In this regard, vegetation indices are key
features to characterize the health status of a plant. From the extensive list of vegetation
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indices available in the specialized literature [29–31], we selected 6 vegetation indices with
sufficient experimental evidence and quantitative trait loci (QTL)-based characterization
regarding their high correlation with plant health, specifically, the photosynthetic activity
associated with certain spectral reflectances: green and near-infrared bands.

The Parrot Sequoia multispectral camera comes with a radiometric calibration target
that enables reflectance calibration across the spectrum of light captured by the camera.
Additionally, the camera has an integrated irradiance sensor designed to correct images
for illumination differences in real time, enabling precise radiometrically response, with
narrow discrete Red, Green, Red-Edge, and Near-Infrared bands. Regarding the lens
disparity, we have observed minimum and neglectable misalignments of pixels between
the spectral bands [9], which do not require further image processing for co-registration.

3.2. Oversampling and Point Cloud Processing

Due to the characteristics of the VLP-16 LiDAR, during the scanning of an object (a
plant in this case) if there is another object behind it at a distance of approximately 40 cm
or less, unwanted points are generated in the space between the objects. This behavior
negatively affects the model generation of plants with long leaf architectures, as these
unwanted points will be considered as part of the leaves. To eliminate these unwanted
points, the oversampling and filtering of the point clouds described in Algorithm 2 was
implemented and tested with the Limonaria plant.

In order to carry out this test, 10 complete samples (1 sample = 1 point cloud) were
taken before any rotation is performed on the plant. With these samples, the average point
cloud was found and the outlier filter described in Algorithm 2 was applied. Figure 14
presents the results of this test.
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Figure 14. Oversampling and outlier removal on the the point clouds. (a) Raw point cloud of the
Limonaria plant. (b) Regions of the point cloud where unwanted points are found (in red). (c)
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applied in order to assign the corresponding color information to each point in the cloud,385
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After this thresholding stage, we utilized the intensity information returned by the390

LiDAR and compared it to the black-white classified point cloud. Figure 17c presents391

the point clouds with intensity information. Since the intensity returned by the LiDAR392

provides enough information to identify a black or white color, we applied another393

thresholding stage to the intensity information as presented in Figure 17d. With this394

information, it is now possible to compare both thresholding stages (color and intensity)395

in order to measure the error of the calibration method.396

3.4. Four-dimensional phenotyping model397
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typing models, an experiment was performed first to verify how the morphological and399

biological parameters extracted from the plant were affected by using different rotation400
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Figure 14. Oversampling and outlier removal on the the point clouds. (a) Raw point cloud of the
Limonaria plant. (b) Regions of the point cloud where unwanted points are found (in red). (c) Point
cloud after oversampling, averaging, and filtering.

3.3. Sensory Fusion: 3D and 2D Calibration

To find the key points in the 2D image, 16 images of the calibration board were
captured at different positions. After applying Algorithm 3, 64 key points were found
within these images, as presented in Figure 15.
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Figure 15. 2D key point extraction process.

Afterwards, in order to find the key points in the 3D point cloud, 16 point clouds
were taken from the calibration board at different positions. By applying the mechanisms
detailed before, 64 key points were found within the point clouds, as presented in Figure 16.
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was done, obtaining the 4D phenotyping models. The 4D phenotyping models of both406

Guaiacum and Limonaria plants are shown in Figure 18.407

During the acquisition and analysis stages of a phenotyping platform, there are408

many external factors that may affect its stability, e.g. environmental conditions. With409

that in mind, it becomes paramount to validate the stability of the measurements in410

Figure 16. Key points estimation in a 3D point cloud. (a) Point cloud of the calibration board.
(b) Extraction of points belonging to the edges of the calibration board. (c) Edge lines intersection
and estimated key points. (d) Projection of the key points into the 3D space.

With the 64 key points found in the 2D images and the 64 points found in the 3D
point clouds, the Algorithm 4 was used to find the calibration matrix that allows the
sensory fusion between sensors. Subsequently, to verify the result of this sensor calibration,
five new 2D images and five point clouds were acquired with the calibration board at
different positions.

With these five complete samples (point clouds and 2D images), Algorithm 4 was
applied in order to assign the corresponding color information to each point in the cloud,
as shown in Figure 17a. Subsequently, using color segmentation, a thresholding stage
was applied to the point clouds: points close to a black color took the value of 0.0, those
close to a white color took the value of 1.0 and the remaining points took the value of 0.5.
Figure 17b shows the point clouds after this color thresholding stage.

After this thresholding stage, we utilized the intensity information returned by the
LiDAR and compared it to the black-white classified point cloud. Figure 17c presents the
point clouds with intensity information. Since the intensity returned by the LiDAR provides
enough information to identify a black or white color, we applied another thresholding
stage to the intensity information as presented in Figure 17d. With this information, it is
now possible to compare both thresholding stages (color and intensity) in order to measure
the error of the calibration method.
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3.4. Four-Dimensional Phenotyping Model

Since the main goal of this research project is the generation of complete 4D pheno-
typing models, an experiment was performed first to verify how the morphological and
biological parameters extracted from the plant were affected by using different rotation
angles at the time of sensing. For this purpose, the Limonaria and Guaiacum plants were
scanned with steps of 12◦, 24◦, 36◦, 60◦, 72◦, 72◦ and 120◦, simultaneously using the Li-
DAR and the multispectral camera. Subsequently, Algorithm 4 was executed to obtain
the sensory fusion between each 3D point cloud and each multispectral camera image. By
using Algorithm 7, the registration of the point clouds with color information was done,
obtaining the 4D phenotyping models. The 4D phenotyping models of both Guaiacum and
Limonaria plants are shown in Figure 18.

During the acquisition and analysis stages of a phenotyping platform, there are many
external factors that may affect its stability, e.g., environmental conditions. With that in
mind, it becomes paramount to validate the stability of the measurements in time. For
this purpose, an experiment was conducted in which the Guaiacum plant was scanned
during different moments of a single day, to observe how the NDVI vegetative index
average behaved over time in this plant. As a result, the graph of the average NDVI of the
Guaiacum plant during the day is presented in Figure 19. In order to perform a qualitative
analysis of this behavior, Figure 20 presents the 4D phenotyping models of the Guaiacum
plant for three different moments in the day, in which the lowest and highest values of the
average NDVI were found.
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Figure 18. 4D phenotyping models captured at different rotation angles.
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Figure 19. Average vegetative index NDVI of the Guaiacum plant during the day.

Figures 19 and 20 present a very interesting behavior that would not be easy418
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Figure 18. 4D phenotyping models captured at different rotation angles.
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there is an evident increase in the details of the morphological structure of the plant for438

the generated phenotyping model. Additionally, the estimated average NDVI index for439
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the scanned plant, it was necessary to validate the stability of these measurements. It442

was possible to demonstrate that the biochemical and physiological parameters of plants443
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Figures 19 and 20 present a very interesting behavior that would not be easy to predict
or validate. Although NDVI is useful for vegetation monitoring, specially because it should
compensate for varying illumination conditions. Moreover, the NDVI has the advantage of
weighting more the light reflectances in both NIR and green compared to other wavelengths,
which enables to characterize the plant health status. Our results show that a variation of
this metric indeed occurs at different hours of the day. With that limitation, the analysis
process that utilizes the NDVI index would require an adjustment in order to consider this
natural behavior, as presented next in the discussion section.

4. Discussion

Due to the technological limitations of the selected LiDAR, a mechanism to remove the
generated noisy points was necessary. As shown in Figure 14, after averaging and filtering
the point cloud, the unwanted noisy intermediate points are successfully removed, which
becomes paramount for the proper registration of the point clouds.

As a result of the comparison between the intensity and color information thresholding
stages, an error of 7.53% was found for the proposed calibration method. This error can be
seen in some of the samples where, due to the inclination of the calibration board edges,
the mapped color was that of the background and not the one of the board itself. Likewise,
in other areas there is not a proper match for the color of the board, as it can be seen in
Figure 21.
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Figure 21. Comparison between thresholding stages: (a) RGB color information, (b) intensity infor-
mation . Some areas with wrongly mapped points are highlighted.

As it can be seen in Figure 18, as we decrease the rotation step of the rotating base,
there is an evident increase in the details of the morphological structure of the plant for the
generated phenotyping model. Additionally, the estimated average NDVI index for the
plant also tends to stabilize as the rotation step decreases.

Although the proposed system successfully generates a 4D phenotyping model of
the scanned plant, it was necessary to validate the stability of these measurements. It was
possible to demonstrate that the biochemical and physiological parameters of plants vary
at different times of the day, due to the processes they undergo to obtain nutrients when
exposed to different light and environmental conditions along the day.

Thus, as shown in Figures 19 and 20, the temporal distribution of the biochemical
parameters of the plant can be studied with the 4D models that are generated by the
implemented platform. In this case, the results obtained show how the levels of the NDVI
index of the plant have maximum at noon, when the sun rays’ intensity is also at its
maximum levels. These results evince a relationship between the amount of sunlight that
the plant can absorb during day hours and its vegetative indices. Furthermore, plant-health
status is usually characterized throughout the entire phenological state of the crop, however,
in Figure 19, we note that the NDVI index shows significant fluctuations during the day,
allowing an analysis with a higher and more precise temporal resolution.
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5. Conclusions

In this research work, it was shown how the use of low-density vertical LiDAR radars
together with multispectral images can be successfully used for the generation of 4D pheno-
typing models of plants, which allows its morphological study and the temporal analysis
of variables and physiological parameters, under different environmental conditions.

On the other hand, the proposed calibration board with a novel shape and color
configuration eases the verification of the resulting calibration of the intrinsic and extrinsic
parameters of the LiDAR and the camera. An algorithm that combines the averaging and
filtering of the point cloud values was designed and implemented to remove unwanted
points within the point cloud data.

Our ongoing work is focused on the generation of a surface model of the plant,
utilizing the available point cloud and color information, in order to support the analysis
of the 4D phenotyping model, aimed at using the calculated spatio-temporal vegetation
indices as features for training machine learning models for leaf nitrogen estimation.
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