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Abstract: Many studies have focused on performing variational-scale segmentation to represent
various geographical objects in high-resolution remote-sensing images. However, it remains a
significant challenge to select the most appropriate scales based on the geographical-distribution
characteristics of ground objects. In this study, we propose a variational-scale multispectral remote-
sensing image segmentation method using spectral indices. Real scenes in remote-sensing images
contain different types of land cover with different scales. Therefore, it is difficult to segment images
optimally based on the scales of different ground objects. To guarantee image segmentation of
ground objects with their own scale information, spectral indices that can be used to enhance some
types of land cover, such as green cover and water bodies, were introduced into marker generation
for the watershed transformation. First, a vector field model was used to determine the gradient
of a multispectral remote-sensing image, and a marker was generated from the gradient. Second,
appropriate spectral indices were selected, and the kernel density estimation was used to generate
spectral-index marker images based on the analysis of spectral indices. Third, a series of mathematical
morphology operations were used to obtain a combined marker image from the gradient and the
spectral index markers. Finally, the watershed transformation was used for image segmentation. In a
segmentation experiment, an optimal threshold for the spectral-index-marker generation method
was identified. Additionally, the influence of the scale parameter was analyzed in a segmentation
experiment based on a five-subset dataset. The comparative results for the proposed method, the
commonly used watershed segmentation method, and the multiresolution segmentation method
demonstrate that the proposed method yielded multispectral remote-sensing images with much
better performance than the other methods.

Keywords: remote sensing; image segmentation; watershed transform; spectral index; marker
generating

1. Introduction

Based on the development of remote-sensing technology, high-spatial-resolution re-
motely sensed images, such as IKONOS, Quickbird, GeoEye-I, and WorldView, are available
for use in environmental monitoring, management, and protection works. High spatial
resolution facilitates the retrieval of the structural details of geographical objects for land
cover/use mapping and monitoring. However, high spatial resolution can generate salt-
and-pepper noise effects in pixel-based image-analysis methods. Therefore, the object-based
image analysis (OBIA) technique, which provides information on images based on mean-
ingful objects, was proposed for high-spatial-resolution remote-sensing image analysis. The
main prerequisite for OBIA is image segmentation, which has already been recognized as a
valuable approach for identifying regions instead of pixels as feature carriers, which are
then used for classification [1–7]. In addition to the use of remote-sensing data with high
spatial resolution, the OBIA technique has also been used for gathering remote-sensing
images with lower spatial resolutions, such as ASTER and TM data [8–12].
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The goal of an image segmentation algorithm is to divide an image into meaningful
separate regions that are homogeneous with respect to one or more properties, such as
texture, color, or brightness [13]. These properties fall into four categories: characteristic
feature thresholds or clusters, edge detection, region growing or extraction, and iterative
pixel classification [14]. An image-segmentation algorithm may belong to two or more of
these categories. Many image-segmentation algorithms have been proposed in the field
of computer vision over the past several decades. There are also many applications of
image segmentation in remote sensing, such as watershed transformation [15,16], region
growing [17–19], Markov random field models [20,21], and fuzzy image regions [22].

However, a major difficulty in processing natural images is that changes can and do
occur over a wide range of scales [23,24]. Remote-sensing images are used to represent the
natural geographical world. Therefore, it is difficult to obtain optimal image-segmentation
results according to the different scales of ground objects [25]. The multi-scale segmen-
tation strategy is widely used to handle the difficulty of wide scale ranges [26], but the
automatic selection of optimal segmentation scales for successive analysis remains a signifi-
cant challenge [27] for which unsupervised segmentation evaluation methods are widely
adopted [28–30].

Originally, many efforts were made to select a single optimal segmentation scale
by combining intra-segment homogeneity and inter-segment heterogeneity [31–35] or by
considering abrupt changes in homogeneity in terms of all segments [36–38]. However,
global optimal segmentation scales still contain segments that are either too coarse or too
fine because segmentation based on a single global scale parameter makes it difficult to
separate various geographical objects [33].

To overcome this problem, the concept of deriving locally adaptive scale parame-
ters has received significant attention in recent years with the goal of selecting optimal
remote-sensing image segmentation scale parameters for different regions or objects [39].
There are two main types of automatic methods for determining local scale parameters.
One is to tune a global optimal scale parameter locally according to the heterogeneity of
local structures [40–43]. The other is to first partition an image into different regions or
landscapes and then determine the optimal segmentation scale for each region using a
global evaluation measure [44,45]. Overall, the segmentation performance of such meth-
ods depends on the effectiveness of the global evaluation measure. Additionally, locally
optimized scale parameters are mainly designed for different objects without considering
the spectral and spatial characteristics of different land-cover categories. We propose the
utilization of spectral indexes for determining the optimal segmentation scales of different
land-cover categories in the watershed transformation framework.

Because spectral indices from multispectral remote-sensing data such as the nor-
malized difference vegetation index (NDVI) and the normalized difference water index
(NDWI), which are used to enhance the information of some specific ground objects, may
not be influenced by the interior textures of geographical objects and can maintain con-
sistency between segmentation results for agminated land cover (e.g., vegetation, water,
and snow), as well as the outlines of real ground objects in a natural scene, they can be
used to generate markers for variational-scale segmentation. The watershed transforma-
tion [46,47] is a widely used method in which the quality of the markers directly determines
the segmentation scales. Therefore, final segmentation quality depends on marker gen-
eration. If markers can be generated according to the self-scales of geographical objects,
then the watershed transformation can be used to obtain variational-scale segmentation
results for geographic objects. Spectral-index-based markers can also help to overcome
the phenomenon of over-segmentation because they are sensitive to irrelevant local min-
ima generated by gradients. Overall, remote-sensing images can provide more-complex
scenes for watershed-transformation-based segmentation compared to other images, such
as medical, finger, eye, and facial images.

In this study, the main goal was to use the spectral indices of multispectral remote-
sensing images to develop a scale-variable watershed method for multispectral remote-
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sensing image segmentation based on watershed transformation. First, multispectral
gradient-based markers were obtained using a vector field model (VFM) for multispec-
tral remote-sensing images. Second, a novel marker generation method was applied to
determine corresponding spectral indices based on kernel density estimation (KDE). Third,
mathematical morphology was used to integrate gradient information and spectral indices
into a single combined marker. Next, the final combined marker was used with the water-
shed transformation method for multispectral remote-sensing image segmentation. Finally,
high-spatial-resolution multispectral remote-sensing datasets were used as experimental
data to validate the proposed segmentation method.

The remainder of this article is organized as follows. Section 2 discusses marker
generation for a multispectral gradient using a vector field model, marker generation using
spectral indices, and image segmentation based on a combination of markers from gradient
and spectral indices. In Section 3, we introduce experimental data, evaluation measures,
and our experimental setup. Section 4 describes experiments on two high-resolution multi-
spectral remote-sensing images. The segmentation results and gradient-marker-controlled
watershed transformation for each image are compared. Section 5 summarizes our results
and presents conclusions.

2. Study Area and Data

The study area is located in Nanjing City, Jiangsu Province and Wanning City, Hainan
Province, China, as shown in Figure 1. As one of the four garden cities in China, Nanjing
City has an abundance of urban green spaces and water bodies. Wanning City has a
tropical monsoon marine climate with a large amount of vegetative cover and water bodies.
Additionally, because China has experienced rapid economic development over the past
40 y, there are many man-made structures mixed with natural landscapes in the study area,
providing good study samples for our experiments.

Figure 1. Location of the study area and the datasets used to present remote-sensing image segmen-
tation results.
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An IKONOS image covering an area of 108 km2 over Nanjing City and a GeoEye-I
image covering an area 49 km2 in Wanning city were used as our experimental dataset.
These two images consist of four spectral bands: blue, green, red, and near-infrared. The
spatial resolutions of the multispectral bands and panchromatic band of the IKONOS image
are 4.0 m and 1.0 m, respectively. A subset image called D1 with a 1.08 km × 1.37 km area
was used to represent the segmentation results. There is significant vegetative cover,
watery areas, and built-up land cover in the IKONOS image. The spatial resolution of
the multispectral bands and panchromatic band of the GeoEye-I image are 1.64 m and
0.41 m, respectively. A subset image called D2 with a 0.9 km × 0.66 km area was used
to represent the segmentation results. The GeoEye-1 image mainly contains vegetative
cover with smaller areas of residential neighborhoods and watery cover. Additionally, the
vegetative cover can be divided into farmland, shrubbery, and forestry, which are suitable
categories for our experiments.

3. Methodology
3.1. Overview

We used the gradient and spectral index markers for scale-variable watershed segmen-
tation. The marker-controlled watershed transformation proceeds by using an automatic
thresholding technique and a mathematical morphology method based on spectral indices
and gradient images. Two marker images were generated from the gradient and spectral
indices. The two marker images were then combined into one marker image for watershed
transformation segmentation. Therefore, the key step in our method was to generate a
marker image that integrates the gradient marker and spectral indices appropriately. The
procedure for the proposed method is shown in Figure 2.

Figure 2. Flow chart of the proposed auto-marker watershed transform image segmentation based
on spectral indices and gradient information.

(1) Obtain multispectral edge strength from the fusion of panchromatic and multispec-
tral bands using the Canny method and vector field model.

(2) Generate a marker image for the gradient by using the method proposed by
Hill et al. [48], which is referred to as the Hill-marker method for convenience.

(3) Choose spectral indices based on land cover in the target remote-sensing image.
(4) Generate a marker image based on a histogram of spectral indices.
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(5) Derive a final marker from the gradient and spectral index markers using intersec-
tion, erosion, thinning, and union operations from mathematical morphology.

(6) Perform marker-controlled watershed transformation segmentation.

3.2. Marker Generation from Multispectral Gradient using the Vector Field Model

The panchromatic and multispectral bands are fused to obtain a multispectral remote-
sensing image with a higher spatial resolution. The first fundamental form based on the
vector field model [49] is used to derive a multispectral gradient using the Canny method.
Let I(x, y) be a multispectral image in the form of a vector field with bands Ii(x, y) and
i = 1, · · · , n. The value of I at any given point (x0, y0) is an n-dimensional vector. The
gradient of Ii(x, y) in the ith band can be written as

dIi =
∂Ii
∂x

dx +
∂Ii
∂y

dy (1)

and its squared norm (i.e., the first fundamental form) is

dI2=

[
dx
dy

]T
 ∑n

(
∂Ii
∂x

)2
∑n

∂Ii
∂x ·

∂Ii
∂y

∑n
∂Ii
∂x ·

∂Ii
∂y ∑n

(
∂Ii
∂y

)2

[ dx
dy

]

=

[
dx
dy

]T[ Gxx Gxy
Gxy Gyy

][
dx
dy

], (2)

where the eigenvectors of the 2 × 2 matrix G =

[
Gxx Gxy
Gxy Gyy

]
can be used to obtain the

directions of the maximal and minimal changes. Therefore, the eigenvalues of the matrix G
can be represented by the gradient of the image, and the eigenvectors of G can be used to
determine the edge direction. By using elementary algebra calculations, the maximum and
minimum eigenvalues can be defined as follows:

λ± =
Gxx + Gyy ±

√
(Gxx − Gyy)2 + 4Gxy

2
. (3)

The eigenvectors are (cos θ±, sin θ±), where the angles θ± are given by

θ+ =
1
2

arctan
2Gxy

Gxx − Gyy
, (4)

and
θ− = θ+ +

π

2
. (5)

Sapiro and Ringach [49] suggested that the gradient of a multispectral remote-sensing
image should not be represented by the maximal value among the eigenvalues λ+ but by
how λ+ compares to λ−. Therefore, the multispectral gradient can be defined as

Gmulti =
√

λ+ − λ− (6)

After obtaining the gradient of a multi-spectral remote-sensing image, we applied the
moving threshold method proposed by Hill et al. [48] to generate a marker image Mg.

3.3. Marker Generation for Spectral Indices Based on a Histogram

Spectral indices, which are used to enhance the information of some ground objects,
such as vegetation, soil, and water bodies, are correlated with specific ground objects. For
example, NDVI [50] primarily enhances vegetation information, whereas NDWI [51–53] can
be used to boost water-body information. There are also many other spectral indices, such
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as EVI [54], green NDVI [19], MSR [55], MTVI2 [56], TSAVI [57], MSAVI [58], ARVI [59],
SARVI [59], OSAVI [60], and SR × NDVI [61], NDWIMc f eeters [52], NDWIGao [53], and
shadow indices [62].

Here, we employed these spectral indices to generate a marker for the target objects
in a remote-sensing image. To ensure that ground objects with complex internal textures
can be segmented into a single region, it is important to apply a thresholding technique
to obtain spectral index markers. Many unimodal thresholding techniques have been
proposed in previous studies [63,64]. However, the goal of our study was not to retrieve
accurate information associated with an object using spectral indices (e.g., water bodies
can be segmented using the NDWI) but to obtain a marker image from spectral indices for
watershed segmentation.

Here, we used kernel density estimation (KDE) to obtain a marker image. Most
thresholding techniques are based on histograms. However, there are many local maxima
and minima that can have a negative effect on determining a threshold. Unlike a histogram,
KDE can represent the overall trend of the grayscale distribution in an image.

Given that x1, x2, x3, . . . , xn ∈ Rd is a random sample from a distribution F with
density f (x), the kernel density estimate of f (x) is given by

f̂ (x) = 1/n
n

∑
i=1

k(x, xi), (7)

where k(x, xi) is the kernel function. Because the probability density function of the spectral
index commonly contains one or more peaks, we used the following Gaussian function as
a kernel:

k(x, xi) = (2πσ2)−d/2exp{− ||x− xi||2
2σ2 } (8)

In Figure 3, we present an example to analyze the differences between the KDE and
the histogram of an image. One can see that there are many local extrema in the histogram
in Figure 3a. Therefore, we cannot easily identify useful local extrema, even though the
trend of the curve can be visibly identified. In the KDE results in Figure 3b, the overall
trend is clear and free of noise, so local extrema can be located correctly.
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Figure 3. The histogram (a) and kernel density estimation (KDE) (b) of the image.

Because spectral indices are mainly used to enhance the information of the correspond-
ing ground objects, a higher value indicates a higher probability of being the corresponding
object. Additionally, the grayscale distribution of ground objects is typically normally
distributed. Therefore, information on ground objects is relative to the last peak. To identify
the last peak, we must find the accurate location of the peak (point A in Figure 3b) and the
trough (point B in Figure 3b) on the left of the last peak. The peak A (x = Tpeak) and trough
B (x = Ttrough) points can be obtained as
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It is necessary to combine the markers from the gradient and spectral indices into a
single marker image to perform watershed transformation segmentation efficiently. Two
main factors should be considered when combining these markers. First, we must ensure
that the spectral indices can be used to maintain the original scales of ground objects in the
segmentation results. Second, the gradient information must be unaffected so that land
cover can be segmented without the representation of specific spectral indices. Therefore,
we must find a way to satisfy these two conditions. Here, mathematical morphology was
used to reconstruct a marker image by combining the gradient and spectral indices.

Assume that Mg and Ms(i) are marker images from the gradient and ith spectral
index, respectively. The inflow for the combined marker-image-based spectral indices and
gradient markers is presented in Figure 4.

Tpeak = arg max
i

(∆(sign(∆p f (i))) == −2) (9)

and
Ttrough = arg max

i
(∆(sign(∆p f (i))) == 2) (10)

where sign() is the signum function.
Then, the optimal threshold should be chosen from the interval [Ttrough, Tpeak].

Gradient marker image

Spectral index marker image

g = Ms(i) ∩Mg

(Mg − g)	 B THINB(hk(i) ∪ g)marker

mask

Iteration

Reconstruction

Combined marker image

Figure 4. Inflows of generating combined marker-image-based spectral index and gradient markers.

3.4. Segmentation via Combination of Markers from Spectral Indices and Gradient Markers

First, we obtained the intersection of the gradient and spectral index marker images
as follows:

g = Ms(i) ∩Mg. (11)

Second, the gradient marker minus spectral index marker was defined as

Mg−rest = (Mg − g)	 B, (12)

where B is the structuring element.
We then used the intersection g as a marker and Ms(i) as a mask to reconstruct a new

marker. Here, the reconstruction of Ms(i) from g, denoted as RMgs(i), was defined as

RMgs(i) = THINB(Ms(i) ∪ g). (13)

This reconstruction step was iterated to maintain the connectivity of the marker image
while transforming the spectral index markers into one-pixel-wide lines.
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Finally, the final Marker M was defined as

CM =
n

∑
i
(Mg−rest(i) ∪ RMgs(i)), (14)

where n is the number of spectral indices based on the land cover distribution. The
combined marker from the gradient and spectral index markers can be obtained using
Algorithm 1.

Algorithm 1 Generating a combined marker image based on spectral indices and gradi-
ent markers.
Input:

Gradient marker image Mg
Number of spectral index marker images N
The ith spectral index marker image Ms(i)

Output:
Combined marker image CM

1: Initialize a null image RM with the same size as the original image
2: for i = 1 to N do
3: Initialize h1 = Ms(i)
4: Initialize Area(h0) = M× N, where M and N represent the size of the original image
5: Initialize Area(h1) = ∑i,j Ms(i)
6: Initialize k = 0
7: Obtain the intersection g using Equation (11)
8: Define the structuring element B
9: Obtain Mg−rest(i) using Equation (12)

10: while Area(hk+1) < Area(hk) do
11: Obtain the reconstruction hk+1(i) of Ms(i) from g using Equation (13)
12: end while
13: Obtain the reconstruction RM = RM + hk+1(i)
14: end for
15: Get the combined marker image M using Equation (14)
16: return CM

Finally, the minima imposition technique [65] was employed for the watershed trans-
formation based on the final marker image.

4. Experiments and Results
4.1. Performance Evaluation

Precision, recall, and F-measure [66] were used to evaluate the performance of edge
detection using different algorithms. S1 and S2 denote the source and target edge pixels,
respectively. Matching was defined as true when the neighborhood of an edge pixel bi in S1
includes the edge pixel bj in S2 and there is no pixel bx between bi and bj. The neighborhood
distance td was set to three pixels in this study. Precision and recall were defined as follows:

Precision =
Match(S1, S2)

|S1|
, (15)

Recall =
Match(S2, S1)

|S2|
, (16)

where Match(S1, S2) is the number of edge pixels in S1 matched with S2, Match(S2, S1) is
the number of edge pixels in S2 matched with S1, and |S1| and |S2| are the numbers of
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edge pixels in S1 and S2, respectively. According to Equations (23) and (24), the F-measure,
which is the weighted harmonic mean of precision and recall, is defined as

F-measure =
Precision · Recall

a · Precision + (1− a) · Recall
, (17)

where a = 0.5 is a given parameter.

4.2. Influence of the Threshold for Spectral Indices on Segmentation

The five subsets from images D1 and D2 shown in Figure 5 were used to analyze
the influence of the threshold for spectral indices on image segmentation. Excluding the
parameter of minsize in the Hill-marker method [48], when obtaining a marker image of
a gradient, the range [Ttrough, Tpeak] is the only parameter for the proposed method. The
influence of this parameter on the segmentation results of the subsets was evaluated with
the goal of determining an optimal setting. The ranges [Ttrough, Tpeak] of the spectral indices
of the images calculated using Equations (9) and (10) are listed in Table 1.

(a) S1

(b) S2

(c) S3

(d) S4 (e) S5

Figure 5. Five subsets from dataset of D1 and D2.

Table 1. The range [Ttrough, Tpeak] of spectral indice, including NDVI and NDWI, on five
subset images.

NDVI NDWI

SI-1 [161, 189] [162, 209]
SI-2 [94, 183] −
SI-3 [122, 178] [195, 216]
SI-4 [128, 177] −
SI-5 [149, 194] [150, 154]

To illustrate the influence of the threshold parameter of the spectral index for marker
generation, given the parameter value of minsize = 10, segmentation results for four
different threshold values applied to generate spectral index markers based on NDVI
and NDWI are presented in Figures 6 and 7, respectively. Additionally, Figure 8 presents
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watershed segmentation results for the Hill-marker method, where the parameter of minsize
was also set to 10, to demonstrate the superiority of the proposed method.

First, as shown in Figure 6 for NDVI, the segmentation results for vegetable cover
tend to contain more segments as the threshold value increases for all five subset images.
Regardless, compared to the Hill-marker watershed segmentation results in Figure 8, one
can see that green objects identified by the proposed method with the NDVI marker were
segmented better than those identified by the Hill-marker method, particularly when the
threshold value of the spectral index was close to Ttrough. Consider the segmentation results
of S1, S2, and S4 as examples for further analysis. One can see that the segmentation results
for green cover in Figure 8a,b,d contain large numbers of fragments that are adjacent and
that all belong to the green cover. This phenomenon was less apparent when using the
proposed method.

Second, the shadows of ground objects generally have negative effects on segmentation
and were segmented into a different region in Figure 8c. In contrast, in Figure 6, the green
cover and its shadows were segmented into the same region. The shadows of the green
objects are highlighted with white circles. Additionally, various adjacent vegetative covers
can be segmented into the same region. For example, the green cover in image S3 consists
of both shrubs and forest trees. In the segmentation results of the Hill-marker method, there
are boundaries between these different types of plants. In contrast, they are segmented into
the same region in Figure 6i,j when using the proposed method.

(a) 161 (b) 170 (c) 180 (d) 189

(e) 94 (f) 125 (g) 155 (h) 183

(i) 122 (j) 140 (k) 160 (l) 178

(m) 128 (n) 140 (o) 160 (p) 177

(q) 149 (r) 165 (s) 180 (t) 194

Figure 6. Segmentation by setting four different threshold applied for generating spectral-index
markers based on NDVI.
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(a) 162 (b) 175 (c) 190 (d) 209

(e) 195 (f) 200 (g) 210 (h) 216

(i) 103 (j) 110 (k) 120 (l) 126

Figure 7. Segmentation by setting four different threshold applied for generating spectral-index
markers based on NDWI.

(a) S1

(b) S2

(c) S3

(d) S4 (e) S5

Figure 8. Watershed segmentation by Hill-Marker with the parameter of minsize being 10.

Regarding the segmentation based on the NDWI marker image in Figure 7, one can see
similar results compared to the NDVI marker image. When the threshold value increases,
the number of segmentation regions tends to increase. However, unlike the comparison
between the segmentation results in Figures 7 and 8, the proposed method based on NDWI
markers alone is not superior to the Hill-marker method. The result for image S5 is inferior
to that generated by the Hill-marker method because the water pool on the right cannot
be segmented accurately, and its boundary is visibly separated from the real boundary.
This is because the internal spectral response difference for the water cover region is high.
Therefore, if there is more than one region of water in an experimental image with multiple
peaks corresponding to multiple water cover types, the threshold of NDWI for marker
generation is difficult to determine.
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4.3. Automatic Selection of Optimal Segmentation Regions

As shown in Figures 6 and 7, the selection of a threshold for the spectral indices
[Ttrough, Tpeak] has a distinct influence on the final segmentation results. It is necessary to
select parameters to obtain optimal segmentation results automatically, where segmentation
can accurately reflect the scales of ground objects in remote-sensing images. For watershed
transformation segmentation, more markers generate more segments. Therefore, the
threshold for the spectral index [Ttrough, Tpeak], which determines the number of markers
generated from the spectral index, is key to the performance of segmentation.

When the threshold is Tpeak, the number of segments may increase when uncorrelated
ground objects are segmented. This is because correctly joined ground objects may be divided
into several disjointed regions with different internal textures. When the threshold is Ttrough,
the number of segments may also increase. As shown in Figure 9, we simulated a one-
dimensional spectral response to explain this phenomenon. One can see that the segment
number may decrease and then increase as the threshold increases from Ttrough to Tpeak.
Therefore, we must identify the most suitable threshold for generating marker images.
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250
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trough

T
best

T
peak

Figure 9. One-dimension simulated spectral response for thresholding under different values.

Figure 10 presents the numbers of segmentation regions when the threshold was
selected from the range of [Ttrough, Tpeak] for the subset images. Figure 10a–e are based
on using the NDVI for S1 to S5, respectively. Figure 10f–h are based on using the NDWI
marker for S2, S3, and S5, respectively. One can see that most of the curves generally tend to
increase. However, once can also see trends of small decreases (Figure 10b,d,h), fluctuations
(Figure 10a,c,f), or unchanged values (Figure 10e,g). When the curve visibly increases,
it indicates that the green or water covers tend to be segmented into more fragments.
Therefore, we must identify the minimum number of segmentations to guarantee that there
are no (or few) adjacent segmented regions of green or water covers in the results.



Remote Sens. 2022, 14, 326 13 of 24

0 5 10 15 20 25 30 35 40 45 50

Threshold of NDVI

10

20

30

40

50

60

70

80

90

N
u

m
b

e
r 

o
f 

s
e

g
m

e
n

ta
ti
o

n
s

(a) S1(NDVI)

100 110 120 130 140 150 160 170 180

Threshold of NDVI

0

50

100

150

200

250

N
u

m
b

e
r 

o
f 

s
e

g
m

e
n

ta
ti
o

n
s

(b) S2(NDVI)

130 140 150 160 170

Threshold of NDVI

0

50

100

150

200

250

N
u

m
b

e
r 

o
f 

s
e

g
m

e
n

ta
ti
o

n
s

(c) S3(NDVI)

130 140 150 160 170 180

Threshold of NDVI

0

10

20

30

40

50

60

70

80

90

N
u

m
b

e
r 

o
f 

s
e

g
m

e
n

ta
ti
o

n
s

(d) S4(NDVI)

150 160 170 180 190

Threshold of NDVI

0

10

20

30

40

50

60

70

80

90

100

N
u

m
b

e
r 

o
f 

s
e

g
m

e
n

ta
ti
o

n
s

(e) S5(NDVI)

170 180 190 200 300

Threshold of NDWI

10

20

30

40

50

60

70

80

90

N
u

m
b

e
r 

o
f 

s
e

g
m

e
n

ta
ti
o

n
s

(f) S1(NDWI)

195 200 205 210 215

Threshold of NDWI

0

1

2

3

4

5

6

7

8

9

N
u

m
b

e
r 

o
f 

s
e

g
m

e
n

ta
ti
o

n
s

(g) S2(NDWI)

110 120

Threshold of NDWI

12

14

16

18

20

22

24

26

28

N
u

m
b

e
r 

o
f 

s
e

g
m

e
n

ta
ti
o

n
s

(h) S3(NDWI)

Figure 10. The number of segmentations when the threshold was selected from the range of
[Ttrough, Tpeak] on subset image.

When [Ttrough, Tpeak] is obtained based on spectral indices from remote-sensing data,
spectral markers can be obtained in Algorithm 2:

Algorithm 2 Obtaining the optimal thresholds of spectral indices for generating
marker images.

Input:
Multispectral band image T

Output:
Spectral index marker image Ms

1: Obtain the spectral index image Is
2: Obtain the kernel density estimate KDEs of Is
3: Find the Ttrough and Tpeak using Equations (9) and (10)
4: for i = Ttrough to Tpeak do
5: Thresholding spectral index image Ti, where the gray scale of Ti is larger than i
6: Obtain the morphological opening result γB(Ti) = OPENB(Ti), where B is the

structuring element
7: Get the number of connected regions Numi
8: end for
9: Obtain the minimum Minnum of Numi

10: Get the best threshold Tbest = argmax(Numi == Minnum)
11: return Spectral index marker image Ms = T > Tbest

Figure 11 presents the optimal segmentations for the five subsets of data, as well as
expressive segmentation results. First, the green covers in all subsets were segmented into
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one region. Land covers with different scales, such as buildings and green covers, can be
segmented into different regions. For example, there is a significant difference in the scale of
buildup in S1, S4, and S5. However, these buildups can be segmented with little influence
from the parameter of the spectral index threshold. Additionally, the water bodies in the
images were also segmented accurately. Therefore, the proposed method for automatically
selecting the threshold for spectral indices can obtain expressive segmentation results.

(a) S1

(b) S2

(c) S3

(d) S4 (e) S5

Figure 11. The optimal image segmentation by automatically selecting the threshold of spectral
indices’ KDE.

4.4. Influence of the Scale Parameter

Based on the automatic selection of the threshold parameter, the segmentation results
for different scale parameters are presented in Figure 12 to analyze the influence of the this
parameter comparatively. Here, the scale parameter (scale) of the watershed transformation
was defined within the interval of [5, 1000] in increments of five. We can see that all the
curves of F-measure using the SI-marker are superior to those using the Hill-marker. In the
following section, we present our analysis in detail.

In Figure 12a, the values of F-measure first increase and then slightly decrease as the
scale parameter increases. The highest F-measure reaches its maximum value when the scale
parameters are 525, 530, and 535. The reason for the values of F-measure being low in the
beginning is that there were still some fragments of green cover in the segmentation results.

For dataset S2, the best performance (F-measure = 0.7339) was achieved when the
scale parameter was relatively small at 90. The SI-marker method is distinctly superior to
the Hill-marker method.

In Figure 12c, the curve of F-measure using the SI-marker method was significantly
higher than that using the Hill-marker method. The main reason for this result is that the
precision of the SI-marker method is much higher than that of the Hill-marker method. This
means that the boundaries of the segments have high congruency with the real boundaries
between ground objects. The highest F-measure appeared in the range of [180, 240], which
is relatively low.

As shown in Figure 12d, the curve of F-measure using the SI-marker method was not
higher than that using the Hill-marker method for all scale parameters. The SI-marker
method can achieve the best performance (F-measure = 0.6623) when the scale parameter



Remote Sens. 2022, 14, 326 15 of 24

is five. However, as long as the scale parameter is less than 250, the SI-marker method is
superior to the Hill-marker method.

Figure 12e reveals that the SI-marker method is generally superior to the Hill-marker
method. The best performance when using the SI-marker method occurs when the scale
parameter is five. The main advantage of the SI-marker method is that the accuracy of
the boundaries detected by the SI-marker method is higher than that detected by the
Hill-marker method.
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(d) S4
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Figure 12. The F-measure, Precision, and Recall of segmentation with different scale parameters on
subset image of S1 (a), S2 (b), S3 (c), S4 (d), and S5 (e).

By comparing the five curves, one can conclude that the performance of the SI-marker
method is visibly and consistently superior to that of the Hill-marker method when the scale
is small. Additionally, the precision of the SI-marker method was always higher than that
of the Hill-marker method, which indicates that there were more accurate segmentation
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boundaries. Furthermore, there were many fragments in the segmentation results, so
the recall for some datasets when using the Hill-marker method was higher than that
when using the SI-marker method, particularly when the scale parameter was small for S2
and S4.

To analyze the optimal scale parameter for our proposed method further, local variance
was used as a tool to explore the optimal scale. Given an image I, the local variance can be
defined as

Var(Ii,j) = e(Ii,j − Īi,j)
2, (18)

where VarIi,j is the local mean of the image. Given that ηi,j is a weighted neighborhood
centered on a pixel, the local variance can be rewritten as

Var(Ii,j) =
∑p∈ηi,j

ωp(Ip − Īi,j)
2

∑p∈ηi,j
ωp

, (19)

with

Īi,j =
∑p∈ηi,j

ωp Ip

∑p∈ηi,j
ωp

, (20)

The mean of the local variance µvI was estimated as

µvI =
1

MN

M

∑
i=1

N

∑
j=1

Var(Ii,j), (21)

where M and N represent the size of the image I.
We used the µvI to analyze the relationship between the local variance and the optimal

scale parameter. Figure 13 plots the relationship between the scale and the corresponding
local variance of regions marked by NDVI for each subset image to reflect the influence
of local variance. Green objects, which represent a high proportion of land cover in the
datasets, are important for evaluating the performance of segmentation. The weighted
neighborhood size was drawn from the interval of [3, 19] with a step size of two. Addition-
ally, the curves of the fitting function represent the fitting results for the point sets of {S1,
S2, S3, S4, and S5}.

First, one can see that the relationship between the optimal scale and the local vari-
ance was stable. The relative positions of the five datasets in Figure 13 remained almost
unchanged, even though the size of the neighborhood window η was different for each
subfigure. Second, one can see that the optimal scale for these datasets increases with
increasing local variance, except for S3. For S3, the segmentation accuracy remained high
when the scale parameter was low, even though the optimal scale and corresponding local
variance do not match the first-order fitting curve.
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(a) η = 3 (b) η = 5 (c) η = 7

(d) η = 9 (e) η = 11 (f) η = 13

(g) η = 15 (h) η = 17 (i) η = 19

Figure 13. The relationship between the scale and corresponding local variance of regions marked by
NDVI for subset images of S1, S2, S3, S4, and S5 under different weighted neighborhood sizes η from
the interval of [3, 19].

4.5. Comparision

To highlight the effectiveness of the proposed method, datasets D1 and D2, where there
was large-scale green cover and some water bodies, were used as experimental datasets for
comparative segmentation analysis. In this segmentation experiment, the proposed method
was compared to the Hill-marker watershed segmentation and the multiresolution seg-
mentation method (MRS) [17] embedded in the eCognition Developer software. The scale
parameters for the SI-marker and the Hill-marker watershed segmentation methods were
selected from the interval [10, 500] with a step size of 10. For the MRS segmentation method,
the scale parameter was selected from 20, 40, 60, 80 and the range of [100, 1000] with a step
size of 10. The shape parameter was selected from 0.2, 0.5, 0.8, and the compact parameter
was set to the default value of 0.5. Figure 14 presents the curves of F-measure, precision,
and recall with different numbers of segmentation regions using different methods.

First, precision decreased as the number of segmentation regions increased for all
methods. However, the precision of the proposed method based on the SI-marker was
superior to that of the other methods. The recall curve in Figure 14b reveals that the Hill-
marker watershed segmentation method performed better than the SI-marker watershed
segmentation method when the number of segmentation regions was small. When the
number of segmentation regions was greater than 500, the recall of the proposed method
was visibly higher than that of the other methods, particularly when the recall of the Hill-
marker method decreased sharply. Third, regarding the F-measure values of all methods,
the proposed method exhibited the best performance for different numbers of segmentation
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regions. Additionally, the F-measure of SI-marker watershed segmentation increased and
then decreased with the number of segmentation regions with a maximum value near 0.8.
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Figure 14. The curve of F-measure, Precision, and Recall with segmentation number under SI-marker
and Hill-marker watershed segmentation methods and MSR method on dataset of D1 (a–c) and
D2 (d–f), respectively.

Figure 15 presents the best segmentation results for the SI-marker, and Hill-marker,
and MRS methods on datasets D1 and D2. Segmentation by the SI-marker watershed
transformation clearly provided better results than the other methods. In particular, the
green objects identified by the SI-marker watershed transformation were mostly segmented
into one region, even though the spectral information of the green objects was not consistent.
In the segmentation results of the Hill-marker watershed method, there was significant
over-segmentation. The MRS method also yielded some over-segmentation. Regarding the
segmentation results for water body cover, the SI-marker watershed method was superior
to the MRS method. To illustrate the effectiveness of the SI-marker watershed method, we
selected nine regions for further analysis.
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(a) (b)

(c) (d)

(e) (f)

Figure 15. The optimal segmentation result of datasets D1 and D2 based on the SI-marker method, the
Hill-marker watershed segmentation method, and the MRS method. (a) SI-marker method; scale = 10;
(b) SI-marker method; scale = 20; (c) Hill-marker method; scale = 60; (d) Hill-marker method;
scale = 300; (e) MRS method; scale = 200; shape = 0.2; (f) MRS method; scale = 400; shape = 0.5.

To illustrate the details of segmentation clearly, Figures 16 and 17 present the seg-
mentation results for regions A, B, C, D, E, F, G, and I using the three methods. First, in
regions A, B, D, E, and F, where the spectral information of green objects contained visible
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inconsistency, the SI-marker watershed transformation method obtained a single region,
whereas the Hill-marker watershed transformation and MRS methods separated each
region into several segments. Second, because the scales of the best segmentation results for
the Hill-marker watershed transformation and MRS methods were large, many small-scale
objects were ignored and incorrectly segmented into other ground objects. However, an
object with a small scale can be identified using the proposed method. For example, the
bare area in region F, small-scale green objects in regions G and H, two buildings in region
I, and many buildings in regions A and B were maintained as one segment. Third, in
addition to green objects, water bodies can also be incorrectly segmented. For example,
the water bodies were missed in the segmentation results for regions A, B, C, E, and G for
the Hill-marker watershed transformation and MRS methods. In contrast, the SI-marker
watershed method guaranteed that green and water objects were segmented properly and
that objects of different scales can maintain good segmentation performance.

(a) A:SI-marker (b) B:SI-marker (c) C:SI-marker (d) D:SI-marker (e) E:SI-marker

(f) A:Hill-marker (g) B:Hill-marker (h) C:Hill-marker (i) D:Hill-marker (j) E:Hill-marker

(k) A:MRS (l) B:MRS (m) C:MRS (n) D:MRS (o) E:MRS

Figure 16. The segmentation result of Regions A, B, C, D, and E of dataset D1 based on the SI-marker
method, the Hill-marker watershed segmentation method, and the MRS method.
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(a) F:SI-marker (b) G:SI-marker (c) H:SI-marker (d) I:SI-marker

(e) F:Hill-marker (f) G:Hill-marker (g) H:Hill-marker (h) I:Hill-marker

(i) F:MRS (j) G:MRS (k) H:MRS (l) I:MRS

Figure 17. The segmentation result of Regions F, G, H, and I of dataset D2 based on the SI-marker
method, the Hill-marker watershed segmentation method, and the MRS method.

5. Conclusions

In this study, we proposed a novel variational-scale multispectral image-segmentation
method using spectral indices. Because geographical objects on the Earth’s surface have dif-
ferent scales, remote-sensing images should be segmented according to the different scales
of ground objects. We found that the spectral indices that are primarily used to enhance
the information of ground objects can ignore the scale problem of geographical objects.
Therefore, we introduced spectral indices into marker generation for marker-controlled
watershed transformation segmentation. Spectral indices were used to generate markers
for watershed segmentation based on KDE. Next, a gradient based on the Canny method
and VFM was used to generate markers using Hill’s method [48]. Reconstruction based
on mathematical morphology was then used to combine the gradient and spectral index
markers. Additionally, the automatic selection of a spectral index threshold was proposed
for optimal variational-scale watershed segmentation based on mathematical morphology.

Two multispectral high-resolution remote-sensing images were used to validate the
proposed remote-sensing image-segmentation method. In an image segmentation exper-
iment, we compared our method to the multi-scale watershed transformation method
proposed in [48] and the MRS method embedded in the eCognition Developer software.
The F-measure, precision, and recall measures proposed in [66] were used to evaluate the
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segmentation results. Additionally, we analyzed the influence of the scale parameter on
image segmentation based on seven subsets of remote-sensing images from datasets D1
and D2. The results revealed that the proposed method provides improved performance
compared to the Hill-marker watershed transformation and MRS methods. We can draw
the following conclusions:

(1) The F-measure revealed that the proposed method produces more accurate seg-
mentation results compared to the watershed transformation method from [48] and the
MRS [17] method for varying numbers of segments.

(2) The proposed segmentation method can visually and consistently maintain the
original scales of ground objects in image-segmentation results at different segmentation
scales, particularly for green land cover.

(3) Our method provides more robust image segmentation under different σ and
scale values when the geographical objects in remote-sensing images can be enhanced by
spectral indices.
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