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Abstract: Hyperspectral data has attracted considerable attention in recent years due to its high
accuracy in monitoring soil salinization. At present, most existing research focuses on the saline
soil in a single area without comparative analysis between regions. The regional differences in the
hyperspectral characteristics of saline soil are still unclear. Thus, we chose Golmud in the cold–dry
Qaidam Basin (QB–G) and Gaotai–Minghua in the relatively warm–dry Hexi Corridor (HC–GM) as
the study areas, and used the deep extreme learning machine (DELM) and sine cosine algorithm–
Elman (SCA–Elman) to predict soil salinity, and then selected the most suitable algorithm in these two
regions. A total of 79 (QB–G) and 86 (HC–GM) soil samples were collected and tested to obtain their
electrical conductivity (EC) and corresponding hyperspectral reflectance (R). We utilized the land
surface parameters that affect the soil based on Landsat 8 and digital elevation model (DEM) data,
selected the variables using the light gradient boosting machine (LightGBM), and built SCA–Elman
and DELM from the hyperspectral reflectance data combined with land surface parameters. The
results revealed the following: (1) The soil hyperspectral reflectance in QB–G was higher than that
in HC–GM. The soils of QB–G are mainly the chloride type and those of HC–GM mainly belong
to the sulfate type, having lower reflectance. (2) The accuracies of some of the SCA–Elman and
DELM models in QB–G (the highest MAEv, RMSEv, and R2

v were 0.09, 0.12 and 0.75, respectively)
were higher than those in HC–GM (the highest MAEv, RMSEv, and R2

v were 0.10, 0.14 and 0.73,
respectively), which has flatter terrain and less obvious surface changes. The surface parameters in
QB–G had higher correlation coefficients with EC due to the regular altitude change and cold–dry
climate. (3) Most of the SCA–Elman results (the mean R2

v in HC-GM and QB-G were 0.62 and 0.60,
respectively) in all areas performed better than the DELM results (the mean R2

v in HC–GM and
QB–G were 0.51 and 0.49, respectively). Therefore, SCA–Elman was more suitable for the soil salinity
prediction in HC–GM and QB–G. This can provide a reference for soil salinization monitoring and
model selection in the future.

Keywords: hyperspectral data; fractional differential transformation; sine cosine algorithm–Elman;
deep extreme learning machine

1. Introduction

Soil salinization is an important land degradation problem that plagues the world and
seriously threatens food security. From 1986 to 2016, the area of salinized land increased by
more than 100 million hectares [1]. On 21 October 2021, the Food and Agriculture Organi-
zation of the United Nations (FAO) released a global map of the saline soil distribution [2].
This map shows that the world’s saline soil covered an area of 833 million hectares and was
mainly distributed in the arid and semi-arid areas of Asia, Africa, and Latin America. In
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arid climate zones, 20–50% of the irrigated soils on all of the continents have an excessively
high salt content. Therefore, it is imperative to monitor soil salinization in the future.

To date, many scholars have carried out research using multispectral, hyperspectral,
thermal infrared, and microwave techniques to study soil salinization [3–6]. Among them,
hyperspectral remote sensing data have the unique advantage of a continuous band and rich
information, but the correlation between the different bands is relatively strong. Accord-
ingly, characteristic bands need to be selected to solve the collinearity problem. The existing
variable selection methods primarily include the following: (1) filtering (principal compo-
nent analysis, correlation coefficient, gray correlation, and chi-square test); (2) embedding
(variable selection method based on penalty items or tree models); and (3) encapsulation
(generally combined with the multi-objective grey wolf optimizer (MOGWO) [7], whale
optimization algorithm (WOA) [8], sine cosine algorithm (SCA) [9], or other heuristic
algorithms). Heuristic algorithms can obtain a better solution in a short time and have
been widely used in model prediction [10–12]. The filtering method is based on statistical
principles for variable selection, and has high computational efficiency but low selection
accuracy, and is prone to data redundancy. Embedding and encapsulation methods can
effectively improve the selection accuracy and reduce the data dimensions [13].

Artificial intelligence methods are widely used in soil salinization research. The
concept of artificial intelligence was introduced in 1956. At the end of the 20th century, non-
linear machine learning algorithms developed rapidly and were gradually used by many
scholars to construct salinity prediction models, and good results were achieved [14,15].
By 2012, deep learning algorithms had gradually become widely used. Deep learning is
the further development of machine learning and can be used to mine data and obtain
multiple levels of information. Such algorithms have a strong generalization ability and
robustness [16]. Zhang et al. [17] used the Cubist, partial least squares regression (PLSR),
and extreme learning machine (ELM) models to establish soil salinity models, and showed
the Cubist model had the highest accuracy. Wang et al. [18] used a back propagation neural
network (BPNN) to estimate the soil salt content in the Aibi Lake Wetland Nature Reserve
and achieved good research results with an R2 of 0.95.

In the SCORPAN equation, the soil is related to a set of auxiliary data, such as the
climate, living organisms, relief, parent material, time, and location [19]. Many studies have
predicted the soil salinity based on these auxiliary data [20,21]. The soil ecosystem is highly
complex, and there may be a nonlinear relationship between soil salinity and spectral
reflectance. DELM improves the traditional ELM algorithm by adding the number of
hidden layers that can process high-dimensional data more efficiently, and introduces regu-
larization coefficients which can prevent the model from over-fitting [22]. Ouyang et al. [23]
confirmed that the developed deep ELM model performed better than other evaluated
regression models related to analyzing NOx. Many studies have used the SCA algorithm
to optimize the weight and threshold of a neural network to improve its performance [24].
However, these algorithms (e.g., DELM, LightGBM, and SCA) have rarely been used in the
salinization research area. Therefore, LightGBM, DELM, and SCA–Elman machine learning
algorithms were selected for salinity inversion in this study. EC is a parameter that many
researchers use to study soil salinity at the local scale [25,26]. The geographic environments
of the Qaidam Basin and the Hexi Corridor are quite different, especially regarding their
climates and altitudes. However, although the degree of salinization in these two places is
serious, related research is lacking; thus, in this study these environments were chosen as
the study areas, and comparative analysis was conducted. We used the LightGBM to select
the modeling variables, and then predicted the EC of the different study areas based on
hyperspectral data combined with the surface parameters of the SCORPAN equation and
conducted a comparative analysis.
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2. Material and Methods
2.1. Study Area

Gaotai County and Minghua Township in Yugur Autonomous County of Sunan are
located in the Hexi Corridor (HC–GM) of China (Figure 1). The southern part of HC–GM
in the Hexi Corridor contains the Qilian Mountains, and the northern part contains the
Heli Mountains. The Heihe River flows through the central flat region of HC–GM. HC–GM
has a continental arid climate with little precipitation, and the average annual temperature
and precipitation are 8.1 ◦C and 112.3 mm, respectively. In HC–GM, 23, 2, 3, 5, 3, and
50 samples were collected from arable land, woodland, grassland, waters (e.g., beaches in
this study), construction land, and unused land (e.g., sandy land, Gobi, saline–alkali land,
marshland, bare land, and other lands), respectively. Among the samples from HC–GM, 21,
23, and 23 samples were categorized as meadow saline soils, desert sandy soils, and gray
irrigated desert soils, respectively, and the remaining samples belonged to other soils. The
soil type map used the Chinese soil genetic classification system. The normalized difference
vegetation index (NDVI) was calculated from Landsat 8.

Figure 1. Distribution of the samples in HC–GM and QB–G, including their (a1,b1) land use maps
(from https://www.resdc.cn/Default.aspx) (accessed on 7 September 2021), (a2,b2) soil type maps
(from https://www.resdc.cn/Default.aspx) (accessed on 7 September 2021), (a3,b3) NDVI maps
(from https://www.gscloud.cn/) (accessed on 7 September 2021).

The Qaidam Basin is located in the northwestern part of Qinghai Province and the
northeastern part of the Qinghai–Tibetan Plateau (Figure 1). It is one of the four major
basins in China. The southern part of Golmud in the Qaidam Basin (QB–G) contains the
Kunlun Mountains, and the northern part contains the Chaerhan Salt Lake. The landform
types in QB–G from south to north include a plateau, a proluvial plain, an alluvial–proluvial
plain, an alluvial plain, a salt lake sedimentary plain, and a denudation plain. QB–G has
a plateau continental climate, with an average temperature of −6.5 ◦C in winter and
17.5 ◦C in summer. This area has a high altitude and a cold climate. In QB–G, 17, 11, 28,
and 23 samples were collected from arable land, woodland, grassland, and unused land,
respectively. The soil types of 35, 12, 10, and 15 samples were classified as meadow saline
soils, desert sandy soils, gray–brown desert soils, and dark yellow–brown soil, respectively,
and the remaining samples belonged to other types.

https://www.resdc.cn/Default.aspx
https://www.resdc.cn/Default.aspx
https://www.gscloud.cn/
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2.2. Datasets
2.2.1. Electrical Conductivity and Eight Major Saline Ions Data

In this study, 79 and 86 samples were collected from QB–G and HC–GM, respectively,
based on the accessibility of the areas from September to October 2020 when there was
no precipitation to wash the salt away and the evaporation was strong; thus, the salt was
exposed at the surface as the water evaporated. We collected samples at a depth of 10 cm
below the surface and three replicates at each sample point were collected. The collected
soil samples were dried in a ventilated laboratory and then sieved through a 1 mm sieve to
test the soil EC and hyperspectral reflectance in the laboratory.

The soil solution was prepared according to a water–soil ratio of 5:1. It was stirred well
and left to stand for 1 h. The EC of the filtrate was measured after extraction. In addition,
we also measured the eight major saline ions in the soil (Cl−, HCO−3 , CO2−

3 , SO2−
4 , K+,

Na+, Mg2+, and Ca2+).

2.2.2. Hyperspectral Reflectance Data

We used an ASD FieldSpec 4 spectrometer (Analytical Spectral Devices, Boulder, Col-
orado, USA) with a spectral range of 350–2500 nm to measure the hyperspectral reflectance
of soil samples, with a resampling interval of 1 nm. We placed a 70 W halogen lamp that
simulates sunlight in a darkroom in the laboratory. A dark-colored vessel with a diameter
of 20 cm and a depth of 2 cm was used to hold the soil samples. The distances between
the light source and the probe, and between the probe and the soil, were 50 and 10 cm,
respectively, and the zenith angle was 15◦. Before each measurement, we used a whiteboard
for calibration, and then we collected 20 spectral curves from four directions. Finally, we
took the average value as the original hyperspectral reflectance of the sample.

2.2.3. Landsat 8 Remote Sensing Data

Due to the availability of Landsat data for the study areas, eight Landsat 8 OLI datasets
from 30 August to 7 October 2020 were selected for use in this study to mosaic into an
image. The cloud content was less than 10%, and the resolution was 30 m. The path/row
values of the eight Landsat 8 OLI images were 134/32, 134/33, 136/34, 136/35, 137/34,
137/35, 138/34, and 138/35. We used ENVI 5.3 to perform the radiometric calibration and
atmospheric correction of the Landsat 8 OLI.

2.2.4. Soil and Terrain Influence Factors

Soil is a complex system. The reflectance of soil is also affected by the parent material,
climate, vegetation, topography, water, and salt content [27]. The higher the degree of
salinization, the lower the vegetation coverage [28]. The smaller the particle size of the soil,
the weaker the absorption of the spectrum [29]. In this study, salinity indexes, vegetation
indexes, water indexes, terrain attributes, and drought indexes were included as modeling
parameters (Tables 1–4). The terrain attributes were calculated based on the DEM using the
System for Automated Geoscientific Analyses–Geographic Information System (SAGA–
GIS), and the other parameters were calculated using the Landsat 8 data in ENVI 5.3. Due
to the complexity of the UNVI formula, we calculated it in PyCharm Community Edition
2021.2.1.

Table 1. Salinity indexes required for the model.

Land Surface Parameters Abbreviation Formula References

Salinity index SI (B4 × B2)0.5 [30]
Normalized differential salinity index NDSI (B4 − B5)/(B4 + B5) [30]
Salinity index 1 SI1 (B4 × B3)0.5 [31]
Salinity index 2 SI2 [(B5)2 + (B4)2 + (B3)2]0.5 [31]
Salinity index 3 SI3 [(B4)2 + (B3)2]0.5 [31]
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Table 1. Cont.

Land Surface Parameters Abbreviation Formula References

Salinity index I S1 B2/B4 [32]
Salinity index II S2 (B2 − B4)/(B2 + B4) [32]
Salinity index III S3 B3 × B4/B2 [32]
Salinity index IV S4 B2 × B4/B3 [32]
Salinity index V S5 B4 × B5/B3 [32]
Salinity index VI S6 B6/B7 [33]
Salinity index VII S7 (B6 − B7)/(B6 + B7) [33]
Salinity index VIII S8 B6 − B7 [33]
Salinity index IX S9 (B6 × B7 − B7 × B7)/B6 [33]
Intensity index 1 Int1 (B3 + B4)/2 [31]
Intensity index 2 Int2 (B3 + B4 + B5)/2 [31]
Vegetation soil salinity index VSSI 2 × B3 − 5 × (B4 + B5) [34]

Table 2. Vegetation indexes required for the model.

Land Surface Parameters Abbreviation Formula References

Normalized difference vegetation
index NDVI * (B5 − B4)/(B5 + B4) [35]

Enhanced vegetation index EVI *
(1 + L) ×(B5 − B4)/(B5 + C1 × B4− C2 × B2 + L), L is the
background adjustment parameter and C1 and C2 are the
atmospheric correction parameters

[36]

Generalized difference vegetation
index GDVI (B52 − B42)/(B52 + B42) [37]

Non-linear vegetation index NLI (B52 − B4)/(B52 + B4) [38]

Modified soil adjusted vegetation
index MSAVI {(2 × B5-1) − [(2 × B5 + 1) ×(2 × B5 + 1) − 8 × (B5 −

b4)]0.5}/2 [39]

Universal normalized vegetation
index UNVI

R(i)→ [Cw × Pw (i) + Cv × Pv (i) + Cs × Ps (i) + C4 × P4
(i)], where i is the band number, R(i) is the spectrum under
the i band of the ground object, Pw, Pv, Ps and P4
respectively represent the normalized reflectance value of
the four reference samples; Cw, Cv, Cs, C4 represent the
UPDM coefficient corresponding to each sample.

[40]

Atmospherically resistant vegetation
index ARVI * {B5 − [B4 − γ × (B2 − B4)]}/{B5 + [B4 − γ × (B2 − B4)]},

γ is the correction coefficient of atmospheric radiation [41]

Difference vegetation index DVI B5 − B4 [42]

Green vegetation index GVI * −0.2848 × B2 − 0.2435 × B3 − 0.5436 × B4 + 0.7243 × B5
+ 0.0840 × B6 − 0.1800 × B7 [43]

Optimized soil adjusted vegetation
index OSAVI *

(B5 − B4)/(B5 + B4 + θ), θ is the soil regulation parameter
that has nothing to do with vegetation coverage
conditions

[44]

Renormalized difference vegetation
index RDVI * (NDVI × DVI)0.5 [45]

Soil adjusted vegetation index SAVI * (1 + L)(B5 − B4)/(B5 + B4 + L), L is the soil brightness
index [46]

Transformed difference vegetation
index TDVI * 1.5 × [(B5 − B4)/(B5ˆ2 + B4 + 0.5)0.5] [47]

Canopy response salinity index CRSI [(B5 × B4 − B3 × B2)/(B5 × B4 + B3 × B2)]0.5 [48]

*: NDVI, EVI, ARVI, GVI, OSAVI, RDVI, SAVI, and TDVI were calculated by the Spectral Tool with built-in
formulations in ENVI 5.3.1.
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Table 3. Water indexes, drought indexes and remote sensing data required for the model.

Auxiliary Data Land Surface Parameters Abbreviation Formula References

Water index
Modified normalized difference water
index MNDWI * (B3 − B6)/(B3 + B6) [49]

Normalized difference water index NDWI (B3 − B5)/(B3 + B5) [50]

Remote Sensing
data

Kauth–Thomas transformation
(Brightness, Greenness, Wetness)

K–T
transformation

Principal component analysis
(PC1–PC7) PCA

Texture (Mean, Variance, Homogeneity,
Contrast, Dissimilarity, Entropy, Second,
Correlation)

T

Brightness Index BI (B42 + B52)0.5 [30]

Drought index

Perpendicular drought index PDI

(B4 + M × B5)/(1 + B42)0.5, M is
the slope of the soil baseline, M
of HC–GM is 0.189, M of QB–G
is 0.32

[51]

Modified perpendicular drought index MPDI

(B4 + M4 × B5 − fv × 0.55)/
[(1 − fv) × (1 + M 2)0.5], M is the
slope of the soil baseline, M of
HC–GM is 0.189, M of QB–G is
0.32, fv = 1 − ((NDVImax −
NDVI)/(NDVImax − NDVI
min))0.6175

[52]

*: MNDWI was calculated by the Spectral Tool with the formulation included in ENVI 5.3.1.

Table 4. Terrain attributes required for the model.

Land Surface Parameters References Land Surface Parameters References

Elevation DEM SAGA GIS General curvature SAGA GIS
Vertical distance to channel network SAGA GIS Flow-line curvature SAGA GIS
Valley depth SAGA GIS Flow width SAGA GIS
Total curvature SAGA GIS Cross-sectional curvature SAGA GIS
Topographic wetness index SAGA GIS Convergence index SAGA GIS
Standardized height SAGA GIS Closed depressions SAGA GIS
Slope height SAGA GIS Channel network base level SAGA GIS
Relative slope position SAGA GIS Channel network distance SAGA GIS
Profile curvature SAGA GIS Catchment area SAGA GIS
Normalized height SAGA GIS LS factor SAGA GIS
Plan curvature SAGA GIS Aspect SAGA GIS
Mid-slope position SAGA GIS Slope SAGA GIS
Longitudinal curvature SAGA GIS Analytical hillshading SAGA GIS

2.3. Methods

The method used in this study included three main steps (Figure 2). The first step was
to select the forms (mathematical form, order, and resampling interval) of the hyperspectral
reflectance that corresponded to the top three absolute values of the Pearson correlation
coefficient. The hyperspectral reflectances of the selected forms were combined with land
surface parameters as the data source of the model. The second step was to calculate
the land surface parameters that affect the soil based on Landsat 8 and DEM data. The
third step was selecting the variables using LightGBM and modeling using DELM and
SCA–Elman for HC–GM, QB–G, and HCQB–GMG.
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Figure 2. Technical flowchart of this study.

2.3.1. Hyperspectral Reflectance Data Processing

The band range of hyperspectral data is 350–2500 nm with good band continuity. In
this study, first, the 350–399 nm and 2401–2500 nm intervals in the region with low signal-
to-noise ratios were deleted, and then Savitzky–Golay filtering of the spectral data was
conducted. The Savitzky–Golay smoothing filter is a low-pass filter based on polynomial
fitting [53]. The Savitzky–Golay filtering formula is shown in Equation (1).

ρ′i =
1

2m + 1

m

∑
i=−m

Ciρk+1 (1)

where ρ′i is the fitting value of the smoothing noise reduction at the i-point of the spectrum.
ρi is the original reflectance at the i-point. Ci is the weight coefficient, and 2m + 1 is the
width of the filter window. k is the order of the smoothing polynomial. The number of the
left and right size point was 10 and the polynomial order was 2 in the Unscrambler X 10.4.

The 1/lgR, lgR,
√

R and 1/R mathematical transformations were performed to elimi-
nate noise interference. Then, we used the fractional differential formula to perform 0–2
order (interval is 0.2 order) differential processing and utilized a resampling method whose
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intervals included 10, 20, 30, 40, and 50 nm. The Grünwald–Letnikov fractional differential
formula is shown in Equation (2).

dα f (x) = lim
h→0

1
hα

t−a
h

∑
m=0

(−1)m Γ(α + 1)
m!Γ(α−m + 1)

f (x−mh) (2)

where α is the order, h is the step size, and t and a are the upper and lower limits of the
differential. In the Gamma function, Γ(α) =

∫ ∞
0 exp(−u)uα−1du = (α− 1)! [54,55]. These

processes were implemented in MATLAB R2018b.

2.3.2. Variable Selection and Inversion of EC

In this study, the Kennard–Stone algorithm was used to divide the soil samples. The
calibration dataset consisted of 2/3 of the data, and the validation dataset consisted of the
other 1/3 of the data. There were 57 samples in the calibration dataset and 29 samples in the
validation dataset, for a total of 86 soil samples in HC–GM. Among the 79 samples in QB–G,
the calibration dataset and validation dataset consisted of 53 and 26 samples, respectively.
Among the 165 samples in HCQB–GMG, the calibration dataset and validation dataset
contained 110 and 55 samples, respectively.

(1) LightGBM

The LightGBM is an ensemble learning algorithm. An ensemble learning algorithm
integrates the prediction results of multiple base learners to improve the generalization
ability and robustness of the base learners [56]. The existing ensemble learning methods in-
clude serialization methods (e.g., the boosting and LightGBM) and parallelization methods
(e.g., bagging and random forest). The LightGBM measures the importance of variable i in
a single tree by calculating the reduced loss value of variable i after splitting. The variables
with importance values greater than 0 were used in the model in this study. The LightGBM
was implemented using the machine learning library (Sklearn) in Python3.7.

(2) DELM

The extreme learning machine (ELM) was developed in 2004 [57]. Wang et al. [58]
provided the code for the ELM in their book. The DELM uses multiple extreme learning
machine–auto encoders (ELM–AE) to perform unsupervised training (Figure 3). The DELM
is initialized based on the output weights of the different ELMs. Therefore, the DELM is also
called the multi-layer extreme learning machine (ML–ELM). The deep ELM method both
significantly improves the network training time relative to a single ELM and can improve
the classification accuracy [59]. Other studies have shown that DELM’s performance is
significantly better than that of principal components regression, partial least squares
regression, and neural networks [23]. The activation function in this study was the sigmoid
function, and the regularization coefficient was introduced in the solution of the weight
coefficient to improve the generalization ability of the model. In this study, the DELM
model was built in MATLAB R2018b.

(3) SCA–Elman

The Elman model was proposed by J. L. Elman in 1990. It mainly consists of an input
layer, hidden layer, inheritance layer, and output layer. Compared with the BP neural
network, it has one more inheritance layer, which is beneficial to improving the global
stability of the network. Wang et al. [58] provided the code for the Elman model in their
book. The SCA is a stochastic optimization algorithm proposed by Seyedali Mirjalili in
2016, and he provided download link (http://www.alimirjalili.com/SCA.html) (accessed
on 1 September 2021) for the code in his paper [9]. SCA uses a mathematical model based
on sine and cosine to find the optimal solution, and can effectively converge to the global
optimal solution. Liu et al. [60] optimized the weights and thresholds of BPNN through
particle swarm optimization (PSO), which effectively prevents the training from falling
into the local optimum. In the learning process of Pi–Sigma artificial neural networks

http://www.alimirjalili.com/SCA.html
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(PS–ANNs), a position of SCA consists of weight and bias values of the PS–ANNs, and the
use of the SCA method in the training of PS–ANNs produces better results than the use
of many other artificial intelligence optimization algorithms [24]. Similarly, SCA–Elman
used the SCA to optimize the weights and threshold parameters of the Elman model. In
this study, SCA–Elman was constructed in MATLAB R2018b.

Figure 3. Model structure of DELM and SCA–Elman.

2.3.3. Model Verification

The RMSE, coefficient of determination (R2), and mean absolute error (MAE) were
used to verify the model’s ability to predict the EC. The larger the R2, the more stable the
model. The smaller the RMSE, the higher the accuracy of the model. The range of MAE is
[0, +∞). An MAE of 0 means that the predicted value is basically the same as the true value.
As the error increases, the MAE also increases [61].

3. Results
3.1. Descriptive Statistics of the EC and Chemistry Types of the Soil Samples

The mean, SD, and CV of the values corresponding to EC for all of the samples in
HC–GM, QB–G, and HCQB–GMG were between those of the calibration dataset and the
validation dataset (Table 5), indicating that the quality of the selected samples was good.
The CVs of the EC for the samples from HC–GM, QB–G, and HCQB–GMG were all greater
than 1, indicating a large degree of variation. The CV for HC–GM was greater than that for
QB–G.
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Table 5. Statistical characteristics of the EC of the soil samples from the different areas.

Area Datasets Sample
Numbers

Maximum
(mS·cm−1)

Minimum
(mS·cm−1)

Mean
(mS·cm−1)

Median
(mS·cm−1)

SD—
Standard
Deviation
(mS·cm−1)

CV—
Coefficient of

Variation

HC–GM
Calibration 57 47.67 0.05 6.93 1.95 11.35 1.64
Validation 29 57.40 0.07 10.29 4.76 15.15 1.47

All 86 57.40 0.05 8.06 2.93 12.77 1.58

QB–G
Calibration 53 131.77 0.06 32.11 19.12 35.29 1.10
Validation 26 94.05 0.09 28.50 10.74 30.83 1.08

All 79 131.77 0.06 30.92 14.34 33.73 1.09

HCQB–
GMG

Calibration 110 131.77 0.05 17.67 4.47 27.59 1.56
Validation 55 94.05 0.06 21.68 7.12 27.41 1.26

All 165 131.77 0.05 19.01 5.11 27.51 1.45

3.2. Hyperspectral Reflectance Curve of Soil Samples

Based on the soil salinity classification standard and the actual situation in the study
area, we classified the soil samples as non-saline soil, very slightly saline soil, slightly
saline soil, moderately saline soil, and severely saline soil [62] (Figure 4). The slope of the
hyperspectral curve for HC–GM and QB–G increased rapidly at 400–600 nm, remained
stable at 600–1800 nm with wide and shallower troughs, and gradually decreased at
2000–2400 nm (Figure 4). This revealed that the hyperspectral reflectance curve for HC–
GM and QB–G have obvious wave type characteristics [63]. The hyperspectral reflectance
of QB–G’s severely saline soil and moderately saline soil was significantly higher than
those of the other soils, and the hyperspectral reflectance values of HC–GM samples were
directly proportional to their EC. Hygroscopic water refers to the water still contained
in the soil after the fresh soil has been dried for 1 week and stabilized under ventilated
conditions. The higher the salt content, the greater the moisture content [64]. The soil
samples in this study were naturally air dried indoors, so the reflectance of the severely
saline soil from QB–G was not the highest. However, this phenomenon was not observed
for HC–GM samples, which may be due to their lower salt contents. The shape of soil
reflectance curves was affected by the strong water absorption bands at 1450 and 1950
nm, and occasionally weaker water absorption bands at 1200 and 1770 nm in HC–GM and
QB–G [65]. An absorption band at 2200 nm was influenced by the vibrational mode of the
hydroxyl ion in HC–GM and QB–G [66]. Hydroxyl ion absorption also occurs at 1450 nm,
the same as the case of water absorption. Weak absorption bands at 1200 and 1770 nm
correspond to the absorption bands observed in transmission spectra of relatively thick
water films [67]. Bands at 1450 and 1950 nm were sharp in HC–GM, and the water molecules
were located in well-defined, ordered sites; on the contrary, the relatively broader bands at
1450 and 1950 nm in QB–G indicated the water molecules were in relatively unordered sites,
probably as water films on soil particle surfaces [66]. The 2200 nm hydroxyl absorption
band could be seen in samples of HC–GM and QB–G. The organic-affected form exhibits a
concave shape from 500 to 750 nm with a convex shape from 750 to 1300 nm [68], which
showed that the spectral curves in HC–GM and QB–G belonged to the organic-affected
form. Karmanov [69] found that the reflection intensity of iron hydroxides containing little
water and having a dark brown–red color increased most strongly in the wave interval
from 550 to 600 nm, which was same as the curve in HC–GM and QB–G. The curve in the
study areas was distinguished by an iron absorption band at around 870 nm [66].
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Figure 4. Hyperspectral reflectance curves of all of the soil samples (a1,a2), curve corresponding to
different EC (b1,b2) and the chemical types of the soil samples measured in the laboratory (c).

Based on the soil classification scheme [70], 20%, 13%, 31%, and 36% of all samples
from HC–GM and 44%, 18%, 30%, and 8% of all samples from QB–G were classified as
chloride-type, sulfate-chloride-type, chloride-sulfate-type, and sulfate-type soils, respec-
tively (Figure 4). Thus, the samples from HC–GM and QB–G were mainly sulfate type
and chloride type, respectively. The soil chemicals in the central and southern parts of
the Qaidam Basin are mainly NaCI and KCl [71], whereas those in the Hexi Corridor are
dominated by sulfate and chloride–sulfate [72], which was consistent with the contents of
the eight major saline ions measured in this study. Moreover, NaCl and KCl have weak
absorption from the visible to thermal infrared bands, and the average reflectivity of NaCl
is higher than that of NaSO4 [64,73,74]. Therefore, the reflectance of the soil in QB–G was
generally higher than that in HC–GM.

3.3. Correlation between EC and Different Forms of Hyperspectral Reflectance Data

In this study, the correlation coefficients between the EC and each band (400–2400 nm)
of the five forms (R, 1/lgR, 1/R, lgR, and

√
R) of hyperspectral reflectance in the 0–2 order

at different resampling intervals were calculated. Obviously, the absolute value of the
correlation coefficient when the resampling interval was 1 nm was significantly higher.
The correlation coefficients of 1/lgR and R were better than those of 1/R, lgR, and

√
R

for HC–GM, QB–G, and HCQB–GMG (Figure 5). The order of hyperspectral reflectance
of the five forms in all study areas corresponding to the top three absolute values of the
correlation coefficients was 0.8, 1.2, 1.4, and 1.6. Based on this, we selected 1/lgR and R of
orders 0.8, 1.2, 1.4, and 1.6 for the modeling when the band interval was 1 nm.
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Figure 5. The absolute value of the correlation coefficient between EC and hyperspectral reflectance
with different resampling intervals and orders, and the circles denote the fractional order correspond-
ing to the top three absolute values of the correlation coefficients.
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3.4. Simulation of Soil EC Using DELM and SCA–Elman
3.4.1. Modeling Results of DELM and SCA–Elman

The MAEv, RMSEv, and R2
v of the best model among all of the SCA–Elman models in

HC–GM were 0.10, 0.14, and 0.73, respectively, which were better than those of DELM for
HC–GM. The model with the highest accuracy for QB–G was SCA–Elman whose MAEv,
RMSEv, and R2

v were 0.09, 0.12 and 0.75, respectively. The best model from all of the models
in HC–GM, QB–G and HCQB–GMG was DELM because its multiple hidden layers were
more suitable for handling large samples in HCQB–GMG (MAEv = 0.08, RMSEv = 0.11,
R2

v = 0.77), and whose accuracy was slightly higher than that of SCA–Elman (Figure 6). The
accuracy of SCA–Elman for HC–GM and QB–G was basically higher than that of the DELM,
but the accuracy of DELM for HCQB–GMG was slightly higher than that of SCA–Elman.
Therefore, SCA–Elman is more suitable for salinity prediction in the study areas.

Figure 6. The modeling results of the validation dataset of the DELM for (a1) HC–GM, (a2) QB–G,
and (a3) HCQB–GMG and SCA–Elman for (b1) HC–GM, (b2) QB–G, and (b3) HCQB–GMG with
different data sources (the values of MAE and RMSE were processed with min–max normalization).
The gray column indicates the optimal model’s accuracy.
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3.4.2. Modeling Results for Different Data Forms and Different Regions

For HC–GM, the order with the highest accuracy of DELM was 1.4 for R, whereas
that of SCA–Elman was 1.4 for 1/lgR (Figure 6). For QB–G, the order with the highest
accuracy of DELM and SCA–Elman was 0.8 for R. For HCQB–GMG, the order with the
highest accuracy of DELM was 1.6 for 1/lgR, whereas that of SCA–Elman was 0.8 for 1/lgR.
Overall, the accuracies for the 1/lgR with different fractional orders were slightly higher
than those of R, and its over-fitting and under-fitting phenomena appeared less frequently
than those of R. The accuracies of most of the models with data sources on the order of 0.8
were basically better than those with orders of 1.2, 1.4, and 1.6, indicating that the fractional
differential transformation and mathematical transformation improved the accuracy of the
model.

By counting the average values of the accuracy indicators of the different models for
HC–GM, QB–G, and HCQB–GMG, we found that the accuracy of all of the SCA–Elman
and DELM models for HC–GM and QB–G was similar (Table 6). In HC-GM and QB-G, the
accuracy of SCA-Elman was slightly higher than DELM, which indicated that SCA-Elman
was more suitable for salinity prediction in these two study areas.

Table 6. The mean values of all of the model validation indicators for the different regions (the values
of MAE and RMSE were the values after min–max normalization).

Area Model
Calibration Validation

MAEc RMSEc R2
c MAEv RMSEv R2

v

HC–GM
SCA–Elman 0.06 0.11 0.67 0.13 0.18 0.62

DELM 0.07 0.09 0.80 0.17 0.21 0.51

QB–G
SCA–Elman 0.09 0.13 0.79 0.11 0.15 0.60

DELM 0.07 0.09 0.88 0.14 0.18 0.49

HCQB–GMG
SCA–Elman 0.08 0.11 0.71 0.11 0.15 0.59

DELM 0.06 0.08 0.85 0.10 0.13 0.66

3.5. Correlation between Different Surface Parameters and EC

All vegetation indexes in QB–G passed the significance test, whereas in HC–GM only
GDVI passed the significance test (Figure 7). GDVI has higher sensitivity than NDVI, SAVI,
EVI, and SARVI under low vegetation coverage [37]. Most of the salinity indexes in HC–
GM passed the significance test, and the number was slightly greater than that of QB–G.
The MPDI and NDWI of QB–G and HC–GM passed the significance test. Among all the
terrain attributes in HC–GM, only flow-line curvature passed the significance test, whereas
many terrain attributes in QB–G showed a high correlation with EC. Other parameters
of remote sensing data that passed the significance test in QB–G were wetness of Kauth–
Thomas (K–T) transformation, PC3–6, and BI. Brightness of K–T transformation, PC1,
texture (homogeneity, contrast, dissimilarity, entropy, second, correlation), and BI passed
the significance test in HC–GM.
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Figure 7. The absolute value of Pearson correlation coefficients between the land surface parameters
and soil EC, and the field photos of HC–GM and QB–G.

4. Discussion
4.1. Analysis of Correlation between Different Surface Parameters and EC

The correlations between the vegetation indexes and the EC in the two regions were
relatively high, but they were higher in QB–G than in HC–GM. Generally, the higher
the degree of salinization, the lower the vegetation coverage [75]. The EC of most of the
samples from QB–G was higher, and was coupled with the cold–dry climate of this area.
This had a harmful impact on the vegetation, which mainly comprises salt-sensitive plants,
and enhanced the sensitivity of the vegetation to salinity. The Heihe River Basin in the
Hexi Corridor is becoming warmer and wetter [76,77], which enhances the salt tolerance
of vegetation, especially halophytes. NDVI proved to be an ambiguous indicator of soil
salinization because it is also related to biomass, leaf area, plant cover, and nitrogen and
chlorophyll content, and its sensitivity differs among species [78]. Zhang et al. found that
most vegetation indexes have a weak relationship with soil salinity (mean R2 = 0.28) [79].
In the study of Wang et al., NDVI, RVI, GDVI, SAVI, and EVI failed the significance test
(p < 0.05) with the soil EC [21]. In addition, most of the samples (50 of 86 samples) on
HC–GM were distributed on unused land with low vegetation coverage, which was proved
by the NDVI map of Figure 1, and most vegetation indexes are not applicable to this land
use type. However, there were fewer samples (23 of 79 samples) of unused land in QB–G.

The climates of HC–GM and QB–G are dry. Evaporation is relatively strong in high
salinity regions, and the surface is relatively dry [80]. PDI is more suitable for bare soil.
Ghulam et al. introduced the vegetation coverage factor into the PDI and proposed the
MPDI [52]. In this study, some samples were distributed in grassland and arable land with
vegetation. HC–GM is located in an oasis in the middle reaches of the Heihe River, so its
terrain is flat. The altitude in QB–G gradually decreases from the southern mountains to
the salt lake in the center of the Qaidam Basin, and the vegetation cover decreases with
decreasing distance from the salt lake. Akramkhanov et al. [81] found that most of the
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terrain attributes had a low correlation with soil salinity because the study area was very
flat, which was similar to HC–GM. However, other research proved that combining satellite
data with DEM data to study soil salinity will make the results more effective and improve
accuracy [6], when the surface terrain is similar to that of QB–G.

In another study, we found that PC2 and PC3 attained the highest correlation with
the soil EC and there was a statistically significant correlation between the measured soil
salinity and the wetness of K–T transformation [21]. Wang found that the wetness of K–T
transformation and the salinity index were important [82], which was consistent with the
research in this article. QB–G and HC–CS have many salinity indexes that pass the 0.05
and 0.01 significance tests, and their number was higher than that of other indexes. The
correlation between the texture and EC was higher in HC–GM than that in QB–G. The mean
EC of HC–GM (8.06) was far below that of QB–G (30.92). There were obvious salty crusts
in QB–G. In the field investigation, we found that the soil of QB–G has a puffy salty frost
and structural crust due to irrigation in the cultivated land, and a smooth salty crust in the
grassland, which had higher reflectance than the slight and non-saline soil without crust
or salty frost [75,83,84]; this indicated that its surface conditions were relatively uniform
(Figure 7). The soil type of Figure 1 shows that most of the samples in HC–GM were
evenly distributed in different soil types, whereas many samples (35 in 79) from QB–G were
distributed in meadow saline soils. Thus, the texture in QB–G had a weak correlation with
EC. Because BI carries the brightness information of the image, BI is positively correlated
with EC, and the area with high BI corresponds to the high EC in the image [85]. The BI of
QB–G and HC–CS were both significantly correlated with EC. According to remote sensing
images, the high values of PC are mainly distributed in high brightness areas [86]. PC3
and EC were highly correlated in QB–G, and PC1 and EC were significantly correlated in
HC–CS, because of the high amount of information of the first three components of the
PCA. Metternicht and Zinck [75] proved that PCA of remote sensing images was a useful
method to distinguish saline soils. In the Ardakan region of Yazd Province in central Iran,
the most important of various auxiliary data for EC prediction were PC1–3 and terrain
attributes [87].

The indexes that passed the significance test in HC–GM (PDI, MPDI, VSSI, Int2, SI2,
NDSI, BI, GDVI) and QB–G (MPDI, MSAVI, CRSI, NLI, VSSI, S5, NDSI, BI, GDVI, DVI, EVI,
GVI, and NDVI) were all calculated with the fourth (red band) and fifth bands (near infrared
band) of Landsat 8. Other studies have shown that the red and near-infrared bands contain
more soil salinity information [88,89]. Over-fitting and under-fitting problems indicate
that the generalization ability of the model is weak [90]. HCQB–GMG (R2

v = 0.77) had the
highest accuracy among all of the models for all of the areas. It was even slightly higher
than that of SCA–Elman (R2

v = 0.74), which shows that the two areas have similarities in
terms of dry climate. However, DELM and SCA–Elman had serious over-fitting problems
for HC–GM and higher accuracies for QB–G. The changes in the surface environment,
especially the altitude and vegetation, are subject to more obvious natural laws in QB–G,
whereas HC–GM is located in the flatter oasis of the Heihe River with a single surface
environment. Some studies achieved similar results [82,91–93] (Table 7), including those
of Peng et al. [91] and Wang et al. [82], whose study areas comprised flat alluvial fans
and oases, respectively. Thus, most of the land surface parameters had higher correlation
coefficients in QB–G than in HC–GM. This resulted in the lower accuracies of the models
for HC–GM. In addition, this may be due to the relatively lower matching between the
sub-samples and pixels of Landsat 8 in HC–GM than that in QB–G.
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Table 7. The absolute value of correlation coefficients between soil EC and land surface parameters
of different studies.

Region
Surrogate

Parameter of
Salinity

Vegetation
Indexes

Salinity
Indexes

Terrain
Attributes PCA References

Wensu county of southern
Xinjiang

Province, China
EC 0.25–0.42

(mean: 0.31)
0.01–0.29

(mean: 0.11)
0.01–0.43

(mean: 0.09)
0.01–0.33

(mean: 0.13) [91]

The Yellow River delta of
China EC 0.51–0.70

(mean: 0.61)
0.08–0.52

(mean: 0.31) - - [92]

The Kuqa oasis in the
northwestern part of Tarim

Basin, China
EC 0.44–0.80

(mean: 0.55) - 0.04–0.41
(mean: 0.20) - [82]

The Ebinur Lake in
Xinjiang, China EC 0.27–0.36

(mean: 0.34)
0.13–0.65

(mean: 0.43) - - [93]

4.2. Advantages of Hyperspectral Data and Fractional Differential Transformation

Hyperspectral data contain abundant spectral information [94], but they are prone to
data redundancy, so it is necessary to select characteristic variables. The image filtering
method based on the fractional order is better than that based on the integer order, which
can significantly enhance image edges and avoid large noise [95]. The 0.8, 1.2, 1.4, and
1.6 order differential transformations in this study significantly enhanced the correlation
between the hyperspectral reflectance and the EC. The models based on these four fractional
orders performed better than those based on the original spectral reflectance in HC–GM,
QB–G, and HCQB–GMG. Other scholars have reached similar conclusions. Hong et al. [96]
reported that the partial least squares support vector machine (PLS–SVM) based on an
order of 1.25 achieved the best performance.

4.3. Analysis of the Different Machine Learning Algorithms

At present, many improved algorithms for ELM have been developed [97–99]. In this
study, the introduction of a regularization coefficient improved the generalization ability of
the model [23]. Thus, the simulation accuracy of the DELM for HCQB–GMG was the highest
among all of the models for all of the areas. ELM has a single hidden layer, and DELM
uses a multi-hidden layer structure to increase the applicability for large samples. The SCA
algorithm is characterized by a simple structure, fast convergence speed, high exploratory
power, and local optimal avoidance. In this study, the SCA algorithm was used to optimize
the weight and threshold parameters of the Elman net. The simulation accuracies of most
of the SCA–Elman results for HC–GM and QB–G were better than those of the DELM.
Even for HCQB–GMG, the accuracy of SCA–Elman was only slightly lower than that of
DELM. Nabiollahi et al. reported similar results using three optimization algorithms (i.e.,
particle swarm optimization (PSO), genetic algorithm (GA), and bat algorithm (BAT)) to
compare the hybridized RF and the standard RF, and concluded that the PSO–RF performed
best [100].

Taghadosi et al. extracted features from the radar intensity images and texture analysis
of Sentinel-1 data and established soil salinization monitoring models [101]. Zhang et al.
extracted normalized backscatter coefficient, entropy, alpha, anisotropy, and other radar
indexes from Sentinel-1 dual-polarized data for salinization inversion [102]. Two gamma–
nought backscattering coefficients and various textures features were included in the soil
salinity mapping in the study of Hoa et al. [103], all of which achieved good results. Shi
et al. conducted a meta-analysis of salinization prediction research, selected 57 articles,
and found that models using radar data such as Sentinel-1 outperformed Landsat, whereas
models using hyperspectral satellite data such as HJ-1 and EO-1 Hyperion performed
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similarly to Landsat [104]. Therefore, radar data can be used for soil salinization prediction
modeling and regional mapping in the future.

5. Conclusions

Soil salinization is a serious land degradation problem in arid and semi-arid regions of
the world. Hyperspectral data has the advantages of high spectral resolution, continuous
bands, and rich information, which are beneficial to the modeling of this research. In
this study, QB–G in the Qaidam Basin and HC–GM in the Hexi Corridor were chosen,
combined with machine learning methods to monitor the difference in the salinization
in these two areas. The 1/lgR mathematical transformation was found to improve the
correlation between the hyperspectral reflectance and the EC. In addition, the correlations
between the hyperspectral reflectance of the 0.8, 1.2, 1.4, and 1.6 orders and the EC were
significantly better. The soils of QB–G mainly belonged to the chloride type, whereas
sulfate-type soils predominated in HC-GM. The reflectance of the chloride-type soil was
higher than that of sulfate-type soil. The results of most of the SCA–Elman modeling for
HC–GM and QB–G were better than those of DELM, indicating that SCA–Elman was more
suitable for monitoring salinity in these areas. The accuracy of the salinization monitoring
model for QB–G was higher than that for HC–GM. The topography of the oasis in HC–GM
is flatter with less obvious surface changes. The topography and vegetation in QB–G exhibit
regular changes as the altitude decreases from the south to the center of Qaidam Basin,
and its cold–dry climate weakens the tolerance of the vegetation to salt, which results in a
higher correlation with the EC. However, DELM for HCQB–GMG had the highest accuracy
for HC–GM, QB–G, and HCQB–GMG, which shows that HC–GM and QB–G are similar
in terms of their dry climates. This study can provide a valuable reference for salinity
prediction and regional development.
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