
����������
�������

Citation: Rehman, T.U.; Zhang, L.;

Ma, D.; Jin, J. Common Latent Space

Exploration for Calibration Transfer

across Hyperspectral Imaging-Based

Phenotyping Systems. Remote Sens.

2022, 14, 319. https://doi.org/

10.3390/rs14020319

Academic Editor: Nahina Islam

Received: 8 December 2021

Accepted: 9 January 2022

Published: 11 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Common Latent Space Exploration for Calibration Transfer
across Hyperspectral Imaging-Based Phenotyping Systems
Tanzeel U. Rehman , Libo Zhang, Dongdong Ma and Jian Jin *

Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA;
trehman@purdue.edu (T.U.R.); zhan2693@purdue.edu (L.Z.); ma125@purdue.edu (D.M.)
* Correspondence: jinjian@purdue.edu

Abstract: Hyperspectral imaging has increasingly been used in high-throughput plant phenotyping
systems. Rapid advancement in the field of phenotyping has resulted in a wide array of hyperspectral
imaging systems. However, sharing the plant feature prediction models between different pheno-
typing facilities becomes challenging due to the differences in imaging environments and imaging
sensors. Calibration transfer between imaging facilities is crucially important to cope with such
changes. Spectral space adjustment methods including direct standardization (DS), its variants (PDS,
DPDS) and spectral scale transformation (SST) require the standard samples to be imaged in different
facilities. However, in real-world scenarios, imaging the standard samples is practically unattractive.
Therefore, in this study, we presented three methods (TCA, c-PCA, and di-PLSR) to transfer the
calibration models without requiring the standard samples. In order to compare the performance
of proposed approaches, maize plants were imaged in two greenhouse-based HTPP systems using
two pushbroom-style hyperspectral cameras covering the visible near-infrared range. We tested
the proposed methods to transfer nitrogen content (N) and relative water content (RWC) calibra-
tion models. The results showed that prediction R2 increased by up to 14.50% and 42.20%, while
the reduction in RMSEv was up to 74.49% and 76.72% for RWC and N, respectively. The di-PLSR
achieved the best results for almost all the datasets included in this study, with TCA being second.
The performance of c-PCA was not at par with the di-PLSR and TCA. Our results showed that the
di-PLSR helped to recover the performance of RWC, and N models plummeted due to the differences
originating from new imaging systems (sensor type, spectrograph, lens system, spatial resolution,
spectral resolution, field of view, bit-depth, frame rate, and exposure time) or lighting conditions.
The proposed approaches can alleviate the requirement of developing a new calibration model for a
new phenotyping facility or to resort to the spectral space adjustment using the standard samples.

Keywords: plant phenotyping; calibration transfer; latent space alignment; domain adaptation;
transfer component analysis; domain invariant partial least squares

1. Introduction

High-throughput plant phenotyping (HTPP) facilities are rapid and non-destructive
sensing tools that have recently been widely used to assess multiple plant traits [1–4].
The hyperspectral camera has been one of the integral imaging components in HTPP
facilities and is responsible for the non-invasive rapid measurement of various plant traits
at different scales and times [5,6]. As the hyperspectral images contain highly multicollinear
data, multivariate models are indispensable for the prediction of phenotypic features [7,8].
In order to combat the multicollinearity and to reduce the feature space, latent variable (LV)
extraction techniques such as partial least squares regression (PLSR) are usually applied to
develop multivariate models [9].

One of the major issues with multivariate models developed from the spectral data
is their inability to adjust to the new experimental or environmental conditions [10]. A
calibration model becomes invalid because of the variations in instrumental response over
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time, the difference in environmental conditions, the difference between hyperspectral
cameras, or image acquisition in different HTPP facilities [11,12]. These variations can
result in the shifting of spectral profiles along the wavelength axis [13,14], or can induce
a vertical offset in the spectral data [11,15]. Using a calibration model developed in one
facility or under specific imaging conditions (master) can potentially lead to the wrong
predictions on the new data obtained from another facility or under different experimental
conditions (slave) [16–18]. Therefore, the multivariate models usually need to be adapted
to these changes to maintain their reliability and prediction accuracies [10].

A multivariate model can successfully be applied to different HTPP facilities by per-
forming the calibration transfer between different facilities [6,19–21]. The goal of the
calibration transfer is to reuse the existing calibration data and thus save time, resources,
and associated costs. A common approach for calibration transfer is to image a relatively
small number of plants (i.e., standard samples) in two different HTPP facilities [22]. A
calibration transfer function between two different facilities can then be learned using stan-
dard samples as a bridge to adapt the model to the new imaging conditions/facility [20,23].
Four different methods requiring the standard samples such as direct standardization (DS),
piece-wise direct standardization (PDS), double window PDS (DPDS), and spectral scale
transformation (SST) for calibration transfer between different facilities have been reported
in our earlier study [6]. Although these methods achieved good results for correcting the
nitrogen and relative water content (RWC) predictions, the requirement of imaging the
plant samples in two imaging facilities or different environmental conditions, however,
limit their application. This is especially the case when two HTPP facilities are relatively far
away, hence imaging the same plants becomes practically unattractive. Therefore, in this
study, we presented a group of techniques that can help to transfer the calibration models
but without needing the standard samples to be imaged in different facilities. The essence
of these standard-free approaches is to find an intermediate latent space representation
common between the two imaging systems/conditions using the labeled data (spectra and
response variables) from the master facility and unlabeled data (only spectra) from the
slave facility. The proposed approaches can help to alleviate the requirement of developing
a new calibration model for a new phenotyping facility or to rely on the standard samples
as in the case [6].

2. Materials and Methods
2.1. Hyperspectral Image Acquisition and Processing

In this study, we used two different hyperspectral imaging systems (Figure 1) to
collect the imaging data (referred to as facility 1 and 2 hereafter). Facility 1 consisted of
a hyperspectral imaging tower with an automated plant carrier platform and a lighting
module (Figure 1a). Images of the individual plants (Figure 1b) were acquired in the absence
of ambient light using an MSV-500 pushbroom-style hyperspectral camera (Middleton
Spectral Vision, Middleton, WI, USA) encompassing a spectral range of 370 to 1030 nm.
Four studio halogen lamps were used for illuminating the plant samples. Complete details
about facility 1 can be seen in [24]. Facility 2 contained an automated overhead gantry
system for image acquisition (Figure 1c). The plants were arranged on the greenhouse floor
in rows and the Specim® FX10e VNIR hyperspectral camera covering a 397–1005 nm region
(Specim® spectral imaging Ltd., Oulu, Finland) was flown over the plant rows for image
acquisition with the help of the gantry. In contrast to facility 1, hyperspectral images of
entire rows (multiple plants per row) were acquired in the ambient lighting (Figure 1d).
In addition of using the different cameras and imaging environment, both facilities used
different imaging parameters (frame rate, exposure time, spatial and spectral binning) the
details of which can be found in [6].
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Figure 1. Two HTPP facilities used for this study: (a) a hyperspectral imaging tower, (b) masked RGB
image of a plant, (c) gantry imaging facility, and (d) masked RGB image of multiple plants.

The hyperspectral images from both facilities were calibrated using white boards to
remove illumination variations and the sensor’s dark noise. To segment out the plant
samples from the background, a convolutional segmentation algorithm mentioned in [9,25]
was used. As the hyperspectral images from facility 2 contained multiple plants, therefore,
a bounding box scheme mentioned in [26] was used to locate and extract the individual
plant hypercubes. The mean spectrum was extracted from the hypercube of an individual
plant. From both facilities, the spectral data in the range of 450 nm to 975 nm was retained
for further processing.

2.2. Experimental Design and Plant Materials

To transfer the calibration models across HTPP facilities, a transfer dataset consisting
of the 60 hybrid (B73xMo17) maize plants (Zea mays L.) grown in the Purdue Lilly Green
House Facility (40◦25′16.2”N, 86◦54′53.0”W, https://ag.purdue.edu/LillyGreenhouse/
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Pages/home.aspx; date accessed: 23 November 2021) was collected. Each plant was treated
with one of the two nitrogen treatments, 200 ppm for high nitrogen (HN) and 25 ppm for
low nitrogen (LN). In addition to nitrogen, plants were subjected to two water treatments
(high water: HW and low water: LW). The water stress was established at V6 growth
stage by stopping the water supply for the LW plant samples, while the HW samples were
irrigated with sufficient water each day [6]. The imaging in facility 1 was performed two
times (at exposure settings of 6 ms and 3 ms, individually) and plants were later imaged
in facility 2. In facility 1, white reference panels imaged at 2 ms and 3 ms were used to
calibrate the plant samples imaged at 6 ms and 3 ms, respectively. We intentionally selected
the exposure time of 2 ms for white panels and 6 ms for the plant samples to introduce
nonlinear additive and multiplicative effects in the plant spectra (Figure 2a). The selection
of 3 ms as an exposure time for both white panels and plant samples was done to create
the differences in imaging/experimental conditions (Figure 2b). Plant samples and white
panels were imaged together in facility 2 at exposure settings of 17 ms (Figure 2c).

Remote Sens. 2022, 14, x FOR PEER REVIEW 4 of 18 
 

 

treated with one of the two nitrogen treatments, 200 ppm for high nitrogen (HN) and 25 
ppm for low nitrogen (LN). In addition to nitrogen, plants were subjected to two water 
treatments (high water: HW and low water: LW). The water stress was established at V6 
growth stage by stopping the water supply for the LW plant samples, while the HW sam-
ples were irrigated with sufficient water each day [6]. The imaging in facility 1 was per-
formed two times (at exposure settings of 6 ms and 3 ms, individually) and plants were 
later imaged in facility 2. In facility 1, white reference panels imaged at 2 ms and 3 ms 
were used to calibrate the plant samples imaged at 6 ms and 3 ms, respectively. We inten-
tionally selected the exposure time of 2 ms for white panels and 6 ms for the plant samples 
to introduce nonlinear additive and multiplicative effects in the plant spectra (Figure 2a). 
The selection of 3 ms as an exposure time for both white panels and plant samples was 
done to create the differences in imaging/experimental conditions (Figure 2b). Plant sam-
ples and white panels were imaged together in facility 2 at exposure settings of 17 ms 
(Figure 2c). 

The second dataset in this study was a calibration dataset containing 200 plants sub-
jected to various water and nitrogen treatments. The plants were imaged only in facility 1 
at 6 ms exposure settings and were referenced using a white panel imaged at 2 ms expo-
sure time. For the external evaluation of calibration transfer, we collected a test dataset by 
imaging the plants (n = 68) in two greenhouse facilities using the same exposure time and 
imaging parameters as the transfer data. Test plants were subjected to two (HW and LW) 
water treatments and a nitrogen treatment similar to the transfer data. After imaging, the 
tissue samples from plants were harvested to collect the nitrogen content and RWC 
ground truth data. The complete details about these experiments and imaging can be seen 
in [6]. 

  
(a) (b) 

 
(c) 

Figure 2. Mean reflectance profiles of the different treatments: (a) plants imaged in facility 1 with
6 ms exposure, (b) plants imaged in facility 1 with 3 ms exposure, and (c) plants imaged in facility 2.

The second dataset in this study was a calibration dataset containing 200 plants
subjected to various water and nitrogen treatments. The plants were imaged only in facility
1 at 6 ms exposure settings and were referenced using a white panel imaged at 2 ms
exposure time. For the external evaluation of calibration transfer, we collected a test dataset
by imaging the plants (n = 68) in two greenhouse facilities using the same exposure time
and imaging parameters as the transfer data. Test plants were subjected to two (HW and
LW) water treatments and a nitrogen treatment similar to the transfer data. After imaging,
the tissue samples from plants were harvested to collect the nitrogen content and RWC
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ground truth data. The complete details about these experiments and imaging can be seen
in [6].

2.3. Common Latent Space Search
2.3.1. Notations

In this study, the calibration data imaged at 6 ms was used as the master [Xm (nm × p),
Y(nm × 1)], while the transfer data imaged in facility 1 at 3 ms [Xs1 (ns × p), Y(ns × 1)]
and facility 2 [Xs2 (ns × p), Y(ns × 1)] was used as slave–1 and slave–2, respectively,
where nm = 200, ns = 60 are the number of master and slave samples and p denotes
the spectral bands. Here, X is the spectral matrix of master or slave datasets, and Y is
the corresponding response variable (RWC or N). As the number of spectral bands (p)
and spectral resolution were different between the master and facility 2, therefore, we
first aligned the slave–2 data by finding its wavelengths that were nearest to the master
spectra [6]. This alignment yielded few repeated wavelengths due to the relatively smaller
number of bands compared to the master data. These repeated wavelengths were filled by
using linear interpolation [16,27]. After the alignment procedure, the slave–2 spectral data
have the same number of bands (p) as the master spectra.

2.3.2. Transfer Component Analysis (TCA)

Transfer component analysis extracts a latent representation (features/components)
common to both master and slave data in a way that when data from two spectral matrices
are projected onto this subspace, the discrepancies between the distributions of the data can
be reduced [28]. Let P(Xm) and Q(Xs) be the marginal distributions of the master and slave
spectra, respectively, then, the distance between two marginal distributions based on the
reproducing kernel Hilbert space (RKHS) can be defined by maximum mean discrepancy
(MMD) [29] as in Equation (1).

Dist
(
X′m, X′s

)
= ‖ 1

nm

nm

∑
i=1

ϕ(xmi)−
1
ns

ns

∑
i=1

ϕ(xsi)‖2
UH (1)

where UH is a universal RKHS [30], ϕ is a nonlinear transformation function, X′m and X′s
are the master and slave spectra transformed to RKHS by ϕ, respectively. As it is difficult
to directly solve for the ϕ by minimizing Equation (1) [28], TCA used a kernel trick (i.e.,
k
(

xi, xj
)
= ϕ (xi)

′ϕ
(
xj
)
) to get the kernel matrix (K) (Equation (2)), which can then be used

to compute the distance using Equation (3).

K =

[
Km,m Km,s
Ks,m Ks,s

]
(2)

Dist
(
X′m, X′s

)
= tr (KL) (3)

where K is the kernel matrix of size (nm + ns) × (nm + ns), Km,m, Ks,s, Ks,m are the kernel
matrices obtained by applying the kernel (k) on master, slave, across master–slave spectra,
respectively, and L is given by Equation (4). In order to find the latent representation,
TCA used a W̃ [(nm + ns)× l] matrix for transforming the K to low-rank l-dimensional
space (W) with l indicating the transfer components (TCs) common across master–slave
spectra. Using the transformed K matrix, the distance represented by Equation (3) can
be rewritten as Equation (6). In addition to minimizing the distance between master and
slave distributions, an additional regularization term tr

(
WTW

)
was added to preserve the

variance of the data. The objective function thus becomes Equation (7). The solution of W
can finally be the l-leading eigenvectors of (KLK + µI)−1(KHK), where l is the number of
extracted transfer components (Equation (8)).

L =
[
Lij
]
≥ 0 (4)
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where Lij =


1

n2
m

, i f xi, xj ∈ Xm
1

n2
s
, i f xi, xj ∈ Xs

−1
nmns

, otherwise

K̃ =
(

KK−1/2 W̃
)(

W̃TKK−1/2
)
= KWWTK (5)

Dist
(
X′m, X′s

)
= tr

((
KWWTK

)
L
)
= tr

(
WTKLKW

)
(6)

min
w

tr
(
WTKLKW

)
+ µtr

(
WTW

)
s.t WTKHKW = I

(7)

W = eig
[
(KLK + µI)−1KHK

]
(8)

where I is the identity matrix, µ is the trade-off factor that was manually adjusted, and H is
the centering matrix [28]. Finally, the master (X∗m) and slave (X∗S) data can be converted to
transfer components using Equation (9).

X∗m = K(Xm, Xm+s)W
X∗s = K(Xs, Xm+s)W

(9)

In this study, we investigated a linear kernel for estimating the K matrix since all other
methods (c-PCA, di-PLSR) reported here were essentially linear. From both master and
slave data, 40 TCs were extracted. A schematic showing the complete TCA algorithm is
presented in Figure 3.
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2.3.3. Combined Principal Component Analysis (c-PCA)

To extract the components common across master and slave spectra, principal component
analysis (PCA) was performed on the combined master and slave spectra Xcomb(nm+ns×p) =
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[Xm; Xs]); therefore, called combined PCA (c-PCA). The common principal components (PCs)
from the Xm together with the master response (Ym) were used to develop the calibration
model. Similar to TCA, 40 PCs were from both master and slave datasets.

2.3.4. Domain Invariant Partial Least Squares Regression (di-PLSR)

Domain invariant partial least squares regression is an extension of ordinary PLSR
to align the master (Xm) and slave (Xs) spectral data in the latent space by minimizing the
variances across master–slave spectral data while maximizing the covariance between the
Y and Xm [10,31]. The di-PLSR uses a non-linear iterative partial least squares (NIPALS)
algorithm to align the master–slave variances by reforming the original objective function
for calculating the weight vector (w) as in Equation (10).

min
w
‖ Xm − ywT ‖ 2

F + γ| var(tm)− var(ts)| (10)

where ‖ . ‖F and γ represent Frobenius norm and across spectra regularization parameter,
whereas tm and ts are master and slave data projections (scores) on w. Equation (10) can be
expanded as Equation (11).

min
w
‖ Xm − ywT ‖ 2

F + γ| 1
nm−1

(
wTXT

mXmw
)
− 1

ns−1
(
wTXT

s Xsw
)
|

min
w
‖ Xm − ywT ‖ 2

F + γwTΛw
(11)

The nm and ns are the number of samples in the source and slave data, and Λ =
Kdiag(|λ1|, . . . , |λk|)KT represents a matrix having all absolute eigenvalues (λ1, . . . , λk)
obtained via eigendecomposition (Equation (12)).

Kdiag(λ1, . . . , λk)K
T =

1
nm − 1

(
XT

mXm

)
− 1

ns − 1

(
XT

s Xs

)
(12)

The K represents an eigenvector matrix of differences in the spectral data source-
specific covariance matrices [31]. The first term in Equation (10) is the standard NIPLAS
function, which can be minimized using a least-squares approach to find the w that can
result in maximum covariance between Xm and Y. The other term in Equation (10) denotes
an upper bound on the absolute difference in master and slave variance in direction of
w [31]. The least-squares solution of Equation (11) can provide the w as in Equation (13).

wT =
YTXm

YTY

(
I +

γ

YTY
Λ
)−1

(13)

Similar to NIPLAS, the weight vector needs to be normalized. The master (tm) and
slave (ts) projections (scores) on w can be computed as Equation (14).

tm = Xmw and ts = Xsw (14)

The di-PLSR performs the orthogonalization (Equation (15)) similar to PLSR to remove
the variations in the spectral data (Xm or Xs), which have already been explained by the
current latent variable (LV). A schematic showing the high-level information of di-PLSR
can be seen in Figure 4. The remainder of the di-PLSR algorithm is the same as standard
PLSR [31]. For this study, the regularization parameter was adjusted for each LV as per the
heuristics defined in [31]. Briefly, these heuristics adjusted γ so that both terms in Equation
(10) have equal weights. To finetune the number of LVs, we used 5–fold CV with the lowest
RMSEcv indicting the optimal number of LVs.

Xm = Xm − tm
(
tT
mtm

)−1tT
mXm

Xs = Xs − ts
(
tT
s ts
)−1tT

s Xs
(15)
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2.4. Calibration Models

For methods extracting components (TCA and PCA), PLSR was applied to establish
the calibration models between the extracted components and response variable. The
spectral data were preprocessed using log(1/Re f lectance), mean scatter correction (MSC),
and mean centering (MC) [9] before the common latent space exploration via all these
calibration transfer methods. Before developing the models, both response variables (RWC
and N) were scaled to unit variance and zero-centered using their standard deviations
and means, respectively. In addition to the transferred models, two PLSR (RWC and N)
models were developed using master data only (200 plants imaged in facility 1 at 6 ms
and referenced with a 2 ms white reference) to predict RWC and N (called master models
hereafter). These models were used to obtain the predictions of plants imaged with 6 ms
and referenced with 2 ms exposure in facility 1 for two (transfer and test) datasets. These
predictions (called master predictions hereafter) were used to assess the performance of
different transferred models.

3. Results
3.1. Comparison of Calibration Transfer Methods for RWC

Figure 5 and Table 1 show the results of calibration transfer methods adopted in this
study for RWC predictions. Applying the master RWC calibration model on master spectra
achieved a coefficient of determination (R2) of 0.844, which was dropped to 0.683 and 0.756
when the same model was used to obtain the predictions for slave–1 and slave–2 validation
data, respectively (Figure 5a,b: blue circles vs. purple stars). Similarly, for the test dataset,
the R2 was reduced from 0.866 to 0.783 and 0.772 for slave–1 and slave–2 data (Figure 5c,d:
blue circles vs. purple stars). Using a master PLSR calibration model on raw slave spectra
(no calibration transfer) showed the large discrepancies between master and slave (slave–1:
RMSEv = 10.183% and slave–2: RMSEv = 10.083%) predictions (Table 1).
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Table 1. Evaluation of RWC predictions obtained via TCA, c-PCA, and di-PLSR with reference to the
master predictions.

Models Validation 1 Test Validation 1 Test

Slave–1 Slave–2

RMSE
(%)

MAPE
(%)

RMSE
(%)

MAPE
(%)

RMSE
(%)

MAPE
(%)

RMSE
(%)

MAPE
(%)

Non- transferred 10.183 10.072 11.772 12.685 10.083 8.765 9.054 7.896
TCA 9.987 10.243 14.525 16.359 5.766 5.309 5.890 6.296

c-PCA 24.466 25.657 26.308 30.353 7.708 7.670 7.494 7.965
di-PLSR 2.598 2.234 4.126 4.138 2.767 2.468 3.949 4.122

1 Validation here refers to the transfer data.

Adopting di-PLSR for calibration transfer relatively reduced the error in RWC predic-
tions compared to master data for both slave–1 and slave–2 datasets. In the case of slave–1
validation and test data, the di-PLSR decreased RMSE by 74.49% and 64.96%, respectively.
For slave–2 validation and test data, the RMSE was decreased by 72.56% and 56.38%,
respectively. Subjective evaluation via Figure 5 (red crosses) indicated that the di-PLSR
regression line was fairly closely aligned with the master regression line for all datasets,
which significantly helped to recover the R2 value lost by non-transferred predictions. The
TCA and c-PCA, however, reduced the error only for slave–2 data, while for slave–1, they
degraded the predictions. Figure 5a,c (orange square) showed that the TCA was not able
to reduce the offset compared to master predictions and the regression line was roughly
similar to non-transferred predictions with little improvements. These improvements,
though, increased the R2 but were not instrumental to reduce the discrepancies (RMSE).
The visual evaluation indicated that the offset between master and c-PCA predictions
turned out to be even larger as compared to the non-transferred case (Figure 5a,c: green
triangles). In contrast, TCA and c-PCA predictions for slave–2 were closer to the mas-
ter predictions and, therefore, have relatively better R2, RMSE, and MAPE (Table 1 and
Figure 5b,d). The improved performance of TCA and c-PCA for slave–2 data can be due
to the relatively better alignment of master and slave–2 spectra in latent space compared
with slave–1 (Figure 6a–d). The c-PCA on the other hand was not able to extract the latent
space representation common to both master and slave–1 (Figure 6c). Although TCA and
c-PCA improved results for slave–2, their performance was not at par with di-PLSR. The
improved results of di-PLSR can be due to the better latent space alignment between master
and slave datasets (Figure 6e,f). These results showed the ability of di-PLSR to perform the
RWC model calibration transfer.
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3.2. Comparison of Calibration Transfer Methods for Nitrogen

Figure 7 and Table 2 show the results of calibration transfer methods adopted in
this study for nitrogen predictions. Since all plant samples for test data were treated
with the same nitrogen level, we considered only RMSE and MAPE for comparing the
performance of different calibration transfer techniques. When no calibration transfer was
performed, the R2 for nitrogen was dropped from 0.892 to 0.807 and 0.767 for slave–1 and
slave–2 validation data, respectively (Figure 7a,b: blue circles vs. purple stars). Without any
calibration transfer, the RMSEv and prediction root mean square error (RMSEp) for the slave–
1 dataset were 0.511% and 0.493%, respectively. For slave–2 spectra, the corresponding
statistics were 1.276% and 1.212%, respectively (Table 2). In contrast to slave–1, the RMSEv
and RMSEp for slave–2 were relatively high due to the larger offset between master and
slave–2 predictions (Figure 7b,d). The calibration transfer via di-PLSR reduced the RMSEv
to 0.193% and 0.297%, while RMSEp to 0.277% and 0.286% for slave–1 and slave–2 data,
respectively. Figure 7 (red crosses) shows the improvement obtained by di-PLSR nitrogen
predictions for both slave–1 and slave–2 data and, therefore, recovered the R2 value lost
by non-transferred predictions. Similar to RWC, the TCA reduced the RMSEv and RMSEp
(Table 2) and improved the R2 (Figure 7b,d) of nitrogen predictions for slave–2 data. In
contrast to the RWC, the TCA improved the predictions of the nitrogen model for the
slave–1 data. Subjectively, small improvements in the nitrogen predictions can also be seen
in Figure 7a,c (orange squares). Although the TCA reduced RMSE, this error reduction
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for slave–1 (22.90% and 17.45% for validation and test, respectively) was relatively less
compared to the slave–2 (75.47% and 76.40% for validation and test, respectively). The
c-PCA for nitrogen showed results similar to RWC, i.e., improvement in the slave–2 and
degradation in the slave–1 predictions (Figure 7a–d: green triangles). The degradation was
due to the failure of c-PCA to extract the latent space common to both master and slave–1
data as mentioned earlier. These results indicated that calibration models can be transferred
to different HTPP facilities equipped with hyperspectral cameras using di-PLSR.

Table 2. Evaluation of nitrogen predictions obtained via TCA, c-PCA, and di-PLSR with reference to
the master predictions.

Models Validation 1 Test Validation 1 Test

Slave–1 Slave–2

RMSE
(%)

MAPE
(%)

RMSE
(%)

MAPE
(%)

RMSE
(%)

MAPE
(%)

RMSE
(%)

MAPE
(%)

Non-transferred 0.511 22.202 0.493 10.733 1.276 48.405 1.212 44.512
TCA 0.394 17.460 0.407 12.486 0.313 13.448 0.258 8.331

c-PCA 0.513 23.042 0.546 19.787 0.693 28.598 0.789 27.983
di-PLSR 0.193 7.117 0.277 9.580 0.297 9.721 0.286 8.535

1 Validation here refers to the transfer data.
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4. Discussion

The plant phenotypic features prediction models developed using spectral reflectance
data from HTPP systems are usually facility-specific. The calibration models developed
in one facility often fail to perform reliably when applied on a spectrum collected from
a new HTPP facility or under different imaging/experimental conditions. Therefore, the
transfer of these calibration models is essential for ubiquitous application of HTPP systems.
This work reported the application of TCA, c-PCA, and di-PLSR to transfer the calibration
models by learning the underlying common latent space. The proposed di-PLSR improved
the RWC and nitrogen prediction performances without requiring the standard plant
samples when challenged with imaging conditions variations (slave–1) and a new HTPP
facility (slave–2).

When transferring the RWC calibration model, TCA and c-PCA improved the predic-
tions for the new HTPP facility, while for an existing facility with different experimental
conditions, these methods degraded the performance. These results were in contrast to [32],
where TCA showed an improvement of 11.84% in the R2 for experimental condition change
(fruit temperature changes) and 7.32% for a new instrument. The contrasting results of our
study compared to [32] could be due to the nature of change in experimental conditions,
i.e., fruit temperature change versus the change in exposure settings. Another reason for
better results for only slave–2 in our study can be due to the better alignment of master
and slave–2 spectra in common latent space extracted by TCA, which helped to reduce
the prediction discrepancies. In the case of slave–1, an offset (Figure 6a) between slave–1
and master data was observed along the first transfer component (TC1), which might
explain the prediction offset of slave–1 in Figure 5a,c. The c-PCA was not able to extract the
latent space representation common to both master and slave–1 (Figure 6c) and, therefore,
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resulted in poor performance. The discrepancy in the latent space for slave–1 could be due
to the inability of TCA and c-PCA to correctly capture the additive reflectance offset or
complex multiplicative perturbations in the blue and near-infrared portions, thus varying
the spectral shape and slope in these regions (Figure 2) [6]. Shi et al. [33] combined TCA,
PCA, and artificial neural networks to predict the compression strength of forest trees using
NIR spectra. The study first extracted the common components among two species of
hardwood using TCA followed by PCA to further reduce the common features. Finally,
the ANN model trained with master data was finetuned using the labeled samples from
the slave dataset. The best results were reported when 60% of the samples from slave data
were used for finetuning the model. However, in this study, the labels from the slave data
were never used to update the model. For nitrogen model transfer, the results of TCA were
contrastingly different than RWC for slave–1 data. The better performance of TCA for
slave–1 nitrogen predictions compared to RWC can be attributed to the downstream PLSR
model that is learning the association between TCA components and response variable
(RWC or N). Analyzing the regression coefficients (β) of RWC and nitrogen models indi-
cated that the nitrogen model has given relatively less weight to the TC1 compared to RWC
and, therefore, might be relatively less impacted by the master and slave–1 offset along the
TC1. Mishra et al. [34] used the di-PLSR to adapt a calibration model developed on one
spectrometer to another instrument for predicting the dry matter content of olive fruit. The
results showed that di-PLSR can considerably improve the model performance when tested
on the new instrument. While the study involved two different spectrometers, both of
them were from the same manufacturer with a difference being produced under different
batches [35]. In comparison, our study applied TCA, c-PCA, and di-PLSR to an unexplored
area of HTPP facilities with relatively more sources of variations including sensor type,
spectrograph, lens system, spatial resolution, spectral resolution, the field of view, bit-depth,
frame rate, and exposure time [6]. These facilities also used hyperspectral cameras instead
of spectrometers. In addition to the imaging system variations, the two HTPP facilities
have completely different lighting sources (artificial versus ambient lighting). Our study
clearly showed that even in the presence of larger sources of variations (imaging system +
lighting conditions), di-PLSR can be successfully used to transfer the calibration models
across different HTPP systems. Persistent to results of this research, the study conducted
by [31] showed the better performance of the di-PLSR compared to the TCA. In contrast to
the methods reported by [6,36,37], our proposed techniques relax the condition of imaging
the same plants in two HTPP facilities.

5. Conclusions

Transfer of calibration models is essential for ubiquitous applications of HTPP systems
equipped with hyperspectral cameras. An existing multivariate model can potentially
lead to poor predictions because of the variations in instrumental response over time, the
difference in experimental conditions, the difference between hyperspectral cameras, or
image acquisition in different imaging facilities. In the current work, TCA, c-PCA, and
di-PLSR were proposed to perform calibration transfer via learning an intermediate latent
space common between master and slave data. The main advantage of the suggested tech-
niques is to avoid the need of imaging the same standard samples in different phenotyping
facilities for calibration transfer as in the case of [6]. The suggested methods were tested
to transfer the RWC and N calibration models. The quantitative analysis showed that the
di-PLSR alleviated the perturbations inherited in the spectral data for both RWC and N
predictions. The di-PLSR reduced the RWC RMSEv from 10.183% to 2.598% for slave–1 and
from 10.083% to 2.767% for slave–2 data. Similarly, for nitrogen, the RMSEv was reduced
from 0.511% to 0.193% for slave–1 and from 1.276% to 0.297% for slave–2. Based on the
performance evaluation, it can be concluded that the di-PLSR can alleviate the requirement
of developing a new calibration model for every phenotyping facility or to resort to the
spectral space adjustment using the standard samples.
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