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Abstract: In July 2021, Typhoon In-Fa attacked eastern China and broke many records for extreme
precipitation over the last century. Such an unrivaled impact results from In-Fa’s slow moving speed
and long residence time due to atmospheric circulations. With the supports of 66 networked surface
disdrometers over eastern China and collaborative observations from the advanced GPM satellite, we
are able to reveal the unique precipitation microphysical properties of the record-breaking Typhoon
In-Fa (2021). After separating the typhoon precipitation into convective and stratiform types and
comparing the drop size distribution (DSD) properties of Typhoon In-Fa with other typhoons from
different climate regimes, it is found that typhoon precipitation shows significant internal differences
as well as regional differences in terms of DSD-related parameters, such as mass-weighted mean
diameter (Dm), normalized intercept parameter (Nw), radar reflectivity (Z), rain rate (R), and intercept,
shape, and slope parameters (N0, µ, Λ). Comparing different rain types inside Typhoon In-Fa,
convective rain (Nw ranging from 3.80 to 3.96 mm−1 m−3) shows higher raindrop concentration
than stratiform rain (Nw ranging from 3.40 to 3.50 mm−1 m−3) due to more graupels melting into
liquid water while falling. Large raindrops occupy most of the region below the melting layer in
convective rain due to a dominant coalescence process of small raindrops (featured by larger ZKu,
Dm, and smaller N0, µ, Λ), while small raindrops account for a considerable proportion in stratiform
rain, reflecting a significant collisional breakup process of large raindrops (featured by smaller ZKu,
Dm, and larger N0, µ, Λ). Compared with other typhoons in Hainan and Taiwan, the convective
precipitation of Typhoon In-Fa shows a larger (smaller) raindrop concentration than that of Taiwan
(Hainan), while smaller raindrop diameter than both Hainan and Taiwan. Moreover, the typhoon
convective precipitation measured in In-Fa is more maritime-like than precipitation in Taiwan. Based
on a great number of surface disdrometer observational data, the GPM precipitation products were
further validated for both rain types, and a series of native quantitative precipitation estimation
relations, such as Z–R and R–Dm relations were derived to improve the typhoon rainfall retrieval for
both ground-based radar and spaceborne radar.

Keywords: Typhoon In-Fa; disdrometer network; GPM satellite; precipitation microphysics; hydrom-
eteor identification

1. Introduction

China is one of the countries that most suffered from typhoon hazards in the world.
Severe Typhoon In-Fa, the sixth typhoon in 2021, broke many historic precipitation records
while it made landfall in eastern China. As reported by China Meteorological Admin-
istration (CMA), the daily average rainfall accumulation in Zhejiang Province reached
191 mm during In-Fa landfall, posting the record of largest total typhoon rainfall in Zhe-
jiang. Under the continuous influence of the spiral rain belt of Typhoon In-Fa, the maximum
accumulated rainfall reached 402.1 mm in Jinshan, Shanghai, which is the largest amount
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of typhoon rainfall affecting Shanghai in recent decades. As In-Fa moved forward, the
daily average rainfall in Jiangsu Province reached 220.9 mm, and the maximum process
rainfall was 569.2 mm (reported in Jiangdu District), which broke the record of largest total
typhoon rainfall in Jiangsu. These extreme precipitation events brought great challenges to
the typhoon disaster prevention and control work of the Chinese government.

Improving radar quantitative precipitation estimation (QPE) and model quantitative
precipitation forecast (QPF) for landfalling typhoons is crucially important for disaster pre-
vention and mitigation [1–3]. The key to improving typhoon QPE & QPF includes a better
understanding of precipitation microphysical process and structure, which needs support
from reliable observatory platforms. However, it is difficult to meet the requirements for
reliable typhoon observation data by using only a single source of observation. Thus,
multi-sources observation and joint observations from multiple aspects and by combining
a variety of instruments are urgently needed.

Disdrometers are frequently used to directly measure the basic microphysical infor-
mation, such as raindrop size distribution (DSD) of typhoon precipitation [3–7]. Recently,
Wen et al. [3] investigated the DSD characteristics of seven landfalling typhoons by using
two-dimensional video disdrometers (2DVD) and found that typhoon convective precipita-
tion contains higher (lower) raindrop concentration (diameter) than maritime convection.
Bao et al. [4,5] revealed the DSD variability among different typhoon rainbands based on
observations from several particle size velocity (PARSIVEL) distrometers. Bao et al. [6]
further analyzed the microphysical characteristics of Typhoon Lekima (2019) by using a
dozen Thies disdrometers, and revealed that the average raindrop concentration (diameter)
generally increases (decreases) radially from the typhoon center. With the fast development
of radar and satellite techniques, the dual-frequency precipitation radar (DPR) onboard
the Global Precipitation Measurement (GPM) satellite has been widely adopted to inves-
tigate the vertical structure of typhoon precipitation and indirectly retrieve the relevant
microphysical information [8–10]. Based on long-term GPM DPR observations, Huang and
Chen [8], and Chen et al. [9] conducted statistical research on the precipitation microphysics
of tropical cyclones over the Western North Pacific, and found that the coalescence process
contributes to the production of precipitation in typhoon clouds, while the breakup of
hydrometeors is the dominant process in clouds with less precipitation; when storm top
height (STH) is less than 5 km, the coalescence process is dominant in typhoon rainbands,
while the influence of the breakup process increases as STH exceeds 5 km. By combining
GPM DPR and ground radar, Wu et al. [10] revealed the dominant microphysical processes
in different typhoon areas and further found that large radar spectral width occurred in the
area with large raindrop diameter and high STH.

Overall, the disdrometer network plays an irreplaceable role in detecting the surface
precipitation, while the GPM satellite is capable of retrieving the hydrometeor distribution
at different levels of height. Therefore, by combining disdrometers with GPM DPR, one can
not only obtain the DSD of near-surface precipitation but also retrieve the microphysical
information of high-level precipitation. Meanwhile, disdrometers can also serve as a
standard to validate and improve GPM retrieval accuracy [11–15]. Even though, most
precipitation microphysical studies concerning typhoons have obtained their results using
either disdrometer or GPM satellite as the main analysis data. As far as the authors know,
there is still inadequate literature using disdrometer-GPM combinations to investigate the
microphysical properties of typhoon precipitation events.

As an early attempt to use disdrometer-GPM combinations for typhoon precipitation
microphysics research, this study focuses on the record-breaking Typhoon In-Fa in July 2021
and investigates its unique precipitation microphysical properties based on collaborative
observations from surface disdrometer network and GPM DPR. The results would benefit
our understanding of typhoon precipitation microphysics and help improve typhoon QPE
& QPF, which further contribute to the decision-making of local governments in facing
extreme precipitation events.
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2. Data and Methods
2.1. PARSIVEL Disdrometer Network

In-situ observational data from a PARSIVEL disdrometer network located across
Jiangsu Province, China (116.3–122.0◦E, 30.8–35.3◦N) were used in this study. The area
representing Jiangsu Province is indicated by a red contour in Figure 1a, along with the
best track of Typhoon In-Fa (2021) obtained from CMA. In-Fa made landfall in the Zhejiang
Province at Typhoon (TY) intensity level but weakened gradually as it headed north-west
(Figure 1a). 66 PARSIVEL disdrometers comprising the observatory network functioned
simultaneously during the passage of Typhoon In-Fa. The locations of each disdrometer are
presented in Figure 1b, and the 1-min DSD data measured by each disdrometer from 25 July
0000UTC to 30 July 0000UTC are summarized in Table S1. It should be noted in Figure 1b
that 66 disdrometers cover almost the whole area of Jiangsu Province (about 100,000 km2),
with each disdrometer deployed every 200 km on average. The PARSIVEL disdrometers
used herein are optical disdrometers manufactured by OTT Hydromet, Germany, which
are capable of measuring both raindrop size and falling velocity at the same time [16]. To
decrease the measurement error, PARSIVEL data quality control technology was applied
following Wu et al. [11,12]. Fallers with diameters greater than 8 mm or falling speeds
beyond ±60% of the atlas V-D curve (velocity versus diameter relationship) for rain [17]
were discarded. Moreover, 1-min DSD samples with raindrop counts less than 10 or rain
rates lower than 0.1 mm h−1 were removed to eliminate the possible instrument noise [18].
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ters) and accumulated precipitation (unit: mm) during the passage of Typhoon In-Fa from 25 July 
0000UTC to 30 July 0000UTC. The superimposed red contour in panel (a) represents Jiangsu Prov-
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sent typhoon.  

Figure 1. (a) Best track for Typhoon In-Fa (2021) based on observations from China Meteorological
Administration (CMA), (b) Location of PARSIVEL disdrometer network (altogether 66 disdrometers)
and accumulated precipitation (unit: mm) during the passage of Typhoon In-Fa from 25 July 0000UTC
to 30 July 0000UTC. The superimposed red contour in panel (a) represents Jiangsu Province. Four
categories of typhoon intensity are classified here following CMA, wherein TD represents tropical
depression, TS represents tropical storm, STS represent super tropical storm, and TY represent typhoon.

2.2. GPM DPR Data

On 27 July 2021 at about 1105 UTC, as Typhoon In-Fa was hitting Jiangsu Province, the
GPM satellite also passed and recorded the severe precipitation caused by In-Fa (Figure 2).
The DPR onboard GPM satellite instantaneously retrieved a three-dimensional precipitation
structure based on a set of advanced precipitation-retrieval algorithms developed by Iguchi
et al. [19]. Two precipitation radars (PR) of Ku (13.6 GHZ) and Ka (35.5 GHz) bands
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constitute the whole DPR instrument. Three types of GPM DPR level-2 products are issued
officially due to different wave-band PRs and scan modes, including the Ka-band high-
sensitivity product (KaHS), Ku-band normal-scan product (KuNS), and dual-frequency
matched-scan product (DPR_MS). KaHS has a swath width of 120 km (24 pixels) and
a nominal range bin of 125 m, KuNS has a swath width of 245 km (49 pixels) and a
nominal range bin of 125 m, and DPR_MS has a swath width of 125 km (25 pixels) and
a nominal range bin of 250 m. Each pixel is approximately 5 × 5 km2 in size. In this
study, we chose version 6 (V6) standard products of KuNS (granule No. 42,108) to obtain
the attenuation-corrected equivalent radar reflectivity (Ze, unit: dBZ), rain rate (R, unit:
mm h−1), mass-weighted diameter (Dm, unit: mm), normalized intercept parameter (Nw,
unit: mm−1 m−3), and rainfall type (stratiform, convective, and other) due to its wider
observational range, higher vertical resolution, and smaller attenuation than those of
KaHS or DPR_MS. Figure 2 shows the rain type and maximum radar reflectivity (i.e.,
composite reflectivity) obtained from KuNS product during Typhoon In-Fa (2021). A total
of 3745 pixels with 379 convective pixels and 2436 stratiform pixels are identified (the
rain classification method is particularly introduced in Section 2.4). The convective pixels
in Figure 2a correspond well to the strong radar echo areas in Figure 2b. Note that the
minimum detectable radar reflectivity is currently 15.46 dBZ for KuNS after four years of
calibration of GPM DPR [20].
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Figure 2. GPM instantaneous observation at 1105 UTC: (a) rain types (convective, stratiform, shallow,
and other) and (b) maximum equivalent radar reflectivity (dBZ). The paralleled gray lines represent
the boundaries of GPM scanning path.

2.3. Disdrometer Data Processing

Each PARSIVEL disdrometer sample is archived into a 32 × 32 matrix that contains
the drop counts corresponding to 32 diameter classes (0–25 mm) and 32 velocity classes
(0–22.4 m s−1) [16]. Based on the measured drop size (D) and velocity (V) distribution data
from PARSIVEL disdrometers, one can easily calculate the following parameters, including
but not limited to, radar reflectivity factor Z (mm6 m−3), rain rate R (mm h−1), rainwater
content W (kg m−3), mass-weighted mean diameter Dm (mm), and normalized intercept
parameter Nw (mm−1 m−3):

Z =
32

∑
i=1

N(Di)Di
6 ∆Di (1)
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R = 6π × 10−4
32

∑
i=1

32

∑
j=1

VjDi
3N(Di)∆Di (2)

W =
π

6
× 10−6

32

∑
i=1

N(Di)Di
3∆Di (3)

Dm =

32
∑

i=1
N(Di)Di

4∆Di

32
∑

i=1
N(Di)Di

3∆Di

(4)

Nw =
44

πρ0
(

W
D4

m
), ρ0 = 1 × 103(kg/m3) (5)

Gamma distribution [21] with three parameters [N0, µ, Λ] has been widely used in
plenty of studies for characterization of DSD and can be expressed as:

N(D) = N0Dµexp(− ΛD) (6)

Where D (mm) is the equivalent-volume raindrop diameter, N(D) (m−3 mm−1) is the
raindrop concentration per unit volume in the diameter interval, N0 (mm−1-µ m−3) is
the intercept parameter, µ (dimensionless) is the shape parameter, and Λ (mm−1) is the
slope parameter. The three control parameters of the gamma DSD model [N0, µ, Λ] were
calculated using the truncated moment fitting method adapted from Zhang et al. [22].

2.4. Rain Classification Method

To discriminate and compare the microphysical characteristics of different rain types
in Typhoon In-Fa, a frequently used rain classification method proposed by Bringi et al. [23]
was employed to divide the typhoon precipitation into convective and stratiform types
based on surface disdrometers observation. Specifically, stratiform rain is characterized
with σR ≤ 1.5 mm h−1, while convective rain is characterized with σR > 1.5 mm h−1 and
R ≥ 5 mm h−1, where σR denotes the standard deviation of R for ten consecutive 1-min
DSDs. Figure 3 gave the disdrometer-based rain classification results by taking Gaoyou,
Jiangdong, and Dongtai stations as examples. All three stations have detected intense rain
exceeding 250 mm during typhoon landfall (Figure 1b). As shown in Figure 3a–c, the first
half of the time series (25 July 2021–27 July 2021) is mainly stratiform precipitation (orange
stripe) possibly from the spiral rain belt of Typhoon In-Fa, and the second half of the time
series (27 July 2021–29 July 2021) is mainly convective precipitation (blue stripe) possibly
from the eyewall of Typhoon In-Fa. It is also suggested in Figure 3 that the stratiform rain
tends to have smaller R (black line) and σR (magenta line) than that of convective rain.

In the V6 standard products of KuNS, the retrieved rainfall at each pixel is classified
into convective, stratiform and other types based on the horizontal and vertical variability
of measured radar echo [24]. The convective type defined by GPM official products
usually contains shallow rain, whereas shallow rain is observed to have different DSD
characteristics from either convective rain or stratiform rain [25]. Thus, in this study, we
removed shallow rain from convective rain. Figure 2a showed the identified four types of
rain from the GPM DPR overpass. To match the classification thresholds in the disdrometer-
based scheme, the samples in the GPM DPR with R < 5 mm h−1 were also excluded from
convective samples. More information concerning GPM rainfall classification methods and
rainfall retrieval procedures can be found in the lev-2 Algorithm Theoretic Basic Document
(ATBD) provided by Iguchi et al. [19].
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2.5. Hydrometeor Recognition Method

To further illustrate the GPM-retrieved microphysical characteristics of Typhoon
In-Fa, a fuzzy-logic algorithm proposed by Qiao et al. [26] was employed to recognize
the hydrometeor types within Typhoon In-Fa by using Ku (Ka) band equivalent radar
reflectivity (Ze), temperature (T) thresholds and an asymmetric t-form membership function
as given in Table 1 of Qiao et al. [26]. Currently, the recognizable types of hydrometeors
include snow, graupel, mixed-phase particles, large raindrops, and small raindrops. In
this study, we used the Ku-band attenuation-corrected reflectivity detected from GPM
DPR, along with the temperature profile from the fifth generation reanalysis data (ERA5)
of the European Centre for Medium-range Weather Forecasts (ECMWF) [27] to identify
the hydrometeor types. The hydrometeor with the largest cumulative probability of all
parameters (Ze and T) was recognized as the maximum likelihood type at each grid point.
Note that the GPM hydrometeor recognition method has been specifically validated for
typhoons and is proved to have a reasonable performance with mean recognition rates of
the solid-phase (snow and graupel), mixed-phase (mixed-phase particles), and liquid-phase
(large and small raindrops) reaching 80.9%, 75.6%, and 86.8% respectively [26].
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Table 1. Mean values of gamma distribution parameters in terms of different rain rates.

Rain Type R
(mm h−1)

log10N0
(mm−1-µ m−3)

µ
(Dimensionless)

Λ

(mm−1)

Convective

5 < R ≤ 10 6.72 6.87 8.83
10 < R ≤ 20 5.84 5.66 6.60
20 < R ≤ 40 5.05 4.19 4.69

R > 40 4.42 2.16 2.96

Stratiform

R ≤ 2 10.24 11.77 18.83
2 < R ≤ 5 7.35 7.49 11.08

5 < R ≤ 10 5.67 5.04 6.84
10 < R ≤ 20 5.84 5.53 6.72

3. Results
3.1. Analysis of Atmospheric Circulation

As is shown in Figure 1a, Typhoon In-Fa weakened to tropical storm level when enter-
ing Jiangsu Province, but still caused extremely severe precipitation in many cities, such as
Gaoyou, Jiangdong and other places (Figure 1b and Figure S1). Notably, the cumulative
rainfall exceeded 300 mm in both Gaoyou and Jiangdong, and the maximum rain rate
in Dongtai reached 237.58 mm per hour at 2021/0728/1003 UTC (Table S1 & Figure 3).
According to the atmospheric circulation exhibited in Figure 4, the main reason for the
heavy rainfall is that In-Fa was trapped in the saddle field between the range of Western
Pacific subtropical high (located around the Korean Peninsula) and the continental high
(located around Northern China) during its movement. The guiding airflow that promotes
the typhoon’s movement is thereby weakened, resulting in In-Fa’s slow movement speed
and long residence time. Figure 1a suggests that Typhoon In-Fa stayed in Jiangsu Province
for approximately 37 h (~1.5 days, a new record) and stayed in continental China for up to
95 h (~4 days, also a new record), exerting a serious threat on the safety and property of
local residents.

3.2. Precipitation Microphysics from Disdrometer Data
3.2.1. Overall DSD Characteristics

To distinguish the precipitation microphysical differences between two rain types
(convective & stratiform), the PARSIVEL measured samples are subdivided into six rain
rate (R) ranges, namely R ≤ 2, 2 < R ≤ 5, 5 < R ≤ 10, 10 < R ≤ 20, 20 < R ≤ 40, and R > 40
(unit: mm h−1) [11–13]. In addition, large (small) drops are predefined to have diameters
larger than 4 mm (smaller than 1 mm), and the diameter of middle-size drops is between 1
mm and 4 mm. The composite raindrop spectrum of two rain types under different rain
rates are illustrated in Figure 5. Note that there are barely samples lower than 5 mm h−1 in
convective rain, and stratiform rain is basically less than 20 mm h−1.

As the rain rate increases, the evolution of the raindrop spectrum differs significantly
from convective rain to stratiform rain (Figure 5). Specifically, for convective rain shown
in Figure 5a, the number concentration of large (small) raindrops increases (decreases)
remarkably with an increase in rain rate, indicating a dominant collision and coalescence
process that increases the number of large raindrops by consuming plenty of small drops.
While for stratiform rain shown in Figure 5b, the number concentration of large raindrops
increases first as R ≤ 10 mm h−1 and then decreases with rain rates exceeding 10 mm h−1.
On the contrary, the variation of small raindrops in stratiform rain is barely noticeable
under any rain rates. This reflects a coalescence process at lower rain rates and a collision
and breakup process at relatively higher rain rates. Due to that, the middle-size drops show
a distinct growth in number concentration (Figure 5b).
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Table 1 also gives the statistics of gamma distribution parameters [N0, µ, Λ] for both
convective rain and stratiform rain in Typhoon In-Fa. It is obvious that stratiform rain
shows a larger mean value of µ than convective rain, indicating a more convex raindrop
spectral shape of stratiform rain. This is consistent with the significant increase of middle-
size drops shown by the composite spectrum in Figure 5b. Meanwhile, convective rain also
shows smaller mean values of N0 and Λ than those of stratiform rain. This is because the
coalescence process of raindrops dominates the formation of convective precipitation as
analyzed in Figure 5a, which decreases the number concentration and increases the median
volume drop diameter (D0), thus leading to smaller N0 and Λ (Λ = 3.67/D0) [28].
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rates for (a) convective rain and (b) stratiform rain.

3.2.2. DSD Derived Relationships

Parameters µ and Λ of the gamma distribution (Equation (6)) are inherently correlated
and are empirically expressed as a second-degree polynomial µ–Λ relationship [22]. The
µ–Λ empirical relationship is broadly adopted to depict the DSD features in typhoon
precipitation [2–7]. It is also reported that µ–Λ relationship can be utilized to constrain
gamma distribution and retrieve DSD from measurements of polarimetric radars [22].
Recent research suggested that the µ–Λ relationship of typhoon precipitation changes with
different climate regimes [2–7]. Chang et al. [2] derived the µ–Λ relationship of typhoons
using disdrometer measurements in Taiwan. Wen et al. [3] obtained the µ–Λ relationship
in continental China during typhoons landfall. It is necessary to derive the unique µ–Λ
relationship for precipitation of landfalling typhoon In-Fa (2021).

It is reported by Zhang et al. [29] that µ and Λ exhibited a higher correlation after
filtering DSD samples with rain rates larger than 5 mm h−1 and number counts more than
1000. Following the data filtering process in Zhang et al. [29], the scatterplot of µ and Λ in
Typhoon In-Fa are obtained using the truncated moment method introduced in Section 2.3.
A native µ–Λ relationship was accordingly derived for Typhoon In-Fa as Λ = 0.012µ2 +
0.886µ + 1.530. The µ and Λ scatter points and their fitting results are illustrated in Figure 6.
For gamma distribution, the µ–Λ relationship can be related to raindrop diameter Dm
via the formula of ΛDm = 4 + µ [30]. The larger slope of the µ–Λ relationship thereby
corresponds to higher Dm values. As shown in Figure 6, compared to the fit of typhoon
rain from Chang et al. [2], our fits appear in the lower Dm region, which suggests that the
DSDs of typhoon systems measured in Jiangsu have lower Dm values than those observed
in Taiwan. While compared to the fit of typhoon rain from Wen et al. [3], our fits appear
in the higher Dm region, which suggests that the DSDs of typhoon In-Fa have higher Dm
values than other typhoons landing in continental China.
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Figure 6. µ-Λ scatter diagram (gray dots) and corresponding fitting curve (red line) based on
PARSIVEL disdrometer observations of Typhoon In-Fa (2021). The dashed line represents the
empirical µ-Λ relationship of typhoons over Taiwan from Chang et al. [2]. The dash-dot line represents
the empirical µ-Λ relationship of typhoons over continental China from Wen et al. [3]. The gray lines
correspond to the Dm contour according to ΛDm = 4 + µ [30].

To further compare the raindrop size and concentration of Typhoon In-Fa with those
of other climatic regimes, Figure 7 gives the scatter diagram of log10(Nw) and Dm for the
convective and stratiform rain types of In-Fa based on the PARSIVEL disdrometer network in
Jiangsu. The results from other typhoon studies are also included in Figure 7 for comparison.
Note the double black rectangles on the scatter diagram are correspondent to the maritime-like
and continental-like convective categories proposed by Bringi et al. [23]. As shown in Figure 7,
the stratiform rain samples of Typhoon In-Fa are lower than the stratiform line in Bringi
et al. [23]. The typhoon convective precipitation of In-Fa can be identified as more maritime-
like rather than continental-like, which is possibly influenced by the sufficient water vapor
transported from the western Pacific ocean during typhoon landfall. Compared with other
typhoons convective precipitation measured by disdrometers in Hainan [7] and Taiwan [2],
the precipitation measured in Jiangsu shows significant regional differences. The raindrop
concentration seems highest in Hainan (log10(Nw) = 4.47), followed by Jiangsu (log10(Nw) =
4.11), while Taiwan shows the lowest number concentration of raindrops (log10(Nw) = 3.8).
The mean diameter seems largest in Taiwan (Dm = 2), followed by Hainan (Dm = 1.49), while
Jiangsu shows the smallest drop diameter (Dm = 1.48). The typhoon convective precipitation
measured in Jiangsu and Hainan seems more maritime-like than precipitation in Taiwan,
which could be related to the topography effect of the Central Range that enhances the
convection in Taiwan [2]. Compared with other typhoons’ convective precipitation mea-
sured in continental China [3], Typhoon In-Fa has a distinctly larger raindrop diameter but
smaller raindrop concentration.
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borne radar, in this section, we derived the native Z-R and R-Dm relationship of Typhoon 
In-Fa by employing the measurements of disdrometer network in Jiangsu. Figure 8 gives 
the scatter diagrams and fitting curves of Z-R and R-Dm for both convective rain and strat-
iform rain in Typhoon In-Fa. The fitting results are obtained via the least-squares method 
and are presented in Table 2 as well. 

Figure 7. Scatter diagram of log10(Nw) and Dm observed from the PARSIVEL disdrometers for convective
(blue dots) and stratiform precipitation (red dots) in Typhoon In-Fa. The green and magenta rectangles
represent the average values (along with ± standard deviation) of convective rain (denoted as AVE.CON)
and stratiform rain (denoted as AVE.STR), respectively. The black triangle, diamond, and circle represent
results from other typhoon studies for comparison. The two outlined rectangles correspond to the
maritime and continental convective clusters observed by Bringi et al. [23]. The black dashed line
indicates the fitting curve of stratiform rain in Bringi et al. [23].

3.3. Radar Quantitative Rain Rate Estimation

One vital assumption used in both single and double frequency rainfall retrieval
algorithms for GPM DPR is the relationship between rain rate (R) and Dm [19,31]. R-Dm
relationships are derived for stratiform and convective rain respectively to compute specific
attenuation and equivalent radar reflectivity for a given rain rate at both Ku and Ka bands.
Currently, the R-Dm relationships used in the official algorithm for retrieving convective
rain and stratiform rain are R = 1.370Dm

5.420 and R = 0.401Dm
6.131, respectively [19]. Nev-

ertheless, the GPM relationships are derived according to precipitation measurements
in the tropics [31–33], which might not suit the rainfall estimation of a typhoon in the
mid-latitudes. To improve the quantitative rain rate estimation of both ground radar and
spaceborne radar, in this section, we derived the native Z-R and R-Dm relationship of Ty-
phoon In-Fa by employing the measurements of disdrometer network in Jiangsu. Figure 8
gives the scatter diagrams and fitting curves of Z-R and R-Dm for both convective rain
and stratiform rain in Typhoon In-Fa. The fitting results are obtained via the least-squares
method and are presented in Table 2 as well.
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scatters represent convective and stratiform samples, respectively. The overlaid black line in panel
(a) represents the experience relationship Z = 300R1.40 from Fulton et al. [34]. The black dashed
(dash-doted) line in panel (b) represents the default relationship R = 1.370Dm
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6.131)

used for the retrieval of convective (stratiform) rain in GPM lev-2 ATBD [19].

Table 2. Exponential relationships of Z–R and R–Dm derived from PARSIVEL disdrometer observa-
tions for two rain types.

Relation Rain Type a b

Z = aRb Convective 124.2 1.567
Stratiform 196.6 1.465

R = aDm
b Convective 2.513 4.109

Stratiform 1.146 5.011

For comparison, the standard Z-R relationship (Z = 300R1.4) used in the Next-Generation
Weather Radar of the United States (NEXRAD) [34] is also shown in Figure 8a. It is noted that
NEXRAD generally underestimates the rain rate in Typhoon In-Fa given the same radar
reflectivity. The difference is expected to be associated with the special DSD features of
the typhoon precipitation over eastern China and inspires us to develop the native radar
QPE relationship for preventing typhoon disasters. Apart from ground radar, spaceborne
radar also contributes to the prevention and mitigation of typhoon disasters. The current
R-Dm relationships in the GPM official product are also compared with our fitting results as
shown in Figure 8b. It is noted that GPM seems to slightly underestimate the drop diameter
in Typhoon In-Fa given the same rain rate. This can be related to the latitudinal variability
of DSD, the precipitation measured in Tropics might have a smaller drop diameter than
typhoon precipitation in mid-latitudes. Furthermore, the GPM product is evaluated by
comparison with PARSIVEL disdrometer observations in the next section.

3.4. Statistical Assessment on GPM DPR

Surface disdrometer networks can also be utilized to evaluate the product quality
of GPM satellites. One important caveat is that merely a limited amount of GPM pixels
are typically available from a single overpass. Besides, the matching between GPM and
disdrometer stations is quite difficult. To overcome the “snapshot” view from GPM DPR
over a footprint of 5 km × 5 km versus almost continuous DSD measurements from
disdrometers, a statistical comparison between GPM and PARSIVEL is performed. Figure 9
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shows the comparison results of PARSIVEL disdrometers and GPM DPR measurements for
near-surface rain rate (Figure 9a) and equivalent radar reflectivity (Figure 9b) in Typhoon
In-Fa. The comparisons are conducted separately for convective rain and stratiform rain by
using the rain classification method in Section 2.4. The results are expressed in the form of
a probability distribution function (PDF) that provides valuable information when different
instruments are compared. As shown in Figure 9a, the PDF curve shapes of PARSIVEL
(blue line) and GPM (red line) exhibit high correlations, and both are characterized with
four peaks (around 0.8, 1.4, 1.9, 2.4 mm h−1, respectively) in the rain rate of the stratiform
region. Similar to the rain rate, there are also strong connections between PARSIVEL and
GPM in terms of radar reflectivity (Figure 9b), and both show a single peak in the PDF
of radar reflectivity for stratiform rain. The rain rate and radar reflectivity for convective
rain also show a plausible consistency between GPM and PARSIVEL, although the PDFs
of GPM fluctuate distinctly (Figure 9a,b) due to the relatively smaller sample size of GPM
than PARSIVEL (Table 3).

Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 21 
 

 

the comparison results of PARSIVEL disdrometers and GPM DPR measurements for near-
surface rain rate (Figure 9a) and equivalent radar reflectivity (Figure 9b) in Typhoon In-
Fa. The comparisons are conducted separately for convective rain and stratiform rain by 
using the rain classification method in Section 2.4. The results are expressed in the form 
of a probability distribution function (PDF) that provides valuable information when dif-
ferent instruments are compared. As shown in Figure 9a, the PDF curve shapes of PAR-
SIVEL (blue line) and GPM (red line) exhibit high correlations, and both are characterized 
with four peaks (around 0.8, 1.4, 1.9, 2.4 mm h−1, respectively) in the rain rate of the strat-
iform region. Similar to the rain rate, there are also strong connections between PARSIVEL 
and GPM in terms of radar reflectivity (Figure 9b), and both show a single peak in the 
PDF of radar reflectivity for stratiform rain. The rain rate and radar reflectivity for con-
vective rain also show a plausible consistency between GPM and PARSIVEL, although 
the PDFs of GPM fluctuate distinctly (Figure 9a,b) due to the relatively smaller sample 
size of GPM than PARSIVEL (Table 3). 

 
Figure 9. Statistical comparison of PARSIVEL disdrometers and near-surface GPM DPR measure-
ments in terms of probability distribution functions (PDFs) for (a) rain rate (mm h−1), and (b) equiv-
alent radar reflectivity (dBZ). Convective rain (solid lines) and stratiform rain (dashed lines) are 
compared separately. GPM observations are shown in red lines while PARSIVEL observations are 
shown in blue lines. The median values of convective samples (outside bracket) and stratiform sam-
ples (inside bracket) are also shown in each panel. 

Table 3. Comparison results of GPM and Parsivel observations for both rain rate and radar reflec-
tivity in Typhoon In-Fa. NB (%) stands for normalized bias adapted from Wu et al. [12]. 

Rain Type GPM  
Sample Quantity 

PARSIVEL Sample 
Quantity 

NB (%) of 
Rain Rate 

NB (%) of Radar 
Reflectivity 

Convective 379 30515 16.3 −0.27 
Stratiform 2436 107203 57.2 19.6 
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higher in the PDFs of PARSIVEL than that of GPM (Figure 9a,b). In addition, the median 
values of rain rate are smaller in PARSIVEL (9.82 mm h−1 for convective rain and 1.45 mm 
h−1 for stratiform rain) than GPM (11.42 mm h−1 for convective rain and 2.28 mm h−1 for 
stratiform rain), and the median values of radar reflectivity are also smaller in PARSIVEL 
(23.51 dBZ for stratiform rain) than GPM (28.11 dBZ for stratiform rain), except for con-
vective rain area where PARSIVEL (36.75 dBZ for convective rain) shows a slightly larger 
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Figure 9. Statistical comparison of PARSIVEL disdrometers and near-surface GPM DPR measure-
ments in terms of probability distribution functions (PDFs) for (a) rain rate (mm h−1), and (b)
equivalent radar reflectivity (dBZ). Convective rain (solid lines) and stratiform rain (dashed lines)
are compared separately. GPM observations are shown in red lines while PARSIVEL observations
are shown in blue lines. The median values of convective samples (outside bracket) and stratiform
samples (inside bracket) are also shown in each panel.

Table 3. Comparison results of GPM and Parsivel observations for both rain rate and radar reflectivity
in Typhoon In-Fa. NB (%) stands for normalized bias adapted from Wu et al. [12].

Rain Type GPM
Sample Quantity

PARSIVEL Sample
Quantity NB (%) of Rain Rate NB (%) of Radar

Reflectivity

Convective 379 30515 16.3 −0.27
Stratiform 2436 107203 57.2 19.6

Besides, the probability of lower rain rates or radar reflectivity (i.e., light rain) is
higher in the PDFs of PARSIVEL than that of GPM (Figure 9a,b). In addition, the me-
dian values of rain rate are smaller in PARSIVEL (9.82 mm h−1 for convective rain and
1.45 mm h−1 for stratiform rain) than GPM (11.42 mm h−1 for convective rain and
2.28 mm h−1 for stratiform rain), and the median values of radar reflectivity are also
smaller in PARSIVEL (23.51 dBZ for stratiform rain) than GPM (28.11 dBZ for stratiform
rain), except for convective rain area where PARSIVEL (36.75 dBZ for convective rain)
shows a slightly larger median value of radar reflectivity than that of GPM (36.65 dBZ
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for convective rain). Table 3 also presents the GPM–PARSIVEL normalized bias (NB)
statistic adapted from Wu et al. [12]. The statistical results indicate that GPM products
may overestimate rain rate and radar reflectivity in stratiform rain (NB > 0), while slightly
underestimating radar reflectivity in convective rain (NB < 0). Meanwhile, the NB of radar
reflectivity (−0.27% for convective rain and 19.6% for stratiform rain) is much smaller than
that of rain rate (16.3% for convective rain and 57.2% for stratiform rain), suggesting the
GPM rain-retrieval algorithm that converting radar reflectivity into rain rate still needs
major improvements. In comparison between different rain types, the NB of convective rain
(16.3% for rain rate and −0.27% for radar reflectivity) is much less than that of stratiform
rain (57.2% for rain rate and 19.6% for radar reflectivity), indicating that GPM product
might have better performance for convective rain than stratiform rain of typhoon over
Jiangsu Province.

3.5. Precipitation Microphysics from GPM DPR
3.5.1. Vertical Precipitation Structure

To examine the vertical precipitation structure of Typhoon In-Fa, the contoured fre-
quency by altitude diagrams (CFADs) [35] for Ku-band equivalent radar reflectivity ZKu
(attenuation-corrected) in the convective and stratiform regions are shown in Figure 10.
Note that only GPM-observed precipitation data within the 500 km radial area from ty-
phoon center (119.1◦E, 31.4◦N) is used for the CFADs, and the reflectivity (altitude) bin
is set to be 1 dBZ (125 m) following Wu et al. [10]. Several distinct differences between
convective rain (Figure 10a) and stratiform rain (Figure 10b) are found as below:
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Figure 10. The CFADs of Ku-band equivalent radar reflectivity (ZKu) from GPM observation during
Typhoon In-Fa landfall for two indicated rain types: (a) convective rain, (b) stratiform rain. The
black dashed lines represent median lines. The time and location of GPM observation are shown
in Figure 2.

Compared to convective rain, stratiform rain shows obvious characteristics of zero-
degree bright band zone (at an altitude of ~5 km) in vertical structure (Figure 10b), which
could be partly due to the melting behavior of ice particles, such as graupel and snow
that strengthens the scattering ability [36], and partly due to the aggregation of melting
snowflakes that producing larger particles [36].

i. Beneath the height of 5 km, ZKu increases rapidly towards the ground (from
30 dBZ to 35 dBZ) in the convective region, which reflects the dominant colli-
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sion and coalescence process of raindrops. Compared to that, the increase of ZKu is
relatively less distinct in the stratiform region (only from 26 dBZ to 28 dBZ), which
is related to the collision and breakup process of large raindrops.

ii. From 10 km to 12 km, ZKu increases sharply as altitude increases (from 16 dBZ to
23 dBZ) in the convective region, which reflects the active cold-cloud processes (such
as aggregation, riming) that contribute to the growth of solid particles. Compared
to that, the increase of ZKu is hardly noticeable in the stratiform region (only from
17 dBZ to 17.5 dBZ), which reflects the weak cold-cloud processes in stratiform rain.

iii. To confirm the specific microphysical processes occurring at different vertical
heights, it is necessary to identify the distribution of specific hydrometeor types.
Hence, in the next section, we further retrieved the hydrometeor distribution within
Typhoon In-Fa.

3.5.2. Hydrometeor Distribution

A GPM-based hydrometeor recognition method as described in Section 2.5 is used to
obtain the frequency (%) of hydrometeors in convective rain and stratiform rain of Typhoon
In-Fa (Figure 11). The recognition result shown in Figure 11 is based on GPM-measured
Zku (Figure 10) and ERA5-derived T (Figure S2) and is conducted every 125 m vertically
from the near surface up to 12 km. According to the distribution and characteristics of these
recognized hydrometeors, we can further confirm the vertical microphysical processes
within typhoon precipitation.
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Figure 11. Variations of hydrometeor percentage with altitude in the (a) convective rain and
(b) stratiform rain of Typhoon In-Fa (2021). Hydrometeor percentage represents the proportion
of the amount of each type of hydrometeor to the total amount of all hydrometeor types. The
hydrometeor types are identified based on GPM observation shown in Figure 2.
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As shown in Figure 11, there is a zone of mixed-phase particles at approximately 5 km
in both convective rain and stratiform rain. The difference is that the mixed-phase zone
extends to a much higher altitude in convective rain (from 5 km to 8 km) than stratiform
rain (from 5 km to 6 km), which reflects the strong updrafts in convective rain that transport
small particles below the melting layer (~5 km) back to the upper levels. This is why the
bright band is more distinct in stratiform rain as demonstrated in Figure 10b. Besides,
as further seen from the median profile of particle size and concentration in typhoon
precipitation (Figure 12), the median Dm values of stratiform rain increase sharply (from
about 1.1 mm to 1.2 mm) with a decrease in altitude from 6 km to 5 km, confirming the fast
growth of mixed-phase particles due to coalescence and aggregation processes.
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Figure 12. GPM-derived median profiles (thick lines) for (a) Dm (mm) and (b) log10(Nw) (mm−1 m−3)
of two rain types during Typhoon In-Fa landfall. The interquartile ranges of each parameter are
indicated with shaded area. The GPM observation data used here is shown in Figure 2.

Meanwhile, there is a larger amount of graupels present above the melting level in
the convective region (80% at most) than the stratiform region (70% at most). Graupels are
important sources of rain, and consequently, the raindrop concentration in the convective
region (with Nw ranging from 3.80 to 3.96 mm−1 m−3) is far more abundant than those
in the stratiform region (with Nw ranging from 3.40 to 3.50 mm−1 m−3) as shown in
Figure 12b. Moreover, large raindrops occupy most of the region below the melting layer
in the convective region in comparison with the stratiform region (Figure 11a), indicating a
dominant coalescence process in convective rain of Typhoon In-Fa. While the amount of
small raindrops is similar to that of large raindrops in the stratiform region (Figure 11b),
reflecting a significant collisional breakup process of large raindrops. This further proves
the results deduced from the near-surface raindrop spectrum (Figure 5).

Intensive updrafts transport abundant water vapor and liquid drops to higher altitudes
in the convective region, the ice crystals aloft would grow faster with more irregular
shape and bigger size and smaller density due to more efficient aggregation and riming
processes [3,37], which generally results in the increase of the proportion of aggregates that
characterized as larger ZKu (Figure 10a). In consistence with that, the vertically aligned
ice above 10 km altitude in the convective region also featured with a higher percentage
of snow when compared with the stratiform region (Figure 11a), and the median Dm
profile also presents significantly large values (up to 1.36 mm) above 10 km altitude in the
convective region (Figure 12a).
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4. Discussion

Besides PARSIVEL disdrometers, various types of surface disdrometers including
Joss-Waldvogel disdrometer (JWD), Thies, and 2DVD are commonly utilized in typhoon
studies [1–7]. Performance differences among diverse disdrometers should also be paid
attention to when comparing our results with other typhoon studies. It is realized that
PARSIVEL might underestimate small drops in some circumstances [38], which could
influence part of the results in this study to some extent, such as a slightly higher mean
Dm value might be detected than actual situation (Figure 7). It has also been reported that
PARSIVEL shows better performance in raindrop falling speed measurements than 2DVD
on occasions with strong wind [18], which could make it a better choice to use PARSIVEL
for typhoon research. The performance evaluation of different types of disdrometers during
typhoon impact needs further researches, and we leave that in the next work.

Note that the GPM official algorithm uses a rather complex adjustment parameter
(ε) to help estimate the DSD and rain rate [31]. For simplification, herein we only derived
the basic form of R-Dm relations without taking ε into consideration. Meanwhile, the
GPM hydrometeor recognition algorithm proposed by Qiao et al. [26] has several distinct
flaws that need to be remedied in future work. For instance, the recognition of smaller
particles, such as drizzle and ice crystals is difficult due to the limited sensitivity of DPR
measurements [31]; the feature thresholds (Table 1 of Qiao et al. [26]) used for the fuzzy-
logic algorithm warrant further adjustment and optimization; it is unable to distinguish
hail from graupel and snow, etc. Even though, the current recognition results in Figure 11
still provide important and reliable clues for us to reveal the key microphysical processes
in typhoon precipitation.

In addition, only one overpass of GPM observation is validated against the collab-
orating disdrometer network observation during Typhoon In-Fa landfall. More GPM
satellite observational data are needed to support robust validation work. Besides, in
addition to the use of disdrometer for GPM validation and calibration, ground radars can
also serve to evaluate and improve GPM product quality. In the latest researches, Wu
et al. [10] used Wenzhou S-band conventional Doppler radar to evaluate GPM precipitation
observations during the typhoon Lekima (2019) landfall and found that GPM showed
a large measurement error in the eyewall area, possibly due to excessive compensation
caused by multiple-scattering and/or non-uniform beam filling. Huang et al. [39] further
evaluated the GPM precipitation observations during the landfall of typhoon Ewiniar
(2018) by using Guangzhou S-band dual-polarization radar. It was found that GPM would
underestimate the raindrop number concentration, water content and rain rate for intense
radar echoes. In the future, mutual calibrations among multiple instruments such as dis-
drometers, conventional/dual-polarization radars, and GPM satellite will be the hot topic,
and the follow-up work will be carried out continuously around this theme.

5. Conclusions

In this research, we investigated the precipitation microphysics of the record-breaking
Typhoon In-Fa (2021) over eastern China using collaborative measurements from both the
PARSIVEL disdrometer network (a total of 66 disdrometers) and GPM DPR observations.
For an in-depth study, the convective and stratiform types of typhoon precipitation were
explored separately and the DSD properties of Typhoon In-Fa were compared with other
typhoons from different climate regimes. Meanwhile, based on a great number of surface
disdrometer observational data, the GPM precipitation products are further validated for
both rain types, and a series of native QPE relations are derived to improve the rainfall
retrieval for both ground-based radar and spaceborne radar. The following conclusions are
ultimately obtained:

1. Compared with the typhoon convective precipitation in Hainan and Taiwan, the
precipitation measurements of Typhoon In-Fa over eastern China show larger (smaller)
raindrop concentration (Nw) than that of Taiwan (Hainan), and the raindrop diameter
(Dm) is the smallest in eastern China while largest in Taiwan. Moreover, the typhoon
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convective precipitation measured in eastern China and Hainan is more maritime-like
than precipitation in Taiwan possibly due to the difference in topography.

2. Convective rain has a much higher raindrop concentration (larger Nw) than stratiform
rain due to more graupels melting into liquid water while falling. Large raindrops
occupy most of the region below the melting layer in the convective region due to a
dominant coalescence process of small raindrops (featured by larger ZKu, Dm, and
smaller N0, µ, Λ), while small raindrops account for a considerable proportion in the
stratiform region, reflecting a significant collisional breakup process of large raindrops
(featured by smaller ZKu, Dm, and larger N0, µ, Λ).

3. GPM products are validated against networked PARSIVEL observations for both
convective rain and stratiform rain in Typhoon In-Fa. It is suggested the normalized
bias of convective rain (16.3% for rain rate and −0.27% for radar reflectivity) is much
less than that of stratiform rain (57.2% for rain rate and 19.6% for radar reflectivity),
indicating that GPM product might have better performance for convective rain than
stratiform rain of typhoon over eastern China. Even though, more typhoon case
studies are needed for further clarification.

4. The standard Z-R relationship (Z = 300R1.40) used in NEXRAD generally underes-
timates the rain rate in Typhoon In-Fa. The default R-Dm relationships in the GPM
official product slightly underestimate the drop diameter in Typhoon In-Fa. Na-
tive Z–R (Z = 124R1.57 for convective and Z = 197R1.47 for stratiform) and R–Dm
(R = 2.513Dm

4.109 for convective and R = 1.146Dm
5.011 for stratiform) relationships are

thereby derived to improve the quantitative rain rate estimation in Typhoon In-Fa for
both ground-based radar and spaceborne radar.
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10.3390/rs14020344/s1, Figure S1: The time development of DSD, rain rate, raindrop concentration,
and intercept/shape parameter detected by 66 disdrometers in Jiangsu during the passage of Typhoon
In-Fa (2021) from 25th to 30th July, 2021. Figure S2: ERA5-derived vertical mean profile of temperature
(°C) in Typhoon In-Fa (2021). Table S1: The precipitation samples measured by 66 disdrometers in
Jiangsu during the passage of Typhoon In-Fa (2021) from 25th to 30th July, 2021.
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